

imc FAMOS
Function Reference Version 2024

© 2024 imc Test & Measurement GmbH

imc Test & Measurement GmbH • Voltastraße 5 • 13355 Berlin • Germany

Overview

This chapter provides a detailed reference of all functions, operators, constants and sequence commands available in imc FAMOS.

imc FAMOS Func on Reference - 2 -

(c) 2024 imc Test & Measurement GmbH

-

Point-by-point subtraction

Declaration:
Minuend - Subtrahend -> Difference

Parameter:

Minuend First parameter, Minuend

Subtrahend Second parameter, Subtrahend

Difference Difference, results of point-by-point subtraction.

Description
The difference of two variables is calculated. Data sets are subtracted value for value, independent of their x-axis scaling. When a single value is
subtracted from a data set, it is subtracted from each point of the data set.

Use the function Sub() for time-correct or x-correct subtraction.

Remarks

Under certain circumstances, structured channels (segments/events) can also be subjected to this operator. For this purpose, either one of
the two parameters must be a single value, or both parameters must have exactly the same structure (i.e. same total and segment length,
same event count and event length).
For meaningful division, the channels involved must have the same x-scaling. If they are not the same, a warning message is generated and
the information from the first complex variable is used.
Not all combinations of complex data types can be used for subtraction. To subtract a decibel-phase (DP) data set, it first must be converted
to a different type; this is most convenient with the idB function. To subtract a complex and a real channel, the real data must first be
converted to complex data, easily done using the Compl function.
Complex data sets are subtracted value for value, according to the conventions of complex calculation. Note that when complex numbers are
expressed in polar coordinates are subtracted, the magnitudes and phases will not be subtracted separately.
If the specified data sets have different lengths, the length of the result corresponds to that of the shorter data set.

Examples:
Offset correction, subtraction of a fixed number:

NDcorr = NDdata - offset
XYdata.Y = XYData.Y- offset

Difference between two spectra:

MPdiff = MPspec1 - MPspec2

Difference between two spectra, where one is expressed in dB:

MPdiff = MPspec1 - idB(DPspec2)

Two methods of subtracting a real data set from a complex data set RiSpec having the components RiSpec.R and RiSpec.I:

RIdiff = Compl(RIspec.R - NDreal, RIspec.I)
RIdiff = RIspec - NDreal

Two methods of subtracting a single value from a complex data set RiSpec having the components RiSpec.R and RiSpec.I:

RIdiff = Compl(RIspec.R - offset, RIspec.I)
RIdiff = RIspec - offset

See also:
+(Addition), Sub, Append

imc FAMOS Func on Reference - 3 -

(c) 2024 imc Test & Measurement GmbH

>

Comparison operator, "greater than"

Declaration:
Operand1 > Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value or data set to be compared.

Operand2 Second single value or data set to be compared.

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
Comparison of two numbers. The result is 1 if the first operand is greater than the second operand. Otherwise, the result is 0.

The operator can be applied to single values or to data sets. Comparison of data sets is performed data point by data point.

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/ segments); but then the respective other parameter must either have the exactly same structure
(same segment length, event count and length), or be a single value.

Examples:
A data set's maximum value is found and checked against a value limit.

Channel1 = ...
Maximum = max(Channel1)
IF Maximum > 21 AND Maximum <= 34
 BoxMessage("Attention", "Maximum near limit!", "!1")
ELSE
 IF Maximum > 34
 BoxMessage("Attention", "Limit is exceeded", "!1")
 END
END

In a data set, all values beyond a certain threshold are set to 0.

Channel1 = ...
Result = Channel1 * (Channel1 > 20)

In a data set, all values below 15 are set to the fixed value 10 and all values above 15 to the fixed value 20.

Channel1 = ...
Result = (Channel1 <= 15) * 10 + (Channel1 > 15) * 20

See also:
<, >=, UpperValue

imc FAMOS Func on Reference - 4 -

(c) 2024 imc Test & Measurement GmbH

>=

Comparison operator, "greater or equal"

Declaration:
Operand1 >= Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value or data set to be compared.

Operand2 Second single value or data set to be compared.

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
Comparison of two numbers. The result is 1 if the first operand is greater than or equal to the second. Otherwise the result is 0.

The operator can be applied to single values or to data sets. Comparison of data sets is performed data point by data point.

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/ segments); but then the respective other parameter must either have the exactly same structure
(same segment length, event count and length), or be a single value.

Examples:
A data set's maximum value is found and checked against a value limit.

Channel1 = ...
Maximum = max(Channel1)
IF Maximum > 21 AND Maximum < 34
 BoxMessage("Attention", "Maximum near limit!", "!1")
ELSE
 IF Maximum >= 34
 BoxMessage("Attention", "Limit is exceeded", "!1")
 END
END

In a data set, all values beyond a certain threshold are set to 0.

Channel1 = ...
Result = Channel1 * (Channel1 >= 20)

In a data set, all values below 15 are set to the fixed value 10 and all values above 15 to the fixed value 20.

Channel1 = ...
Result = (Channel1 < 15) * 10 + (Channel1 >= 15) * 20

See also:
<=, >, UpperValue

imc FAMOS Func on Reference - 5 -

(c) 2024 imc Test & Measurement GmbH

<

Comparison operator, "less than"

Declaration:
Operand1 < Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value or data set to be compared.

Operand2 Second single value or data set to be compared.

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
Comparison of two numbers. The result is 1 if the first operand is less than the second operand. Otherwise, the result is 0.

The operator can be applied to single values or to data sets. Comparison of data sets is performed data point by data point.

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/ segments); but then the respective other parameter must either have the exactly same structure
(same segment length, event count and length), or be a single value.

Examples:
A data set's maximum value is found and checked against a value limit.

Channel1 = ...
Maximum = max(Channel1)
IF Maximum >= 21 AND Maximum < 34
 BoxMessage("Attention", "Maximum near limit!", "!1")
ELSE
 IF Maximum >= 34
 BoxMessage("Attention", "Limit is exceeded", "!1")
 END
END

In a data set, all values below a certain threshold are set to 0.

Channel1 = ...
Result = Channel1 * (Channel1 < 20)

In a data set, all values below 15 are set to the fixed value 10 and all values above 15 to the fixed value 20.

Channel1 = ...
Result = (Channel1 < 15) * 10 + (Channel1 >= 15) * 20

See also:
<=, >, LowerValue

imc FAMOS Func on Reference - 6 -

(c) 2024 imc Test & Measurement GmbH

<>

Comparison operator, "unequal"

Declaration:
Operand1 <> Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value/data set/text/text array to compare

Operand2 Second single value/data set/text/text array to compare

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
Test for inequality. The result is 1 if the two operands aren't equal. Otherwise, the result is 0.

This operator can be applied to single values, data sets, texts and text arrays.

With data sets, the comparison is performed sample point by sample point.

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/ segments); but then the respective other parameter must either have the exactly same structure
(same segment length, event count and length), or be a single value.

Two text arrays are considered identical if they share the same dimensionand the respective texts having the same index are the same.

Comparison of texts is not case-sensitive.

Examples:
A check is made of whether a data set contains an even number of samples.

Channel1 = ...
len = Leng?(Channel1)
IF mod(len, 2) <> 0
 BoxMessage("Error", "Invalid data set length", "!1")
END

Two digital data sets are to be compared. The result data set is 1 everywhere that the operand data sets have different values.

Result = (DigChannel1 <> DigChannel2)

The data set's units are checked for validity.

unit = UNIT?(Pressure_1, 1)
IF (unit <> "Bar" AND unit <> "Pa")
 BoxMessage("Attention", "Invalid unit (pressure)", "!1")
END

See also:
=, <=, >, TComp

imc FAMOS Func on Reference - 7 -

(c) 2024 imc Test & Measurement GmbH

<=

Comparison operator, "less than or equal to"

Declaration:
Operand1 <= Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value or data set to be compared.

Operand2 Second single value or data set to be compared.

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
Comparison of two numbers. The result is 1 if the first operand is less than or equal to the second operand. Otherwise, the result is 0.

The operator can be applied to single values or to data sets. Comparison of data sets is performed data point by data point.

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/ segments); but then the respective other parameter must either have the exactly same structure
(same segment length, event count and length), or be a single value.

Examples:
A data set's maximum value is found and checked against a value limit.

Channel1 = ...
Maximum = max(Channel1)
IF Maximum > 21 AND Maximum <= 34
 BoxMessage("Attention", "Maximum near limit!", "!1")
ELSE
 IF Maximum > 34
 BoxMessage("Attention", "Limit is exceeded", "!1")
 END
END

In a data set, all values below a certain threshold are set to 0.

Channel1 = ...
Result = Channel1 * (Channel1 <= 20)

In a data set, all values below 15 are set to the fixed value 10 and all values above 15 to the fixed value 20.

Channel1 = ...
Result = (Channel1 <= 15) * 10 + (Channel1 > 15) * 20

See also:
<, >=, LowerValue

imc FAMOS Func on Reference - 8 -

(c) 2024 imc Test & Measurement GmbH

*

Point-by-point multiplication

Declaration:
Factor1 * Factor2 -> Product

Parameter:

Factor1 First parameter, Factor

Factor2 Second parameter, Factor

Product Product; result of the point-by-point multiplication

Description
The product of two variables is calculated. Data sets are multiplied value for value, independent of their x-axis scaling.

Use the function Mult() for time-correct or x-correct multiplication.

With multiplication of single values and data sets , the same single value is multiplied to each of the data set's values.

Complex data types can be used interchangeably for multiplication. The result is always the same, regardless in which type the parameters are
specified: as soon as at least one complex data set is involved in a multiplication, all units are checked for dB and treated accordingly.
Multiplication of dB data is performed by adding the dB values.

Remarks

Under certain circumstances, structured channels (segments/events) can also be subjected to this operator. For this purpose, either one of
the two parameters must be a single value, or both parameters must have exactly the same structure (i.e. same total and segment length,
same event count and event length).
For meaningful division, the channels involved must have the same x-scaling. If they are not the same, a warning message is generated and
the information from the first complex variable is used.
Complex data sets are multiplied value for value, according to the conventions of complex calculation. Note that when complex numbers
expressed in cartesian representation are multiplied, the real and imaginary parts will not be multiplied separately. Note also that in polar
coordinate display, the phases and dB-numbers are added.
If the specified data sets have different lengths, the length of the result corresponds to that of the shorter data set.

Examples:
A channel is normalized with a reference value:

NWnormalized = NWdata * SvReference
XYdata.Y = XYdata.Y * SvReference

The spectrum of a system's output variable is calculated by multiplying the transfer function by the spectrum of the input variable.

MPspec2 = MPspec1 * RItransfer

The spectrum of a system's output variable is calculated by multiplying the transfer function (in dB) by the spectrum of the input variable.

MPspec2 = MPspec1 * DPtransfer

Normalizes a spectrum using a reference value. If the unit of the reference value is dB, it is interpreted as a value in decibels and calculated
accordingly.

MPtransfer = MPspec * SvReference

Multiplication of two real number data sets, with one expressed in dB. Since no complex data set is involved, the dB are not recognized
automatically. Therefore, the inverse dB function is performed on the data set in dB.

NWdata = idB(NWdb) * NWnodb
; or alternatively:
NDdatdb = NDdb + dB(NDnodb)

See also:
/(Division), Mult, MatrixMult

imc FAMOS Func on Reference - 9 -

(c) 2024 imc Test & Measurement GmbH

/

Point-by-point division

Declaration:
Dividend / Divisor -> Quotient

Parameter:

Dividend First parameter, dividend

Divisor Second parameter, divisor

Quotient Quotient, result of point-by-point division

Description
The quotient of two variables is computed. Data sets are divided point-by-point independently of their x-axes' scales.

Use the function Div() for time-correct or x-correct division.

With division of data set values by a single value, the same single value is the divider for each of the data set's values.

Complex data types can be used interchangeably for division. The result is always the same, regardless in which type the parameters are
specified: as soon as at least one complex data set is involved in a division, all units are checked for dB and treated accordingly. Division of dB
data is performed by subtracting the dB values.

Remarks

Under certain circumstances, structured channels (segments/events) can also be subjected to this operator. For this purpose, either one of
the two parameters must be a single value, or both parameters must have exactly the same structure (i.e. same total and segment length,
same event count and event length).
For meaningful division, the channels involved must have the same x-scaling. If they are not the same, a warning message is generated and
the information from the first complex variable is used.
Complex data sets are divided value for value, according to the conventions for complex calculation. Note that when complex numbers in
rectangular coordinates are divided, the real and imaginary parts are not divided separately. Also note that for displays in polar coordinates,
phase and dB numbers will be subtracted.
If the specified data sets have different lengths, the length of the result corresponds to that of the shorter data set.

Examples:
A channel is normalized with a reference value:

DataNormalized = Data / SvReference
XYdata.Y = XYdata.Y / SvReference

Transfer function as the quotient of two spectra:

MPTransfer = MPSpectrum1 / RISpectrum2

Transfer function (in dB) as quotient of two spectra expressed in dB:

DPTransfer = DPSpectrum1 / DPSpectrum2

Normalizes a spectrum using a reference value. If the unit of the reference value is dB, it is interpreted as a value in decibels and calculated
accordingly.

MPTransfer = MPSpectrum / SvReference

Division of two real data sets, where one is expressed in dB. Since a complex data set is not involved, the dB are not automatically recognized.
Therefore, the data set present in dB should be converted using the inverse dB function.

NDdat = idB(NDdb) / NDnodb
; or alternatively:
NDdatdb = NDdb - dB(NDnodb)

See also:
*(Multiplikation), Div

imc FAMOS Func on Reference - 10 -

(c) 2024 imc Test & Measurement GmbH

^

Power operator (exponentiation)

Declaration:
Base ^ Exponent -> Result

Parameter:

Base First parameter, base

Exponent Second parameter, exponent

Result Power (base raised to the exponent)

Description
The power function calculates the base to the power of the exponent. The power function processes data sets point-by-point regardless of the x-
scaling.

When a single value is specified with a data set, the single value is applied to every value of the data set.

Remarks

If the base value is positive, the exponent can assume any value.
If the base value is negative, the exponent may only be an integer.
If the base value is zero, the exponent must be positive.
When possible, the unit of the result is determined from the unit of the base value and the value of the exponent. This is possible only
when the exponent is a single value. Otherwise, the unit of the base value remains unchanged.
The ^ character has a higher priority in sequences than basic arithmetic operators. For example, 4 * 3 ^ 2 is interpreted as 4 * (3 ^ 2), yielding a
result of 36.
Under certain circumstances, structured channels (segments/events) can also be subjected to this operator. For this purpose, either one of
the two parameters must be a single value, or both parameters must have exactly the same structure (i.e. same total and segment length,
same event count and event length).
If the specified data sets have different lengths, the length of the result corresponds to that of the shorter data set.

Examples:
SVpower is assigned the value 8 V3.

SVpower = 2 'V' ^ 3

The reciprocal of the cubic root of the data set is calculated. If the data set unit is V^3, the result's unit will be 1/V.

NDpower = NDdata ^ (-1/3)

See also:
*(Multiplikation), sqr, sqrt, exp

imc FAMOS Func on Reference - 11 -

(c) 2024 imc Test & Measurement GmbH

+

Point-by-point addition

Declaration:
Summand1 + Summand2 -> Sum

Parameter:

Summand1 First summand

Summand2 Second summand

Sum Sum; result of the point-by-point addition.

Description
The sum of two variables is calculated. Data sets are added value for value, regardless of their x-axis scaling.

A single value is added to a data set by adding the value to each point of the data set.

Use the function Add for time correct or x-correct addition.

This operator can also be used to append texts to each other (same as TAdd).

Remarks

Under certain circumstances, structured channels (segments/events) can also be subjected to this operator. For this purpose, either one of
the two parameters must be a single value, or both parameters must have exactly the same structure (i.e. same total and segment length,
same event count and event length).
When working with XY-data sets, the desired components must always be specified. You can add a single value directly to an XY-data set;
each Y-value of the data set is then increased by the single value.
For meaningful division, the channels involved must have the same x-scaling. If they are not the same, a warning message is generated and
the information from the first complex variable is used.
Not all combinations of complex data types can be added. To add a Dp data set (complex data set with polar coordinates, magnitude in dB), it
must first be changed to a different type, for example using the idB function.
Complex data sets are added value for value, according to the rules of complex arithmetic. Note that when complex numbers represented
with polar coordinates are added, the magnitudes and phases are not added individually.
If the specified data sets have different lengths, the length of the result corresponds to that of the shorter data set.

Examples:
Offset correction, addition of a fixed number:

NWcorrected = NWdata + SvReference

The amplitude of an XY-data set is corrected:

XYcorr.Y= XYcorr.Y+2

Superposition of two spectra:

MPsuperpos = MPspec1 + MPspec2

Superposition of two spectra, where one is given in dB:

MPsuperpos = MPspec1 + idB (DPspec2)

Two ways of adding a real number data set to a complex data set RiSpec with the components RiSpec.R and RiSpec.I.

RIsum = Compl(RIspec.R + NWreal, RIspec.I)
RIsum = RIspec + NWreal

Two ways of adding a single value to a complex data set RiSpec with the components RiSpec.R and RiSpec.I:

RIsum = Compl (RIspec.R + SvReference, RIspec.I)
RIsum = RIspec + SvReference

See also:
-(Subtraktion), Add, MatrixAdd, Append

imc FAMOS Func on Reference - 12 -

(c) 2024 imc Test & Measurement GmbH

=

Comparison operator, "equal"

Declaration:
Operand1 = Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value/data set/text/text array to compare

Operand2 Second single value/data set/text/text array to compare

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
Test for equality. The result is 1 if both operands are equal. Otherwise, the result is 0.

This operator can be applied to single values, data sets, texts and text arrays.

With data sets, the comparison is performed sample point by sample point.

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/ segments); but then the respective other parameter must either have the exactly same structure
(same segment length, event count and length), or be a single value.

Two text arrays are considered identical if they share the same dimensionand the respective texts having the same index are the same.

Comparison of texts is not case-sensitive.

Examples:
A check is made of whether a data set contains an even number of samples.

Channel1 = ...
Len = leng?(Channel1)
IF mod(len, 2) = 1
 BoxMessage("Error", "Invalid data set length", "!1")
END

Two digital data sets are to be compared. The result data set is 1 everywhere that the operand data sets have the same value.

Result = (DigChannel1 = DigChannel2)

Any of a data set's units stated in "Bar" are converted to "Pascal".

IF Unit?(Pressure_1, 1) = "Bar"
 Pressure_1 = Pressure_1 * 1e5
 SetUnit(Pressure_1, "Pa", 1)
END

See also:
<>, <=, >, TComp

imc FAMOS Func on Reference - 13 -

(c) 2024 imc Test & Measurement GmbH

ABCRating

A, B or C frequency rating in accordance with DIN EN 61672-1 (DIN IEC 651)

Declaration:
ABCRating (Signal, SvType, SvTimeRating, SvReduction, Zero) -> Rated

Parameter:

Signal Signal to be rated [NW]

SvType Type of rating

1 : A-Rating

2 : B-Rating

3 : C-Rating

SvTimeRating Time weighting

0 : No time weighting

>=0 : Time constant for averaging

-1 : FAST weighting

-2 : SLOW weighting

-3 : IMPULSE weighting

-4 : PEAK weighting

SvReduction Reduction/Resampling

0 : Equal-weighted RMS along the entire frequency-rated signal. TimeWeighting is ignored.

1 : No resampling

>1 : Factor for resampling

Zero Reserved parameter. Always 0.

Rated

Rated Frequency rated signal

Description:
This function provides you with the standardized A, B and C frequency rating curves in accordance with DIN IEC 651 (sound level measurements).

Time weighting (moving RMS with exponential mean) and reduction (postsampling) are also available.

The A-weighting conforms to IEC 61672-1, 1st edition, 2002-05, Class1 and DIN IEC 651, 1981, class 0.

The cut-off frequencies of the rating curve band passes are as follows:

Rating Lower cut-off Upper cut-off
A 500 Hz 11 kHz

B 160 Hz 8 kHz

C 31.5 Hz 8 kHz
For A rating, the sampling frequency of the signal must be higher than 3.34kHz, for B and C rating higher than the lower threshold frequency of
the filter. Ideally, the sampling frequency would be substantially higher than the upper threshold frequency.

The standardized weighting times are as follows:

FAST Time constant = 0.125 s.

SLOW Time constant = 1 s.

Impulse For increasing amplitudes the time constant is 35 ms, for decreasing amplitudes 1.5 s. Thus impulse-shaped signals are captured
quickly, the response decays slowly.

Peak Extreme response for very short impulses; ensuring capture of the peak value. Time constant is zero during increasing amplitude (can
be performed exactly by computer, by analog operation only in approximation); during decreasing amplitude 3 s.

A table of the frequency rating curves for the individual ratings is to be found in the description of the third-octave analysis - OctA().

Examples:

SignalA = ABCRating(Signal, 1, 0.2, 2, 0)

imc FAMOS Func on Reference - 14 -

(c) 2024 imc Test & Measurement GmbH

The signal is subjected to evaluation for an A-rating. The signal is time weighted with a time constant of 0.2s and resampled with the factor 2.

SignalCRms = ABCRating(Signal, 3, 0, 0, 0)

The equal-weighted RMS of the C-rated signal is determined.

See also:
OctA, ExpoRMS, RMS

imc FAMOS Func on Reference - 15 -

(c) 2024 imc Test & Measurement GmbH

Abs

Absolute magnitude

Declaration:
Abs (Parameter) -> Result

Parameter:

Parameter Parameter. Allowed types: [ND],[XY].

Result

Result Absolute magnitude of the parameter

Description:
This operator determines the absolute value of real numbers. Positive numbers remain unchanged; the sign of negative numbers is inverted.
This is equivalent in operation to an ideal rectifier.

Remarks

The x-coordinate(s) of the parameter and the result are the same.
The unit remains unchanged.
The parameter may be structured (events/segments).

Examples:
Rectification of a sine wave:

NDhalfWave = Abs(NDsinus)

See also:
Round, Mod

imc FAMOS Func on Reference - 16 -

(c) 2024 imc Test & Measurement GmbH

ACF

Autocorrelation function

Declaration:
ACF (InputData) -> Result

Parameter:

InputData Data set to be correlated with itself

Result

Result Result of the autocorrelation

Description:
The autocorrelation function is the special case of a cross-correlation function of two identical data sets. Autocorrelation means that a data set is
correclated with itself.

In the implementation presented, the data set passed as the parameter is imagined to be extended periodically in both directions. if the data set
(the signal) represents a single impulse, then the signal is interpreted as if it were many impulses strung together in succession, all the same
length and same shape. This signal is compared to a copy of itself shifted once by an amount in the x-direction.

For any such shift, the autocorrelation function indicates how similar the signals are to each other. A return value of 1 means that both are
identical. This is the case for a shift of 0, or also by one period length. A value of -1 means that both signals are oppositely equal; if one signal is
positive, the other is just as large but negative.

A value of 0 indicates that the signal is not at all correlated with its shifted copy. A values between -1 and +1 may occur.

The data set generated is calculated over one period. The autocorrelation function is itself periodic, so that it is not necessary to calculate it over
a larger range. The data set generated is axisymmetric around its center (in x-direction). The reason is that when comparing two identical
functions, it does not matter whether a function is shifted by 0.9 periods in one direction or by 0.1 periods in the other, or even by 0.1 periods in
the same direction. One half of the data set generated thus contains redundant data which you can discard.

To achieve acceptable calculation speed, the autocorrelation function is calculated with the help of the functions FFT(), iFFT(). Besides the
immense savings on calculation time, this has two important consequences especially for long data sets:

For pre-processing, you can use the window function which you have set for the FFT. If you don't wish to use windowing, select the recatangle
window; see the section on FFT. For another thing, the length of the processable data sets is limited to exponents of two up to 2^27. If a data set's
length is different, it is truncated (even before windowing) to the next lower exponent of two. But if no values may be truncated, first use the
function Red2(); see the examples.

The ACF implemented here always yields normalized values, thus, no units are required. The values are normalized using the sum of the
squares of all data set values. This means that the value of the non-normalized auto-correlation function is normalized at the position zero.
This value is the square of the true RMS.
When the length of the data set exceeds 2^27, an error message is generated. The ACF cannot be computed. Shorten the data set using
either of the imc FAMOS functions Leng or Red2. data sets with a maximum length of 134.217.728 can be processed.
If the length of the data set specified as a parameter is not a power of two, a warning message is generated. The data set is then
automatically truncated..
Because the ACF function uses the FFT function internally, temporary memory is required in the working memory. If insufficient memory is
available, an error message is generated and calculation is canceled.
If the data set to be processed has too large a mean value (y-offset), it is recommended to remove the mean value from the data set.
Otherwise, the mean value influences the correlation result stronger than the actual signal. This means the auto-correlation function is not
calculated, rather the auto-covariance function.

Examples:

acf_result = ACF(data)

Simplest application, periodic ACF; the data set may be truncated down to a power of two in length.

acf_result = ACF(Red2(data - Mean(data)))

Periodic ACF, with the whole data set affected through appropriate resampling. The mean value of the data set is subtracted since quite a large y-
offset is present.

help = Red2(data)
help = Leng(help, 2 * Leng?(help))
acf_result = ACF(Red2(help))
acf_result = Leng(acf_result, 0.5 * Leng?(acf_result))

This is an example of non-periodic ACF: the signal is extended with zeros ("appending zero" in the literature), simulating a nonrepetitive signal,
even though ACF calculation is periodic. After calculation, the second half of the result is discarded. Calling Red2 function twice ensures that each
power of two of valid data is padded with an equal number of zeros. The rectangular window function should always be set for this sequence

imc FAMOS Func on Reference - 17 -

(c) 2024 imc Test & Measurement GmbH

(see FFT).

See also:
CCF, CorrCoeff, FFT, Red2

imc FAMOS Func on Reference - 18 -

(c) 2024 imc Test & Measurement GmbH

acos

Arcsine; inversion of sin

Declaration:
acos (Data) -> Angle

Parameter:

Data Data; allowed types: [ND],[XY].

Angle

Angle Arcsine of the parameter (angle in radians)

Description:
The arcsine function is computed.

This function returns an angle in radians without units.

The x-coordinate(s) of the results and the parameter are the same.

Remarks

The argument should not have any unit; if it does, a warning is issued and the unit is adopted unchanged.
The permittedd value range of the parameter is between -1 and +1.
The parameter may be structured (events/segments).

Examples:
acos(0) = PI/2, acos(1) = 0, acos(-1) = PI

pihalf = acos(0.0)

A serrated triangular data set is generated from a sinusoidal data set:

NDspikes = acos(NDcos)

With the pre-defined constant PI or INDEGR, the angle returned is converted from radians to degrees:

value_90 = acos(0.0) * 180 '°' / PI
value_90 = acos(0.0) * INDEGR

See also:
cos, asin, atan2

imc FAMOS Func on Reference - 19 -

(c) 2024 imc Test & Measurement GmbH

Add

Time- or x-correct addition

Declaration:
Add (Summand1, Summand2, SvOption) -> Sum

Parameter:

Summand1 First summand. Allowed types: [ND],[XY].

Summand2 Second summand. Allowed types: [ND],[XY].

SvOption Option

0 : The trigger time of the two summands is ignored.

1 : Time-correct superposition with regard to trigger-time

Sum

Sum Sum; result of the addition [XY]

Description:
Two channels undergo time-correct or x-correct addition, meaning that the y-values for each common xvalue of time are added.

The result is defined only within the x-range which is shared by both data sets. Within this range a resultvalue is determined for every point at
which at least one of the data sets possesses a value. If no value exists for the other data set, one is determined by linear interpolation.

The x-tracks of both parameter data sets must be monotonous, i.e. the x-coordinates must increase continuously.

The addition operator, by contrast, performs point-by-point addition of the values of both data sets.

Examples:
Two channels are measured; one between 11:00 and 13:00, and the other between. 12:00 and 14:00.

superpos = Add(voltage11_13h, voltage12_14h, 1)

A time-correct superposition of the two data sets with respect to the trigger time is performed. The result is defined for the time between 12:00
and 13:00 hours.

See also:
+(Addition), Sub, Mult, Div, Append

imc FAMOS Func on Reference - 20 -

(c) 2024 imc Test & Measurement GmbH

All0

Returns the x-positions of all of a data set's zero-crossings

Declaration:
All0 (Data) -> XZeroes

Parameter:

Data Data set examined. Allowed types: [ND],[XY].

XZeroes

XZeroes X-coordinates of all zero crossings located in the data set NDData

Description:
This function returns a data set with the x-values of all of the zero-crossings, i.e. points in the argument data set where the y-value is zero. The
All0 function does not interpolate between x-values - if a zero lies between two samples, the larger of the x-coordinates is returned.

If NyData is an XY-data set, it must have a monotonous time or x-track.

If the first value of a data set is zero it won't be interpreted as a zero-crossing.
If no zeros are found, an empty data set is returned.
To search for interpolating zeros in XY-data sets, you can use the function SearchLevel.

Examples:

xnull = All0(data)

The result is the x-coordinates of all zeros in the data set.

See also:
SearchLevel, Top, xMax, PolynomRoots, PosiEx

imc FAMOS Func on Reference - 21 -

(c) 2024 imc Test & Measurement GmbH

AmpSpectrumPeak

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Magnitude spectrum (harmonics determined as peak values or magnitudes) with a moving window and linear averaging. The result is a
segmented waveform, where each segment represents a spectrum.

Declaration:
AmpSpectrumPeak (InputData, WindowWidth, WindowType, Overlapping, Reduction, AveragingType [, Base2]) ->
Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

AveragingType method of summarizing all spectra

0 : no averaging

1 : averaging (arithmetic mean or linear averaging of the magnitude spectra). The number of spectra over which the average is
taken is determined by the parameter 'Reduction'.

2 : Peak Hold Max, from beginning. Maximum values, based on the spectra calculated thus far in the algorithm.

3 : Peak Hold Max, interval. Maximum values, based on the number of spectra which the parameter 'Reduction' dictates.

4 : Peak Hold Min, from beginning. Minimum values, based on the spectra calculated thus far in the algorithm

5 : Peak Hold Min, interval. Minimum values, based on the number of spectra which the parameter 'Reduction' dictates.

6 : Root mean square (RMS) taken over all magnitude spectra computed

7 : Root mean square (RMS) taken over all magnitude spectra computed. The result is divided by sqrt(ENBW=Equivalent noise
bandwidth) according to the window type used. E.g. division by sqrt(1.5) in the case of a Hanning window.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result Segmented waveform, where each segment represents a spectrum.

Description:

Examples:

Spectra = AmpSpectrumPeak (Channel, 1000, 0, 50, 1, 0, 0)

This calculates a sequence of 1000 point-spectra, which each overlap their neighbors by 50%.

imc FAMOS Func on Reference - 22 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

Spectra = AmpSpectrumPeak (Channel, 2048, 1, 0, 10, 6, 0)

This calculates a sequence of 2048 point-spectra with a Hamming window. The average is taken of each group of ten consecutive spectra and
recorded with the results.

See also:
AmpSpectrumPeak_exp, AmpSpectrumPeak_1, AmpSpectrumRMS

imc FAMOS Func on Reference - 23 -

(c) 2024 imc Test & Measurement GmbH

AmpSpectrumPeak_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

An averaged magnitude spectrum is computed (harmonics determined as peak values or magnitudes). The averaging is taken of as many spectra
as there are windows within the waveform.

Declaration:
AmpSpectrumPeak_1 (InputData, WindowWidth, WindowType, Overlapping, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

AveragingType method of summarizing all spectra

1 : averaging (arithmetic mean or linear averaging of the magnitude spectra). The mean is taken over all spectra computed.

2 : Peak Hold Max, maximum values, based on the spectra calculated thus far in the algorithm

4 : Peak Hold Min, minimum values, based on the spectra calculated thus far in the algorithm

6 : Root mean square (RMS) taken over all magnitude spectra computed

7 : Root mean square (RMS) taken over all magnitude spectra computed. The result is divided by sqrt(ENBW=Equivalent noise
bandwidth) according to the window type used. E.g. division by sqrt(1.5) in the case of a Hanning window.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result One averaged magnitude spectrum

Description:

Examples:

Spectrum = AmpSpectrumPeak_1 (Channel, 1000, 0, 50, 6, 0)

This calculates an averaged spectrum. The averaging is performed on a sequence of 1000 point-spectra which each overlap their neighbors by
50%. The input channel contains approx. 20000 measured values.

See also:
AmpSpectrumPeak_exp, AmpSpectrumPeak, AmpSpectrumRMS_1

imc FAMOS Func on Reference - 24 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

AmpSpectrumPeak_exp

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Magnitude spectrum (harmonics determined as peak values or magnitudes) with a moving window and exponential averaging. The result is a
segmented waveform, where each segment represents a spectrum.

Declaration:
AmpSpectrumPeak_exp (InputData, WindowWidth, WindowType, Overlapping, Reduction, TimeConstant [, Base2]) ->
Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

TimeConstant The time constant used in taking the exponential mean. Specified in seconds.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result Segmented waveform, where each segment represents a spectrum.

Description:

Examples:

Spectra = AmpSpectrumPeak_exp (Channel, 1000, 0, 50, 2, 40.0, 0)

The channel has a sampling time of 10ms. Therefore, a 1000 point-spectrum is computed every 5s. These are smoothed with a time constant of
40.0s. Every second spectrum is returned.

See also:
AmpSpectrumPeak_1, AmpSpectrumPeak, AmpSpectrumRMS_exp

imc FAMOS Func on Reference - 25 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

AmpSpectrumRMS

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Magnitude spectrum (harmonics determined as RMS (root-mean-square) values) with a moving window and linear averaging. Computed using
FFT. The result is a segmented waveform, where each segment represents a spectrum.

Declaration:
AmpSpectrumRMS (InputData, WindowWidth, WindowType, Overlapping, Reduction, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

AveragingType method of summarizing all spectra

0 : no averaging

1 : averaging (arithmetic mean or linear averaging of the magnitude spectra). The number of spectra over which the average is
taken is determined by the parameter 'Reduction'.

2 : Peak Hold Max, from beginning. Maximum values, based on the spectra calculated thus far in the algorithm.

3 : Peak Hold Max, interval. Maximum values, based on the number of spectra which the parameter 'Reduction' dictates.

4 : Peak Hold Min, from beginning. Minimum values, based on the spectra calculated thus far in the algorithm

5 : Peak Hold Min, interval. Minimum values, based on the number of spectra which the parameter 'Reduction' dictates.

6 : Root mean square (RMS) taken over all magnitude spectra computed

7 : Root mean square (RMS) taken over all magnitude spectra computed. The result is divided by sqrt(ENBW=Equivalent noise
bandwidth) according to the window type used. E.g. division by sqrt(1.5) in the case of a Hanning window.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result Segmented waveform, where each segment represents a spectrum.

Description:

Examples:

Spectra = AmpSpectrumRMS (Channel, 1000, 0, 50, 1, 0, 0)

This calculates a sequence of 1000 point-spectra, which each overlap their neighbors by 50%.

Spectra = AmpSpectrumRMS (Channel, 2048, 1, 0, 10, 6, 2)

imc FAMOS Func on Reference - 26 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

This calculates a sequence of 2048 point-spectra with a Hamming window. The average is taken of each group of ten consecutive spectra and
recorded with the results.

See also:
AmpSpectrumRMS_exp, AmpSpectrumRMS_1, AmpSpectrumPeak

imc FAMOS Func on Reference - 27 -

(c) 2024 imc Test & Measurement GmbH

AmpSpectrumRMS_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

An averaged magnitude spectrum is returned (harmonics determined as RMS (root-mean-square) values). The averaging is taken of as many
spectra as there are windows within the waveform. Calculated by means of FFT.

Declaration:
AmpSpectrumRMS_1 (InputData, WindowWidth, WindowType, Overlapping, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

AveragingType method of summarizing all spectra

1 : averaging (arithmetic mean or linear averaging of the magnitude spectra). The mean is taken over all spectra computed.

2 : Peak Hold Max, maximum values, based on the spectra calculated thus far in the algorithm

4 : Peak Hold Min, minimum values, based on the spectra calculated thus far in the algorithm

6 : Root mean square (RMS) taken over all magnitude spectra computed

7 : Root mean square (RMS) taken over all magnitude spectra computed. The result is divided by sqrt(ENBW=Equivalent noise
bandwidth) according to the window type used. E.g. division by sqrt(1.5) in the case of a Hanning window.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result One averaged magnitude spectrum

Description:
Coefficient of the window functions: Hamming: 1, -0.46/0.54; Hanning: 1, -1; Blackman: 1, -0.50/0.42, 0.08/0.42; Blackman-Harris: 1, -
0.48829/0.35875, 0.14128/0.35875, -0.01168/0.35875; Flat top: 1, -1.93, 1.29, -0.388, 0.0322

Examples:

Spectrum = AmpSpectrumRMS_1 (Channel, 1000, 0, 50, 6, 0)

This calculates an averaged spectrum. The averaging is performed on a sequence of 1000 point-spectra which each overlap their neighbors by
50%. The input channel contains approx. 20000 measured values.

See also:
AmpSpectrumRMS, AmpSpectrumRMS_exp, AmpSpectrumPeak_1

imc FAMOS Func on Reference - 28 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

AmpSpectrumRMS_exp

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Magnitude spectrum (harmonics determined as RMS (root-mean-square) values) with a moving window and exponential averaging. The result is
a segmented waveform, where each segment represents a spectrum.

Declaration:
AmpSpectrumRMS_exp (InputData, WindowWidth, WindowType, Overlapping, Reduction, TimeConstant [, Base2]) ->
Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

TimeConstant The time constant used in taking the exponential mean. Specified in seconds.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result Segmented waveform, where each segment represents a spectrum.

Description:

Examples:

Spectra = AmpSpectrumRMS_exp (Channel, 1000, 0, 50, 2, 40.0, 0)

The channel has a sampling time of 10ms. Therefore, a 1000 point-spectrum is computed every 5s. These are smoothed with a time constant of
40.0s. Every second spectrum is returned.

See also:
AmpSpectrumRMS_1, AmpSpectrumRMS, AmpSpectrumPeak_exp

imc FAMOS Func on Reference - 29 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

AND

Logical "AND"-operator

Declaration:
Operand1 AND Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value or data set to be compared.

Operand2 Second single value or data set to be compared.

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
"AND"-operation on two numbers. The result is 1 if neither of the operands is 0. Otherwise the result is 0.

The operator can be applied to single values or data sets. With data sets, the operation is applied data point by data point..

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/ segments); but then the respective other parameter must either have the exactly same structure
(same segment length, event count and length), or be a single value.

Examples:
A data set's maximum value is found and checked against a value limit.

Channel1 = ...
Maximum = max(Channel1)
IF Maximum > 21 AND Maximum < 34
 BoxMessage("Attention", "Maximum near limit!", "!1")
ELSE
 IF Maximum >= 34
 BoxMessage("Attention", "Limit is exceeded", "!1")
 END
END

Two data sets with same time base are examined. All times, at which both data sets are above a given limit, are calculated:

t = Top((Channel1 > 3) OR (Channel2 > 3), 0.9)

The operation is applied to two digital data sets. The result data set's value is 1 wherever both operand data sets have the value 1.

Result = (DigChannel1 AND DigChannel2)

See also:
NOT, OR, XOR

imc FAMOS Func on Reference - 30 -

(c) 2024 imc Test & Measurement GmbH

Append

Time- or x-correct merging of data set values

Declaration:
Append (Data1, Data2, SvOption) -> Merged

Parameter:

Data1 First data set; allowed types: [ND],[XY].

Data2 Second data set; allowed types: [ND],[XY].

SvOption Option

0 : The trigger time of the two summands is ignored.

1 : Time-correct superposition with regard to trigger-time

Merged

Merged Resulting data set [XY]

Description:
This function enables time- or x-correct appending or merging of data sets.

The resulting data set contains points at all nodes which are defined in either [Data1] or [Data2]. If a node is defined in both data sets, the mean
value of the corresponding y-values is used.

Both data sets must have a monotonic time/x-axis.

By contrast, the function Join() appends the data sets point-by-point.

Examples:
Two measurement channels having the same physical size are recorded between 11:00 and 13:00, and 12:00 and 14:00 respectively.

voltage11_14h = Append(voltage11_13h, voltage12_14h, 1)

The two data sets are merged. The result is defined for the time between 11:00 and 14:00 hours. Between 11:00 and 12:00 and between 13:00 and
14:00 the values of the first and of the second channels, respectively, are adopted. Between 12:00 and 13:00 the measurement values are ordered
by time. If both data sets share a measurement time, the resulting y-value is the mean of the two values.

See also:
Join, JoinEx, AppendLoop, Add, Sub, Mult, Div

imc FAMOS Func on Reference - 31 -

(c) 2024 imc Test & Measurement GmbH

AppendLoop

Available in: Professional Edition and above

Appends additional data/values to a data set. The function is optimized for calling within a loop, in which small data volumes are repeatedly
appended.

Declaration:
AppendLoop (Dataset, Append)

Parameter:

Dataset Data are appended to this data set. The function changes the variable passed.

Append Data to be appended

Description:
All values of the parameter Append are appended to the data set.

The data set's scaling (units, x0, dx etc.) remains intact.

The data set's numerical format (e.g. digital or integer with value range, or real numbers) remains intact; but not if the data set is empty and non-
empty data are appended. Then, the numerical format of the appended data is applied.

The data set can be equidistant, or an XY-data set, or complex. It may not have any events. The data to append are of the same type.

For segmented data, the following applies: If the data set contains segments, the parameter Append may also have segments of the same length.
Alternatively, the parameter Append may not have any segments if its length matches the data set's segment length.

As the data set, only a complete variable can be specified: Portions (e.g. A.y, A[2]) or formulas (e.g. 2*A) are not permitted.

The function serves to increase the execution speed with increased memory allocated to the data set. The higher execution speed typically
becomes noticeable in a loop where the function is repeatedly called for the same data set many times. If the data volume to be appended is
small (e.g. less than 1000 samples), the execution speed is significantly higher.

Once appending to a data set has been completed, typically following a loop, the increased memory allocated to the data set may persist. With a
call of AppendLoopEnd() the additional memory is removed. The call of AppendLoopEnd() remains without effect if no increased memory exists
(any longer). The call of AppendLoopEnd() is omitted, if the increased memory demands don't matter for the work to be performed.

If copies of the data set or of its components are made, the copies also have increased memory requirements.

The function can provide time savings especially whenever the program has sufficient RAM available.

For TSA-data, TsaAppend() is used.

Examples:
A = empty

xdelta A 0.1

xunit A V

for i = 1 to 2000
 y=3*i
 AppendLoop(A, y)
end
AppendLoopEnd(A)

A = xyof (empty, empty)

for i = 1 to 2000
 x=i
 y=2*i
 AppendLoop(A, xyof(x, y))
end
AppendLoopEnd(A)

See also:
AppendLoopEnd, Join, Append, TsaAppend, EventAppend

imc FAMOS Func on Reference - 32 -

(c) 2024 imc Test & Measurement GmbH

AppendLoopEnd

Available in: Professional Edition and above

Once the function AppendLoop has been called (repeatedly) in a loop, the extra required memory is finally deallocated.

Declaration:
AppendLoopEnd (Dataset)

Parameter:

Dataset The data set to which new data was appended using AppendLoop

Description:
All constraints as with AppendLoop

Multiple calls or a call without previous AppendLoop do no harm.

Examples:
A = empty

xdelta A 0.1

xunit A V

for i = 1 to 2000
 y=3*i
 AppendLoop(A, y)
end
AppendLoopEnd(A)

See also:
AppendLoop

imc FAMOS Func on Reference - 33 -

(c) 2024 imc Test & Measurement GmbH

APPLICATION

Start Windows application or DOS-program
This command is obsolete, instead of it; the more powerful function Execute() should be used.

Declaration:
APPLICATION Mode Name Parameter

Parameter:

Mode Window mode in which the program should launch

NORMAL : Start program in normal size

VOLLBILD : Start program in fullscreen mode (maximized)

SYMBOL : Start program minimized (icon)

Name Name (program path) of the program to start

Parameter Command line parameter for the program to be started

Description
This command starts an application or a DOS program. You can supply a command-line parameter and specify the mode, in which to start the
application in Windows.

Examples:

APPLICATION NORMAL Notepad.exe
APPLICATION MAXIMIZED c:\windows\Notepad.exe

Two methods of stating the Windows application "Notepad"

See also:
Execute

imc FAMOS Func on Reference - 34 -

(c) 2024 imc Test & Measurement GmbH

Appro

Approximation of a data set's values using the user's choice of functions

Declaration:
Appro (Data, Fct1, Fct2, Fct3, Fct4, Fct5, Fct6, Fct7, Fct8) -> Coefficients

Parameter:

Data Data set which is to be approximated; allowed data types: [ND]

Fct1 Data set for the 1st coefficient [ND]

Fct2 Data set for the 2nd coefficient [ND]

Fct3 Data set for the 3rd coefficient [ND]

Fct4 Data set for the 4th coefficient [ND]

Fct5 Data set for the 5th coefficient [ND]

Fct6 Data set for the 6th coefficient [ND]

Fct7 Data set for the 7th coefficient [ND]

Fct8 Data set for the 8th coefficient [ND]

Coefficients

Coefficients Coefficients of the approximating function

Description:
An approximation of the data set passed is generated using a function which is known except for its coefficients. The function supplied ca consist
of up to eight partial functions, each having an unknown coefficient. The Appro function returns the coefficients by using the method of least
squares.

The procedure for using the Appro function is as follows: for a measurement channel with the values g(x[i]) (i = 0, ..., data set length - 1), a
function, known except for its coefficients, is to be approximated. This function consists of several partial functions, each of which has its own
coefficient. The coefficients are determined by the function Appro. First, the data sets of the function values are determined for the known
partial functions f0, ..., fm-1 for all x[i]. The Appro function determines the m coefficients c[0], ..., c[m-1] according to the method of least
squares, until the condition:

is met for all i.

The coefficients belonging to the partial functions are returned in the order in which the data sets [Fct] of the partial functions were specified.

If the function to be approximated consists of fewer than eight partial functions, the data sets of partial functions [Fct], whose coefficient should
be determined, are entered and the remaining parameters of the function Appro must then be set to any single value (0 is recommended).

If the data sets entered are not compatible (different lengths, units, x0 or deltaX), a warning message is generated. If the data sets have
different lengths, all data sets are set to the length of the shortest data set before approximation. If differing units, x0 or deltaX are present,
the calculations are performed using the values of the data set to be approximated, in this case NDData.
Several data sets may be entered as measurement channels. The Appro function calculated the corresponding coefficients (see example).
The Appro function is a generalized version of the function Poly().
On the topic of precision, see the remarks in the section on the Poly function.

Examples:
The measurement channel of the derivative of function y and the measurement channel of function y exist. The parameters c[0] and c[1] are to
be determined according to the method of least squares, so that the condition

is fulfilled as closely as possible for all i (i = 0, ..., data set length - 1). The data set NwData in the following illustration is the measurement
channel for y', and contains 50 values:

imc FAMOS Func on Reference - 35 -

(c) 2024 imc Test & Measurement GmbH

The data set NDData1 belonging to the first coefficient is the measurement channel for y, displayed at the left. The data set NDData2 belonging to
the second coefficient consists only of values of one, displayed at the right. Both data sets contain 50 values:

NwCoeff = Appro(NwData, NwData1, NData2, 0, 0, 0, 0, 0, 0)

In imc FAMOS, the data set NDCoeff (coefficient) is output as the result. The data set NDCoeff contains the values: coeff0 = -4.0000 and coeff1 =
4.0000.

This is how to obtain the individual coefficients::

SvCoeff0 = NwCoeff[1]
SvCoeff1 = NwCoeff[2]

See also:
ApproNonLin, Poly, eFit, LFit, Value

imc FAMOS Func on Reference - 36 -

(c) 2024 imc Test & Measurement GmbH

ApproNonLin

Available in: Professional Edition and above

Approximation by a function which can be non-linear in its coefficients. A function described by a formula is miminized in the sensoe of least
squares. The coefficients of the formula are determined in the process.

Declaration:
ApproNonLin (Input, Formula [, TimeOut] [, Error handling] [, Limits] [, Weight] [, Variant]) -> Coefficients

Parameter:

Input Input

Formula Freely defineable formula

"A1+A2*exp(A3*x)-y" : Decay function

"A1+A2*exp(A3*x)*sin(A4*x+A5)-y" : Damped oscillation

"sqrt((X-A1)^2+(Y-A2)^2)-A3" : Circle

"A1*exp(-((x-A2)^2/(2*A3^2)))-y" : Density of normal distribution

"A1*exp(A2*x)-y" : Decay function without offset

"A1+x*(A2+x*A3)-y" : 2nd-degree polynomial

"A1+x*(A2+x*(A3+x*A4))-y" : 3rd-degree polynomial

TimeOut TimeOut in seconds. If the algorithm is not finished within this time, the system cancels and posts a Timeout-error. 0 for no
verification. (optional , Default value: 0)

Error
handling Determines the system response to an error. (optional , Default value: 0)

0 : Cancel and post error message

1 : Return empty data set

Limits
Limits for the coefficients. Conditions separated by commas, e.g. "A1 >= 0, A2 > 0, A2 < 1e3", which limit the value range of the
coefficients. Initializations beginning with init are initial values for the iteration, e.g. "init A1 = 3". The parameter may also be
empty. Initializations and limitations may be combined, but may not contradict each other. (optional , Default value: "")

Weight Weight for different weighting of the individual measurement values (optional)

Variant According to which variant of the algorithm is the calculation performed? (optional , Default value: 0)

0 : Automatic. The best variant of the algorithm available in the current version is used. The algorithm may be improved in
subsequent versions of FAMOS.

1 : Like in FAMOS 7.2. In later versions of FAMOS the algorithm will also behave the same.

2 : Like in FAMOS 7.3. In later versions of FAMOS the algorithm will also behave the same.

Coefficients

Coefficients Coefficients A1, A2, ...

Description:
The formula supplied is minimized in the sense of least squares: The square of the formula is minimized over all measurement values supplied,
so as close to zero as possible.

For example, if the formula is "exp(A1*x)-y", then "Sum (exp(A1*x)-y)^2" is minimized.

In general, the difference between the original y-values and the approximated function is to be found. A term -y is then required in the formula.

If for instance a measurement is to be approximated by a function "y=exp(A1*x)", then this function may not itself be supplied as the formula.
Instead, the deviations from the measurement values y which are to be minimized must be specified, thus "exp(A1*x)-y".

Minimization
The local minimum found does not need to match the global minimum.

This was illustrated by Dr. Knopp in an accessible way: Supposing you are in a hilly landscape. It is foggy and not possible to see very far. The
ground slopes downwards and you follow the downward slope until it is no longer possible to go downward. That is the destination. But whether
there is a deeper valley beyond the next hill remains unknown.

In principle the search is conducted according to the Gauss-Newton algorithm. The procedure works iteratively and improves the solution
gradually from the initial values. However, the increment is governed in a similar way to Levenberg-Marquardt.

A minimum is then easily found if the coefficients are in front of terms which differ strongly in their character or form.

imc FAMOS Func on Reference - 37 -

(c) 2024 imc Test & Measurement GmbH

Coefficients
In the formula, the coefficients A1, A2, ... A16 are specified continually starting with A1. Only as many as are required.

Variables
In the formula, the variables representing the measured values are generally stated as x and y.

Input Application
equidistant This function can be applied to equidistant input data. In that case, x and y are used in the formula.

XY The function can be applied to XY-input data. In that case, x and y are used in the formula.

Matrix The function can be applied to segmented data. In that case, x , y and z are used in the formula. As usual with FAMOS, y is the
amplitude, x and z are the matrix dimensions and are given explicitly by the initial value and increment. y=y(x,z).

List
This function can be applied to segmented data, where each segment is interpreted as a separate variable. In the formula, x, y1,
y2, .. y16 are used, where x is the common x-coordinate for all segments. y1 are the values of the 1st segment, y2 those of the 2nd,
etc.

Initial values
Initial values are supplied by means of the parameter Limits.

Beginning with the initial values, the function approaches a local minimum.

The user determines appropriate initial values before the function call.

For an unfortunate choice of initial values, the function will not converge and find any result.

In some cases it is not necessary to specify any initial values. In that case the system tries to find appropriate initial values. The initial values
found automatically, and thus the reuslts, are not always good. The results need to be checked in each case.

When using sin() or cos() with equidistant data and arguments of the form "A1*x+A2", the function automatically finds the initial values by means
of an internally performed FFT without observing weighting factors. However, this generally only achieves success when the frequency is
constant and the amplitude dominant in the signal.

With formulas of the type "A1+A2*exp(A3*x)-y", it is well possible to dispense with specifying initial values.

If initial values are specified, they must lie within a range which makes sense. Any straying outside of the numerical range must be avoided. With
"exp(A1*x)-y" and x in the range 10 and an initial value A1=100, the formula will produce an overflow and its derivative with respect to A1. A1=-
100 produces a permanent underflow.

For coefficients which appear linearly in the fomula, it is never necessary to specify an initial value. Before the beginning of the iteration, the
system will automatically find initial values for these coefficients anyway.

With trigonometric functions, there is typically a truly large number of local minima, which also are all very close to each other. As well, for a
good selection of initial values, the procedure can easily jump to a nearby minimum.

Formula
Along with the basic operators, the formula may also contain the functions sin, cos, tan, exp, asin, acos, atan, ln, log, sqrt, abs.

All trigonometry functions work with radians. In case a phase in degrees is desired, e.g. "sin(A1*x+A2*PI/180)". PI and PI2 are defined.

Coefficients can be scaled in a suitable way, e.g. the frequency in a sin() function, "sin(2*PI*A1*x+A2)".

The procedure includes taking the derivatives of the formula with respect to the coefficients. The derivative must be continuous. Thus, the
coefficients can certainly appear in a function such as exp(), but not in abs(). Functions such as abs() an be used at other locations in the formula
such as abs(x).

Linear dependence must be avoided, for instance +(A1-A2). That would usually cause an error to occur during the iteration or a divergence.

Linearly applied coefficients
The formula is considered linear in a coefficient if the derivative with respect to that coefficient is independent of any linear coefficient.

Coefficients applied linearly are treated preferentially. Thus "A1*x+..." should be preferred over "x/A1+..."

Similarly, "A1*x+A2+..." is also to be preferred over "A1*(x+A2)+...". In the first expression, A1 and A2 are plugged in linearly; in the second
expression only one of them.

Thus, "A2*(A1+x)^2..." is also to be preferred over "((A1+x)/A2)^2...". In the first expression, A2 is plugged in linearly.

Also in arguments for functions, the linearly plugged-in coefficient must be given absolute preference, e.g. "exp(A1*x)" and "sin(A1*x+A2)"
instead of "exp(x/A2)" and "sin(x/A1+A2)".

input data
A sufficient number of independent input data must be provided. If the input data do not contain sufficient information, it causes the same
difficulties as linear dependent coefficients.

Limits
For each coefficient used in the formula, an upper and a lower limit may be specified.

If no start value is specified for a coefficient, the function attempts to find an appropriate initial value within the range from the lower to the
upper boundary.

In accordance with the formula it makes sense to form as narrow a range as possible in order to shorten the search for initial values.

If an initial value is specified for a coefficient, it will also be used.

The upper and lower boundaries are not checked during the iteration. Thus they are not true auxiliary conditions of the minimization procedure.

However, the lower and upper boundaries are used to check the result. If it is out of bounds, this is classified as an error.

imc FAMOS Func on Reference - 38 -

(c) 2024 imc Test & Measurement GmbH

The boundaries and initialization values can also be given by a calculation, as long as it leads to a constant, e.g. "A1 > 10-3; A1 < 10+3"

Interpretation of the coefficients determined
The result needs to be verified in any case.

If the coefficients in a formula can be interchanged without changing the content, then the coefficients may also appear interchanged in the
result. E.g. in "exp(A1*x)+exp(A2*x)-y", the result may sometimes be [-3,-7], sometimes [-7,-3]. But such arrangements can be problematic
anyway with regard to convergence.

With coefficients in trigonometry functions, unexpected results can also occur: E.g. with the formula "A1*tan(A2*x+A3)-y", A1 and A2 may both
be negative instead of positive, A3 can become multiples of PI larger or smaller.

With coefficients within sin() and cos() such as for example in "A1*sin(A2*x+A3)-y", A1 and A2 are determined preferentially positive, A3
preferentially in the range -PI..+PI.

Results with a value of 1e35 or even -1e35 may possibly be limited to FAMOS value range. Actually their magnitude may even be higher.

Speed
To improve the speed of program execution when the data volume is large, it is possible to achieve an intermediate result by means of an
appropriately selected small but representative portion of data. This is used as the inital value of the actual larger approximation task.

When there is a large number of coefficients and no initial values specified, the internal search for appropriate initial values is especially
demanding.

The internal search for initial values demands calculation time especially for coefficients which are plugged in non-linearly. Thus in
A1+A2*exp(A3*x)-y, A1 and A2 are used linearly, while A3 is non-linear and costs much search time.

Multiple processor cores may be utilized.

A data set containing 100000 samples is considered quite large.

Weight
If no weighting is specified, all measured values are weighted equally.

The data set Weight contains a weighting factor for each measured value. The value 1.0 is neutral. But values >1 and <1 including 0 are possible.

The data set Weight is equally long as the input data. It is never segmented. If the input data are segmented and contain a list, the data set
Weight is equally long as one segment.

If the data set Weight is empty, no weight is specified.

General
If called with incorrect coefficients, syntax errors in the formula, or insufficient memory, the system always cancels operation and posts the usual
error message.

If there are problems with the convergence, the error handling takes effect.

If the valid range is exceeded too often, e.g. exp(1000) or division by zero, there will be problems with the convergence.

With equidistant input data, an x-offset x0 which is large (in absolute value) can lead to numerical problems if the sampling interval dx is too
small. For instance, if the attenuation constant in a decay function is to be determined, then inthe formula the calculation must treat x. However,
the desired attenuation constant does not depend on the x-offset. In this case, the x-offset of the input data should first be set to zero.

This function works at the precision level for 64-bit real numbers, which limits its applicability when handling extreme numerical analysis.

When working with a timeout, it may not be set for too brief a time frame. The time needed for calculations depends on many factors such as the
current number values, the processor type and the demands it faces.

Examples:
Equidistant input data without specified initial values, decay function

t = ramp(0,0.01, 10)
data = 4 + -3 * exp (t * -20) ; test data
A = ApproNonLin(data,"A1 + A2 * exp (x * A3) - y")
A1 = A[1]
A2 = A[2]
A3 = A[3]

Equidistant input data without specified initial values, damped osciallation, advantageous configuration of the coefficients

t = ramp(0,0.0001, 2000)
A1 = 4 ;offset [V]
A2 = 3 ; amplitude[V]
A3 = -1/0.05
A4 = 120 ; f[Hz]
A5 = 70 ; phase [degrees]
y = A1 + A2 * exp (t * A3) * sin (2 * PI * A4 * t - A5 * PI/180) ; test data
A = ApproNonLin(y, "A1 + A2 * exp (x * A3) * sin (2 * PI * A4 * x - A5 * PI/180) - y")
Tau=-1/A[3] ; time constant

Equidistant input data with initial values, polynomial

t = ramp(0,0.001, 50000)
test = 4 * t*t + 10 ; test data
start="init A1 = 3, init A2 = 7"

imc FAMOS Func on Reference - 39 -

(c) 2024 imc Test & Measurement GmbH

A = ApproNonLin(test,"A1 * x*x + A2 - y",0,0,start)

2nd-degree polynomial from equidistant data

x = ramp (0.01, 0.001, 1000)
y = 3 + 8 * x - 5 * x^2
A = ApproNonLin (y, "A1 + A2 * x + A3 * x^2 - y")

3rd-degree polynomial from XY values

x = 0.001 * random (1000, 2, 0, 0, 8)
y = 3 + 8 * x - 5 * x^2 + 2 * x^3
input_xy = xyof (X, Y)
A = ApproNonLin (input_xy, "A1 + A2 * x + A3 * x^2 + A4 * x^3 - y")

Fit of a 2-dimensional 2-degree polynomial: z = f(x,y)

z="A1+A2*x+A3*x^2 + A4*y+A5*x*y+A6*x^2*y + A7*y^2+A8*x*y^2+A9*x^2*y^2

Ai=[2,3,4, -2,-3,-4,1.5,1.7,-1.3]
data=leng(0,300)
setseglen(data, 100)
x=round(ramp(-4.9,1,200),10)/200
y=mod(ramp(0,1,200),10)/10
z=(Ai[1]+x*(Ai[2]+x*Ai[3])) + y*((Ai[4]+x*(Ai[5]+x*Ai[6])) + y*(Ai[7]+x*(Ai[8]+x*Ai[9])))
data[1]=x
data[2]=y
data[3]=z
A = ApproNonLin(data,"(A1+y1*(A2+y1*A3)) + y2*((A4+y1*(A5+y1*A6)) + y2*(A7+y1*(A8+y1*A9))) - y3")

Density of normal distribution

x = ramp(0,0.00001, 10000)
A1 = 10 ; amplitude
A2 = 0.03 ; center
A3 = 0.01 ; sigma
y = A1 * exp (-((x-A2)^2 / (2*A3^2)))
A = ApproNonLin(y,"A1*exp(-((x-A2)^2/(2*A3^2)))-y")
center = A[2]
sigma = A[3]

Equidistant input data without initial values, but with weighting, (straight) line

t = ramp(0,0.001, 50000)
test = 4 * t + 10 ; test data
Weight=test*0+1
Weight[1] = 0.1
A = ApproNonLin(test,"A1 * x + A2 - y",0,0,"", Weight)

XY input data with initial values, circle

t = ramp(0,0.001, 1000)*30
A1 = 3
A2 = 10
A3 = 30
X = A1 + A3 * sin(t) + 1*random (1000, 2, 0, 0, 0)
Y = A2 + A3 * cos(t)+ 1*random (1000, 2, 0, 0, 0)
input_xy = xyof (X, Y) ; test data
start = "init A1 = 0, init A2 = 0"
A = ApproNonLin (input_xy, "sqrt ((X-A1)^2+(Y-A2)^2)- A3",0,0, start)

XY input data with value range and initial value, circle

t = ramp(0,0.001, 1000)*30
A1 = 3
A2 = 10
A3 = 30
X = A1 + A3 * sin(t)
Y = A2 + A3 * cos(t)
input_xy = xyof (X, Y) ; test data
limits = "init A1 = 0, A1 < 100, A2 < 100, A2 >= 0"
A = ApproNonLin (input_xy, "sqrt ((X-A1)^2+(Y-A2)^2)- A3",0,0, limits)

Segmented input data, curved surface

A1 = 4
A2 = -0.1
A3 = 0.002
A4 = -0.3

imc FAMOS Func on Reference - 40 -

(c) 2024 imc Test & Measurement GmbH

A5 = 0.2
y=leng(0,1000) ; test data
setseglen(y, 100)
x=ramp(0,1,100)
for i = 1 to 10
 z=i-1
 y[i] = A1 + A2 * x + A3 * x * x + A4 * z + A5 * z * z
end
formel = "A1 + A2 * x + A3 * x * x + A4 * z + A5 * z * z - y"
A = ApproNonLin(y,formel)

Many input channels y1 through y4

A1 = 3
A2 = -0.3
A3 = 0.2
A4 = -0.3
x=ramp(0,1,100)
y1 = 0.0003 * x * x - 0.03*x+1 ; test data
y2 = 3 * sin (x * 0.1)
y3 = 5 * exp (-0.03 * x)
y4 = A1 * y1 + A2 * y2 + A3 * y3 + A4
y=leng(0,400)
setseglen(y, 100)
y[1] = y1
y[2] = y2
y[3] = y3
y[4] = y4
A = ApproNonLin(y, "A1 * y1 + A2 * y2 + A3 * y3 + A4 - y4")

Decay function without offset. Provides better compensation than eFit().

t = ramp(0,0.001, 1000)
data = 5 * exp (t * -3) + 0.1* random (1000, 2, 0, 0, 13)
A = ApproNonLin(data,"A1 * exp (A2 * x) - y")
data_A = A[1] * exp (A[2] * t)
data_B = eFit(data)

Best fit plane: y = A1 + A2 * x1 + A3 * x2. Triplets (x1,x2,y) are given, which in a display of y with respect to x1 and x2 are supposed to be in one
plane.

; test data
A1 = 7
A2 = 3
A3 = 0.5
x1 = 1 + 5 * sin (ramp(0,1,100) * 0.2) * ramp(3,1,100)/100 ; x direction
x2 = 2 + 3 * cos (ramp(0,1,100) * 0.2 + 0.1) * ramp(5,1,100)/100 ; z direction
y = A1 + A2 * x1 + A3 * x2 + 0.0 * random (100, 2, 0 , 0, 3) ; amplitudes
;calculation
data = MatrixInit(leng?(y),3)
data[1] = x1
data[2] = x2
data[3] = y
A = ApproNonLin(data, "A1 + A2 * y1 + A3 * y2 - y3")

See also:
Appro, LFit, eFit, Poly

imc FAMOS Func on Reference - 41 -

(c) 2024 imc Test & Measurement GmbH

ASCII

Sets the ASCII format for subsequent loading of files using the command LOAD

Declaration:
ASCII SvSkipRange SvType SvDivider SvCount SvOption Leader-string

Parameter:

SvSkipRange Length of the leader; specified in either values or Bytes (depending on the 2nd parameter [Type])

SvType Indicates how the parameter [Leader] is to be interpreted.

0 : The Leader specifies the number of Bytes to skip over.

1 : The Leader specifies the number of numerical values to skip over.

SvDivider Specifies "n", where every n-th value is to be read from the values in the file.

SvCount Indicates the number of values to be read. Zero means that all values are read until the end of the file.

SvOption Option

0 : Numbers with a decimal point are expected. The data set generated has the data format "Float" (4 Byte Real).

1 : Numbers with a decimal comma are expected. The data set generated has the data format "Float" (4 Byte Real).

10 : Numbers with a decimal point are expected. The data set generated has the data format "Double" (8 Byte Real).

11 : Numbers with a decimal comma are expected. The data set generated has the data format "Double" (8 Byte Real).

Leader-
string

A string which the system searches for in the file, before beginning to read the leader and the numerical values. The string may
not contain spaces. If no string is supplied as the parameter, then reading begins with the leader immediately at the start of the
file.

Description
The file format for the command LOAD is set to ASCII format.

If no parameters are specified for the "ASCII" command, the currently defined ASCII format is selected.

A completely new ASCII format is defined when parameters are specified.

You must either specify all parameters or none. It is not possible to just specify one or a few of them. Each parameter, with the exception of
the string, may be a fixed numerical value or a single value (Sv) variable. The use of variables as parameters allows variable file formats to be
read.
The "ASCII" command represents an automation of the dialog box "Options / File - Load/Import / ASCII". This dialog box is accessed by
selecting the "Options" button in "Load file" when the ASCII format is selected. A detailed description and further examples are found in the
Chapter 'File Management'.
An alternative to ASCII import with the command combination ASCII/LOAD (espcially for complx formats) is to use the imc File Assistant
('Load File'-dialog, format: "ASCII/Excel Import", button 'Options') or the imc File Assistant for creating an import filter and the use of the
filter with the command FASLOAD or the function FileOpenFAS.
To read text files line-by-line, you can use the function FileOpenASCII().
Multithreading: The command has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:

ASCII
LOAD DATA.ASC

The last ASCII format specified is set again; files were loaded in a different format, e.g. FAMOS format, since it was last used. Then the ASCII-file
DATA.ASC is loaded.

ASCII 0 0 2 0 0 test
LOAD DATA.ASC

One column is read from a file containing a table of ASCII values. The header of this table is "Costs". The first of the two columns is read.

Vleng = 10
Data = 100
ASCII Vleng 1 1 Data 11
LOAD DATA.ASC

100 values are read from a ASCII file. A leader with a length of 10 bytes is skipped at the beginning of the file. The numbers are read with a
decimal comma. The result data set has the data format 8 Byte Real.

imc FAMOS Func on Reference - 42 -

(c) 2024 imc Test & Measurement GmbH

See also:
LOAD, BINARY, FileOpenASCII, FileOpenFAS

imc FAMOS Func on Reference - 43 -

(c) 2024 imc Test & Measurement GmbH

ASCOPTION

Specifies the file format for the command ASCSAVE (storing of files in ASCII format).
Instead of the commands ASCOPTION and ASCSAVE, you can also use the function FileOpenASCII2. This offers much more flexible file export
capability and can also be use to save multiple waveforms in multi-column ASCII files.

Declaration:
ASCOPTION SvNumberformat SvDecimalSepar SvPrecision SvWidth SvWithHeader SvWithXvalues

Parameter:

SvNumberformat NumericalFormat

0 : All values are saved in exponential notation

1 : All values are saved in fixed point notation.

2 : The shortest possible notation for the value is selected.

SvDecimalSepar DecimalSeparator

0 : Decimal point

1 : Decimal comma

SvPrecision In number formats 0 and 1, the number of places after the decimal; in number format 2, the total number of significant
places Value range 0..7

SvWidth Minimum output width; if the width of the value is smaller than this parameter, the value is filled with zeros from the left
Value range 0..99

SvWithHeader Specifies whether the file is to be prefixed with a standardized file header.

0 : No header

1 : A standardized header, containing significant characteristics for the variable, entered at the beginning of the file.

SvWithXvalues Specifies whether a two-column output including x-coordinates is to be outputted.

0 : Y-values are written each below the last in a vertical column.

1 : Each line in the file contains the x-value, then a tab and then the corresponding y-value.

Description
The ASCII format for saving files (command: ASCSAVE) is specified here.

The command ASCOption effectively automates the dialog box 'Options / File -Save/Export / ASCII '. You can do this, for example, by selecting the
'Options' button in the 'Save file' dialog when the ASCII format is selected. Please refer to Chapter 'File Management'. for further information and
further examples. The header is also described here.

The parameters can be fixed numbers or single value variables.

Multithreading: The command has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:
A file in imc/FAMOS-format is loaded and saved again as a two-column ASCII-file.

FAMOS
LOAD sintest1.dat data
ASCOPTION 1 0 5 10 0 1
ASCSAVE data "c:\my data\sintest1.txt"

See also:
ASCSAVE, FileSave, FileOpenASCII2, FileLineWrite

imc FAMOS Func on Reference - 44 -

(c) 2024 imc Test & Measurement GmbH

ASCSAVE

Saves files in the ASCII format
Instead of the commands ASCOPTION and ASCSAVE, you can also use the function FileOpenASCII2. This offers much more flexible file export
capability and can also be use to save multiple waveforms in multi-column ASCII files.

Declaration:
ASCSAVE VariableName Filename

Parameter:

VariableName Variable to be saved

Filename Filename (or also complete path), under which the variable is to be saved.

Description
The variable specified as a parameter is saved as an ASCII file; the variable can be a single value or a normal waveform. If no file name is
specified, the variable is saved under its own name in the directory currently selected for storing variables. The standard file name extension is
".ASC".

When the file name is specified, the variable is saved under this name. If a complete directory is specified, this is used for storing the variable.

The filename may also specified to contain quotation marks. This can be necessary, if, for instance, the path contains spaces.

Configuration of the file format is performed in accordance with the settings under "Options"/"Save File/Export"/"ASCII (FAMOS 3.2 compatible)"
or by means of the command ASCOPTION.

This command cannot be used to store complete data groups. Use this command to save individual channels. Storing texts is also not possible
with this command; use the function FileSave() with the format identifier "imc/Text" or the function FileLineWrite for saving texts.

Examples:

Data = Int(Data)
ASCSAVE Data

The variable Data is integrated and stored in the file "DATA.ASC".

Hist = Histo(Data1, 10, 6)
ASCSAVE Hist c:\data\histogr\hist001
Hist = Histo(Data2, 10, 6)
ASCSAVE Hist c:\data\histogr\hist002

A histogram is calculated for each of the waveforms Data1 and Data2 and are stored in the specified directory under the names 'HIST001.ASC" and
'HIST002.ASC' in ASCII format.

ASCSAVE Hist "c:\data\histogr\My Histogram"

The filename contains spaces and therefore it must be written inside of quotation marks.

See also:
ASCOPTION, FileSave, FileOpenASCII2, FileLineWrite

imc FAMOS Func on Reference - 45 -

(c) 2024 imc Test & Measurement GmbH

asin

Arcsine; inverse of sine

Declaration:
asin (Data) -> Angle

Parameter:

Data Data; allowed types: [ND],[XY].

Angle

Angle Arcsine of the parameter (angle in radians)

Description:
The arcsin function is computed.

This function returns an angle in radians without units.

The x-coordinate(s) of the results and the parameter are the same.

Remarks

The argument should not have any unit; if it does, a warning is issued and the unit is adopted unchanged.
The permittedd value range of the parameter is between -1 and +1.
The parameter may be structured (events/segments).

Examples:
asin(0)= 0, asin(1)= PI/2, asin(-1)= -PI/2)

pihalf = asin(1)

A serrated triangular data set is generated from a sinusoidal data set:

NDspikes = asin(NDsine)

With the pre-defined constant PI or INDEGR, the angle returned is converted from radians to degrees:

value_90 = asin(1.0) * 180 '°' / PI
value_90 = asin(1.0) * INDEGR

See also:
sin, acos, atan2

imc FAMOS Func on Reference - 46 -

(c) 2024 imc Test & Measurement GmbH

atan

Arctan; inverse of tangent

Declaration:
atan (Data) -> Angle

Parameter:

Data Data; allowed types: [ND],[XY].

Angle

Angle Arctangent of the parameter (angle in radians)

Description:
This function is only included for compatibility reasons. In general, the funuction atan2() is more suitable.

The aectan function is computed.

This function returns an angle in radians without units.

The x-coordinate(s) of the results and the parameter are the same.

Remarks

The argument should not have any unit; if it does, a warning is issued and the unit is adopted unchanged.
The parameter may be structured (events/segments).

Examples:
atan(0)= 0, atan(1)= P1/4, atan(-1)= -PI(4))

pi025 = atan(1)

Correction of Data by lookup of the tangent; e.g. saturation effects:

NDcorr = atan(NDdata)

With the pre-defined constant INDEGR, the angle returned is converted from radians to degrees:

value_45 = atan(1.0) * INDEGR

See also:
tan, atan2, asin, acos

imc FAMOS Func on Reference - 47 -

(c) 2024 imc Test & Measurement GmbH

atan2

Arctan; inverse of tangent

Declaration:
atan2 (y, x) -> Angle

Parameter:

y y-coordinate(s) in the cartesian plane. Allowed types: [ND].

x x-coordinate(s) in the cartesian plane. Allowed types: [ND].

Angle

Angle Arctangent of the parameter (angle in radians)

Description:
In contrast to the atan() function, this function returns the angle in the range from -PI to +PI.

The signs of [x] and [y] are used to determine the correct quadrants for this result.

The function is defined for each point except the origin (0,0). The result's unit is radians ("Rad"). For conversion to "Degrees", see the example
below.

If one of the parameters is a single value, all values belonging to the other parameter will be calculated on the basis of the single value. If both
parameter sets have more than one point, then the arctan is calculated value-by-value until the end of the shorter data set is reached.

Both parameters may be structured (events/ segments), however, in that case, the respective other parameter must have exactly the same
structure (same segment length, event-count and -length), or be a single value.

Examples:

RectAngle = atan2(1, 0) * INDEGR ;=> 90 degree
Angle_Minus90 = atan2(-1, 0) * INDEGR ;=> -90 degree
Angle_180 = atan2(0, -1) * INDEGR ;=> 180 degree

2 ways to find the Cartesian representation of the phase in a complex data set:

phase1 = atan2(CplxRect.I, CplxRect.R)
phase2 = Cmp2(Pol(CplxRect)) * INDEGR

See also:
tan, atan2, asin, acos

imc FAMOS Func on Reference - 48 -

(c) 2024 imc Test & Measurement GmbH

BEGIN_PARALLEL

Available in: Professional Edition and above

Opens a code-block with sequence functions to be executed in parallel.

Declaration:
BEGIN_PARALLEL

Description
Within a parallel-block (meaning all lines between a BEGIN_PARALLEL and END_PARALLEL-keyword), all the instructions are executed in parallel. Only direct calls of sequence functions are allowed as
instructions in a parallel-block. The sequence functions are each started in a separate execution context (thread), then the system jumps immediately to the next line without waiting for the end of execution.

The end of such a block is indicated by the END_PARALLEL-keyword. For END_PARALLEL, the sequence waits until all previously initiated sequence functions are concluded and only then resumes execution.

At least 2 threads are always active in FAMOS. The Main thread takes care of the Display of the program interface and the processing of user input. By default, all sequence instructions in FAMOS are processed
in the Standard execution thread, which is also always active and, if necessary, waits for tasks. The current execution thread of a sequence function in a BEGIN_PARALLEL block is temporary and is terminated
at the end of the processing of the sequence function.

The operating system ensures that the parallel executions are optimally distributed among the available processor cores. In contrast to sequential execution, which uses only one processor core, this makes
significantly faster execution of the sequence possible.

Application Tips

Only truly time demanding calculations and analyses should be run in parallel. When the execution time is short, the losses due to resource demands from extra administration are often greater than the
time gains from parallel execution.
Please ensure that you only use parallel execution for tasks which are truly mutually independent. The order in which the partial tasks are executed is random, so the results of one parallel sequence
function (not only explicit results variables, but also newly created files) may thus not be required as the input parameters or as implicit prerequisites for other parallel sequence functions. Approach the
question this way: If executed sequentially, would it be possible to arbitrarily change the order of the calls in the PARALLEL-block? If not, then parallel execution is not possible.
Sequence functions called in PARALLEL-blocks should only use local variables to the extent possible, since global variables could be changed if they are ever accessed in any unrelated operation. Example:
the same sequence function is called two times in a parallel-block, with different parameters. In the sequence, a non-local loop variable i is used in a FOR-loop. Both threads access this variable in parallel
and change its value. Thus, how often the loop is run in each oft sequence is actually random.

Scope of presettings and initial values

Some functions define default settings or initial values which are then used by subsequent function calls. These settings can be global or thread-local.
Global means here that a single global memory is available and this memory is valid and used in all execution threads. Examples are e.g. functions such as SetOption(), SelMeasListSetName(), FFTOPTION
and all functions for Panel and Report remote control.
Thread-local means that the internal memory is managed separately for each execution thread, so it may also have to be reinitialized in each sequence function called in parallel. Examples are e.g. Stat(),
FileOpenDSF(), SelUseMeasurement(), TerzI(), CwSelectWindow(), OtrTachoMode() and the functions for Excel and Powerpoint remote control. The specific behavior is described in the respective
function help.

Constraints

The maximum count of sequence functions executed in parallel in a PARALLEL-block is 64. The count of virtual processor cores in the system serves as a practical and sensible upper boundary. This number
can be obtained using the function GetSystemInfo().
PARALLEL-blocks can not be nested. Within a PARALLEL-block, any calls of BEGIN_PARALLEL, for example, within the sequence function called are ignored.
Some functions cannot be used within BEGIN_PARALLEL blocks. Examples of this are, for example, the functions of the Database kit or the ASAM-ODS kit. Other functions can be called anywhere, but are
pushed internally into the FAMOS main thread and executed from there, e.g. the functions of the R- and Pythons kits. Such restrictions are described in the respective function help.
PARALLEL blocks are not permitted within Timer Event sequences (panels).
PARALLEL-blocks are ignored during execution in Debug-mode (e.g. "Single Step", "Execute (Observe Breakpoints)".
Upon Suspend/Resume of execution (e.g. because an error occurred), the system waits until all active parallel executions have concluded.

Locking of access to variables

The quasi-simultaneous execution of lines of code is possible with PARALLEL blocks. When a line of code is executed in a parallel sequence function, the variables used (e.g. function parameters) are
exclusively reserved internally for the time of execution of a partial function in this line. If another sequence line is to be executed in parallel, in which variables that have already been reserved are to be
used, processing is delayed until all the required variables are available again. This prevents a variable used from being unexpectedly changed from elsewhere during processing. The variables are normally
released after the sequence line has been completely processed.

There is an exception when calling sequence functions. Since when jumping into the sequence function in general. If a local copy of the parameters is created, the reserved parameters can already be released
when processing the function begins. This also makes it possible for sequence functions that work on the same variable(s) to actually be executed in parallel within a BEGIN_PARALLEL block. But beware: if a
data group is transferred as a parameter and the data type of the corresponding sequence function parameter is not defined as a data group, a loop is executed internally over all channels of the group. The
parameter can then only be released when entering the last loop pass.

When duplicating a parameter for the local copy, however, there is the special feature that the original and the copy initially refer to the same internal memory area for the actual data. This optimization,
which is common in FAMOS (which is also used with a simple assignment "a = b"), of course, saves storage space and time when duplicating, especially with large data sets, but can be disadvantageous with
parallel calls and lead to unwanted delays! I f parallel executions want to access the data of the local copies of the same parameter at the same time, an appropriate lock must take effect because of the shared
internal memory area. So if a parameter is used in a longer-running function, parallel accesses to the same parameter's data in other sequence functions must wait until the current function has finished its
work.

So if the execution time of a PARALLEL block, in which the same data set is used repeatedly as a parameter for the called sequence functions, does not meet your expectations, you should try passing a
temporary copy with its own (unshared) memory area instead of the original parameter. The easiest way to force a true copy with its own memory space is to add a 0. This procedure is demonstrated in
Example 3.

Examples:

An analysis is applied to three data sets which returns a single characteristic number as its result. Subsequently, the mean value of the results is calculated.
BEGIN_PARALLEL
 t1 = !CalcSpecificValue(channel_1)
 t2 = !CalcSpecificValue(channel_2)
 t3 = !CalcSpecificValue(channel_3)
END_PARALLEL
t = (t1+t2+t3)/3

Suppose a text array contains a large amount of filenames. We want to load and evaluate the associated files.

allFiles = FsGetFileNames("c:\data", "*.raw", 0, 1, 0)
FOREACH ELEMENT file in allFiles
 !WorkWithFile(file) ; loads the file and carries out the evaluation
END

This routine is to be accelerated by means of parallel execution:

allFiles = FsGetFileNames("c:\data", "*.raw", 0, 1, 0)
count = TxArrayGetSize(allFiles)
chunksize = floor(count/4)
BEGIN_PARALLEL
 !WorkWithFiles(TxArrayPart(allFiles, 1, chunksize))
 !WorkWithFiles(TxArrayPart(allFiles, 1+ chunksize, chunksize))
 !WorkWithFiles(TxArrayPart(allFiles, 1+ chunksize*2, chunksize))
 !WorkWithFiles(TxArrayPart(allFiles, 1+ chunksize*3, count-3*chunksize))
END_PARALLEL

For this purpose, the sequence function !WorkWithFiles is defined as follows:

imc FAMOS Func on Reference - 49 -

(c) 2024 imc Test & Measurement GmbH

; Declaration: !WorkWithFiles(Par1 [Data type: Textarray])
FOREACH ELEMENT file in Par1
 !WorkWithFile(file)
END
testdata= ...
f = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 500, 1000, 5000, 10000]* 1e-3

A long data set is to be subjected to high-pass filtering with different cut-off frequencies one after the other.

FOR i = 1 TO lang?(f)
 Name = "Filt_"+ TForm(i, "")
 <Name> = FiltHP(testdata, 0, f[i])
END

This routine is to be accelerated by means of parallel execution:

count = lang?(f)
chunksize = Floor(count/4)
BEGIN_PARALLEL
 !DoHighPass_Chunk(testdata+0, f+0, 1, chunksize)
 !DoHighPass_Chunk(testdata+0, f+0, 1+ chunksize, chunksize)
 !DoHighPass_Chunk(testdata+0, f+0, 1+2*chunksize, chunksize)
 !DoHighPass_Chunk(testdata+0, f+0, 1+3*chunksize, count-3*chunksize)
END_PARALLEL

The sequence function !DoHighPass_Chunk is defined as follows:

; Declaration:
; !DoHighPass_Chunk (data [Datatype:Normal], freq, index, count [Single values])
; (Option "Newly created variables are local by default" is deactivated.)
LOCAL i
FOR i = index TO index+count-1
 LOCAL Name = "Filt_"+ TForm(i, "")
 <Name> = FiltHP(data, 0, 0, freq[i])
END

Passing "testdata+0" instead of "testdata" to the sequence function ensures that each call is executed with a complete, self-contained copy of "testdata". The same applies to the "freq" parameter. The
FiltHP() calls in the sequence function are thus completely decoupled and can be executed in parallel. Without this trick, all "data" and "f" instances in the sequence functions would internally share the same
data memory and the FiltHP() calls would have to be executed practically one after the other. The only parameters to be taken into account are those that are passed directly to functions that can potentially
take a long time and therefore have to be blocked for a longer period of time. The variable "chunksize" in the example (local name "count") is only latched very briefly when reading, so the "+0" trick is not
necessary here. See also the above explanation under "Locking of variable accesses".

For a group consisting of many channels, the FFT of each channel is to be calculated.

GrFFTs = FFT(GrInput, 0, 0)

This calculation is to be accelerated by means of parallel execution:

count = GrChanNum?(GrInput)
chunksize = floor(count/4)
BEGIN_PARALLEL
 GrFFT1 = !MyFFT(GrPart(GrInput, 1, chunksize))
 GrFFT2 = !MyFFT(GrPart(GrInput, 1+ chunksize, chunksize))
 GrFFT3 = !MyFFT(GrPart(GrInput, 1+ chunksize*2, chunksize))
 GrFFT4 = !MyFFT(GrPart(GrInput, 1+ chunksize*3, count-3*chunksize))
END_PARALLEL
GrFFTs = GrConcat(GrFFT1, GrFFT2, GrFFT3, GrFFT4)

For this purpose, the sequence function !MyFFT is defined as follows:

; declaration:
; !MyFFT(Par [Datatype: Normal]) => Result [Complex]
Result = FFT(Par, 0, 0)

See also:
END_PARALLEL

Supported since:
Version 2022, Editionen: Professional, Enterprise, Runtime

imc FAMOS Func on Reference - 50 -

(c) 2024 imc Test & Measurement GmbH

BINARY

Sets the BINARY format for subsequent loading of files using the command LOAD

Declaration:
BINARY SvFormat SvBytes SvSkipRange SvSpace SvCount SvBits SvSign SvMinimum SvMaximum String

Parameter:

SvFormat Format

1 : Real floating-point numbers in Intel format

2 : Whole numbers in Intel-format

3 : Real floating-point numbers in the Motorola format

4 : Whole numbers in the Motorola-format

SvBytes A number's Byte count

1 : 1 Byte (only integer)

2 : 2 Bytes (only integer)

4 : 4 Bytes (integer or real)

6 : 6 Bytes (only real)

8 : 8 Bytes (only real)

SvSkipRange Specifies the length of the leader to be skipped, in Bytes.

SvSpace Indicates how many Bytes should be skipped between the individual numbers to be read.

SvCount Indicates how many numbers are to be read. Zero means that all values to the end of the file should be read.

SvBits Only for Type = 2 or 4 (integer): The number of valid bits in an integer. Used together with minimum and maximum for scaling the
integers.

SvSign Only for type = 2 or 4 (integer): Indicates whether integers are to be interpreted as signed (two's complement display) or
unsigned. A value of 1 means "signed", zero means "unsigned".

SvMinimum Only for Type = 2 or 4 (integer): Real value of the smallest number displayable in the specified format, is a real number; also
interpreted as the lower limit of the measurement range.

SvMaximum Only for Type = 2 or 4 (integer): Real value of the largest displayable number in the specified format, is a real number; also
interpreted as the upper limit of the measurement range.

String
A string which the system searches for in the file, before beginning to read the leader and the numerical values. The string may
not contain spaces. If no string is supplied as the parameter, then reading begins with the leader immediately at the start of the
file.

Description
The file format for the command LOAD is set to a binary format

If no parameters are added to the command BINARY, the Binary format currently set is selected.

If parameters are specified, a binary format is completely redefined. The parameter to be specified depends on the type of binary format to be
read. If any parameter is specified, all parameters must be specified.

The command BINARY is essentially the automation of the dialog box 'Options'/ 'Load file'/ 'Binary'. One way to access this dialog box is to click on
the button 'Options' in the 'Load File'-dialog when Binary format is set. For details and more complete examples, see the chapter 'File
Management' in the user's manual.

Each parameter, with the exception of a string, may be a fixed numerical value or a single value (SV) variable. Using variables as parameters
allows variable file formats to be read.
As an alternative to BINARY import by means of the command combination ASCII/BINARY (especially for more complex formats), it is
possible to use the imc File Assistant to create an import filter to be used with the command FASLOAD or the function FileOpenFAS().
Multithreading: The command has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:

BINARY
LOAD DATA.BIN

imc FAMOS Func on Reference - 51 -

(c) 2024 imc Test & Measurement GmbH

The binary format used is set again; files were loaded in a different format, e.g. FAMOS format, since it was last used. The file DATA.BIN is then
loaded.

BINARY 1 4 20 8 100 Data:
LOAD DATA.BIN

The format for reading the following binary format is defined: the beginning of the file contains information about an experiment; the actual
binary data are introduced by the string "Data:". Then real numbers in 4-bytes display are read. The first 5 numbers (= 20 bytes) are skipped, and
then only every third number (i.e.: 2 * 4 = 8 bytes space between the numbers) is read. 100 numbers are read; the waveform generated in FAMOS
has a length of 100.

Mini = -10.0
Maxi = 10.0
Bits = 12
BINARY 2 2 0 0 0 Bits 0 Mini Maxi
LOAD DATA.BIN

All numbers are to be read from a file. The beginning of the file contains no information to be skipped, only numbers in as 12-bit values in 2-byte
display are contained. These unprocessed data originate in an AD-converter, and have no sign. The measurement range of the converter is -10V
to 10V.

See also:
LOAD, ASCII, FileOpenASCII, FileOpenFAS

imc FAMOS Func on Reference - 52 -

(c) 2024 imc Test & Measurement GmbH

BitAnd

Bitwise "AND" logic operation

Declaration:
BitAnd (Data, Mask, SvDataformat) -> Result

Parameter:

Data First value/data set to be linked. Allowed data types: [NW],[XY].

Mask Second value/data set (mask) to be linked [NW]

SvDataformat Assumed (integer) data format. Allowed values include:

64 : 64-bit, unsigned

32 : 32-bit unsigned

16 : 16-bit unsigned

8 : 8-bit unsigned

1 : 1 bit (digital)

-8 : 8-bit signed

-16 : 16-bit signed

-32 : 32-bit signed

-64 : 64-bit, signed

Result

Result Result of bitwise logic operator

Description:
Bitwise 'AND'-operation applied to two numbers. Both operands are converted to the specified integer data format and a logical 'AND'-operation
is performed on each pair of corresponding bits. The result bit is 1 if both bits are 1, else 0.

The second parameter must either be a single value or a data set with exactly identical structure (length, segmenting, events) as the first
parameter, in this case the operator is applied point-by-point to corresponding values.

Negative integers are represented as a two's complement.

When converting to the data type 'Digital', all values which do not equal 0 are regarded as 1. The result is identical to that of the logical AND-
operator.

The result has the format specified in the parameter [SvDataFormat].

Examples:
In a 1-Byte data set (value range: 0..255), the upper 4 bits are set to 0.

Erg = BitAnd(Data, 0x0F, 8)

In a 4-Byte wide data set, the value of the 2nd Byte is determined.

Byte2 = BitShift(BitAnd(Data, 0x00FF0000, 32), -16, 32)

All points are found in which the 7th bit in both data sets is 1 at the same time.

Result = BitAnd(BitGet(Port1, 7), BitGet(Port2, 7), 1)
; is compatible with:
; Result = BitGet(Port1, 7) AND BitGet(Port2, 7)

See also:
BitOr, BitNot, BitShift, BitGet, BitSet

imc FAMOS Func on Reference - 53 -

(c) 2024 imc Test & Measurement GmbH

BitGet

Querying a bit

Declaration:
BitGet (Data, SvBitNumber) -> ZeroOrOne

Parameter:

Data Single value/data set to be queried. Allowed data types: [NW],[XY].

SvBitNumber Number of the bit to be set. The bit on the far right (LSB) has the number 1. Permitted range: 1<= [SVBitNumber] <= 64.

ZeroOrOne

ZeroOrOne Result of query

Description:
Gets a bit in an integer's bit pattern. The values of the data set provided are converted to an integer and the content (0/1) of the associated bit is
returned.

Negative integers are represented as a two's complement.

the result has the data format 'Digital'.

Examples:
All points are found in which the 7th bit in both data sets is 1 at the same time.

Result = BitAnd(BitGet(Port1, 7), BitGet(Port2, 7), 1)
; is compatible with:
; Result = BitGet(Port1, 7) AND BitGet(Port2, 7)

In a 1-Byte data set, the 2nd bit is set to the value of the 1st bit.

Bit1 = BitGet(Data, 1, 8)
Result = BitSet(Data, Bit1, 2)

See also:
BitAnd, BitOr, BitNot, BitShift, BitSet

imc FAMOS Func on Reference - 54 -

(c) 2024 imc Test & Measurement GmbH

BitNot

Bitwise inversion

Declaration:
BitNot (Parameter, SvDataformat) -> Result

Parameter:

Parameter Single value/data set to be inverted. Allowed data types: [NW],[XY]

SvDataformat Assumed (integer) data format. Allowed values include:

64 : 64-bit, unsigned

32 : 32-bit unsigned

16 : 16-bit unsigned

8 : 8-bit unsigned

1 : 1 bit (digital)

-8 : 8-bit signed

-16 : 16-bit signed

-32 : 32-bit signed

-64 : 64-bit, signed

Result

Result Result of bitwise logic operator

Description:
Bitwise inversion of the value of the parameter. Each value is converted to the specified integer data format and a logical inversion is performed
for each bit. The result bit is 0 if the input bit is 1, else 0.

Negative integers are represented as a two's complement.

When converting to the data type 'Digital', all values which do not equal 0 are regarded as 1. The result is identical to that of the logical NOT-
operator.

The result has the format specified in the parameter [SvDataFormat].

Examples:
All bits of a 2-Byte wide data set are inverted.

Result = BitNot(Port, 16)

Inversion of a digital data set

Result = BitNot(DigChannel1, 1)
; is compatible with:
; Result = Not(DigChannel)

Implementation of a bitwise XOR operation

Result = BitOr(BitAnd(x, BitNot(y, 32), 32), BitAnd(BitNot(x, 32), y, 32), 32)

See also:
BitAnd, BitOr, BitShift, BitGet, BitSet

imc FAMOS Func on Reference - 55 -

(c) 2024 imc Test & Measurement GmbH

BitOr

Bitwise "OR" operator

Declaration:
BitOr (Data, Mask, SvDataformat) -> Result

Parameter:

Data First value/data set to be linked. Allowed data types: [NW],[XY].

Mask Second value/data set (mask) to be linked [NW]

SvDataformat Assumed (integer) data format. Allowed values include:

64 : 64-bit, unsigned

32 : 32-bit unsigned

16 : 16-bit unsigned

8 : 8-bit unsigned

1 : 1 bit (digital)

-8 : 8-bit signed

-16 : 16-bit signed

-32 : 32-bit signed

-64 : 64-bit, signed

Result

Result Result of bitwise logic operator

Description:
Bitwise 'OR'-operator applied to two numbers. Both operands are converted to the specified integer data format and a logical 'OR' operation is
applied to each pair of corresponding bits. The result bit is 0, if both bits are 0, else 1.

The second parameter must either be a single value or a data set with exactly identical structure (length, segmenting, events) as the first
parameter, in this case the operator is applied point-by-point to corresponding values.

Negative integers are represented as a two's complement.

When converting to the data type 'Digital', all nonzero values are considered to be 1. The result is identical with that of the logical OR-operator.

The result has the format specified in the parameter [SvDataFormat].

Examples:
In a 1-Byte data set, the lower 4 bits are set to 1.

Erg = BitOr(Data, 0x0F, 8)

All points are found in which either the 2nd or the 7th bit is set in a data set.

Result = BitOr(BitGet(Port1, 2), BitGet(Port1, 7), 1)
; is compatible with:
; Result = BitGet(Port1, 2) OR BitGet(Port1, 7)

Implementation of a bitwise XOR operation

Result = BitOr(BitAnd(x, BitNot(y, 32), 32), BitAnd(BitNot(x, 32), y, 32), 32)

See also:
BitAnd, BitNot, BitShift, BitGet, BitSet

imc FAMOS Func on Reference - 56 -

(c) 2024 imc Test & Measurement GmbH

BitSet

Sets a bit

Declaration:
BitSet (Data, ZeroOrOne, SvBitNumber) -> Result

Parameter:

Data Single value.data set to be edited. Allowed data types: [NW],[XY].

ZeroOrOne Value(s) to be set [NW]

SvBitNumber Number of the bit to be set. The bit on the far right (LSB) has the number 1. Permitted range: 1<= [SVBitNumber] <= 64.

Result

Result Result of the operation

Description:
Sets a bit in the bit pattern of an integer. The values of the input data set are converted to integers if appropriate and the content of the specified
bit is set to 0/1. Subsequently, the resulting bit pattern is converted back to the data format of the input data set. Values of magnitude > 10^14
can not be converted without losses; in this case a warning is issued.

The second parameter must either be a single value or a data set having exactly the same structure (length, segmenting, events) as the first
parameter, in this case a point-by-point logical operation on the corresponding values is performed. If the 2nd parameter has a value of 0, then
the corresponding bit is set to 0, else to 1.

Negative integers are represented as a two's complement.

The result has the same data format as the input parameter.

Examples:
In a 1-Byte data set, the 7th bit is set to 1.

Result = BitSet(Data, 1, 7)
; compatible with:
; Result = BitOr(Data, 0x40, 8)

In a 1-Byte data set, the 2nd bit is set to the value of the 1st bit.

Bit1 = BitGet(Data, 1, 8)
Result = BitSet(Data, Bit1, 2)

See also:
BitAnd, BitOr, BitNot, BitShift, BitGet

imc FAMOS Func on Reference - 57 -

(c) 2024 imc Test & Measurement GmbH

BitShift

Shift of the bit pattern of an integer by a specified number of positions.

Declaration:
BitShift (Parameter, SvDigits, SvDataformat) -> Result

Parameter:

Parameter Single value.data set to be edited. Allowed data types: [NW],[XY].

SvDigits Number of positions by which to shift the pattern. A number above 0 means shifting to the left; a number below 0 means
shifting to the right.

SvDataformat Assumed (integer) data format. Allowed values include:

64 : 64-bit, unsigned

32 : 32-bit unsigned

16 : 16-bit unsigned

8 : 8-bit unsigned

-8 : 8-bit signed

-16 : 16-bit signed

-32 : 32-bit signed

-64 : 64-bit, signed

Result

Result Result of bit shifting

Description:
The parameter is converted to the specified integer data format and a bit pattern shift by the specified number of positions is performed.

A positive specification for the number of positions means shifting to the left, zeroes are appended from the right side. Any bits shifted leftward
past the edge will disappear. Shifting left by 1 position is equivalent to multiplying by 2.

Specifying a negative position number means shifting the bits to the right; the new bit values placed in the corresponding positions on the left
side are either 0 or 1 depending on the numerical format and sign. Bits which are pushed to the right beyond the position limit disappear. For
unsigned numerical formats, the bit positions becoming open on the left side as the bits move to the right are filled with zeroes. For signed
numerical formats, the sign bit is used to fill the newly open bit positions. Thus if the number is positive, 0 is used; and if the number is negative,
1 is used. A rightward shift by 1 position corresponds to division by 2 (with rounding to the next smaller number if appliable).

The absolute value of the position count must be lower than the number's bit width as defined by the third parameter; for instance, for
[SVDataFormat] = 16, the value for [SVPositions] must lie in the range -15..15.

Negative integers are represented as a two's complement.

The result has the format specified in the parameter [SvDataFormat].

Examples:
Two data sets which are each 1 Byte wide are combined to a 2-Byte wide data set, where the 2nd data set is shifted into the upper 8 bits.

WordData = BitOr(BitShift(ByteData2, 8, 16), ByteData1, 16)

In a 4-Byte wide data set, the value of the 2nd Byte is determined.

Byte2 = BitShift(BitAnd(Data, 0x00FF0000, 32), -16, 32)

See also:
BitAnd, BitNot, BitOr, BitGet, BitSet

imc FAMOS Func on Reference - 58 -

(c) 2024 imc Test & Measurement GmbH

BoxMessage

Text output box with prompt buttons

Declaration:
BoxMessage (TxTitle, TxText, TxOption) -> SvReturn

Parameter:

TxTitle Title of window

TxText Text in window

TxOption Determines type of buttons and icons

"!1" : Exclamation mark, OK

"!2" : Exclamation mark, OK/Cancel

"!3" : Exclamation mark, Repeat/Cancel

"!4" : Exclamation mark, Yes/No

"?1" : Question mark, OK

"?2" : Question mark, OK/Cancel

"?3" : Question mark, Repeat/Cancel

"?4" : Question mark, Yes/No

"S1" : Stop sign, OK

"S2" : Stop sign, OK/Cancel

"S3" : Stop sign, Repeat/Cancel

"S4" : Stop sign, Yes/No

"I1" : Info(i)-symbol, OK

"I2" : Info(i)-symbol, OK/Cancel

"I3" : Info(i)-symbol, Repeat/Cancel

"I4" : Info(i)-symbol, Yes/No

SvReturn

SvReturn Which button was pressed?

1 : The button "Yes", "OK" or "Repeat" was pressed.

0 : The button "No"/"Cancel" was pressed.

Description:
This function generates a window with a title, text icons and buttons, which can only be exited by pressing one of the buttons. The particular
button pressed is reflected in the return value ["SvReturn"].

Querying the return value can be skipped in imc FAMOS (which makes sense if there is only one response key).
The position at which the box appears can be set using the function SetBoxPos.
You can also manually change the output box's position (e.g. by shifting it with the mouse). The position is kept for the duration of the
session.
Multithreading: The function may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e. within
sequence functions that are executed in a separate thread) is not permitted.

Examples:
For a window with a "Question mark" symbol and "Yes" and "No" option screen buttons:

TxQuestion = "Do you really want to stop the evaluation?"
Stop = BoxMessage("Evaluation", TxQuestion, "?4")

See also:
BoxOutput, BoxValue?, BoxText?, SetBoxPos, DlgFileName, Dialog

imc FAMOS Func on Reference - 59 -

(c) 2024 imc Test & Measurement GmbH

BoxOutput

Output of text and/or a number in an output window

Declaration:
BoxOutput (TxOutput, SvValue, TxFormat, SvOption)

Parameter:

TxOutput Text to be outputted

SvValue Number to be outputted

TxFormat Formatting for the value

SvOption What manner to design output?

0 : Output in a separate output window. The message must be acknowledged.

1 : Display in the output box of the imc FAMOS main window

Description:
If [SvValue] displays a single number, it is converted by the format specified in [TxFormat] and appended to the output text. If no single number
is displayed, specify the pseudo-constant 'EMPTY' and [TxFormat] is ignored.

Otherwise the following options may be selected for the format "TxFormat". The first letter is the required format identification, then specify
one or two numbers, according to the desired format.

TxFormat Description Example

"e.N" Floating point format
N: Number of post-decimal digits 3.456 with "e.2" -> "3.46E+00"

"FV.N"

Fixed-point format
V: Minimum count of pre-decimal digits
N: Count of post-decimal digits
Excess pre-decimal places are filled with zeroes.

3.456 with "f2.2" -> " 3.46"

"gV.N"

Fixed-point format
V: Count of pre-decimal digits
N: Count of post-decimal digits
Excess pre-decimal places are filled with zeroes.

3.456 with "g2.2" -> "03.46"

"a.N"

Automatic
N: Maximum count of outputted digits
The shortest possible notation is used for the respective numerical value.
Concluding zeroes after the decimal point are omitted,
or even the decimal if applicable. Thus, ideal for integers.

3.40056 with "a.2" -> "3.4"

"" Corresponds to "a.6"

"xG" Hexadecimal format
G: Total count of digits 340056 with "x8" -> "340056"

"bG" Binary format
G: Total count of digits 34.56 with "b4" -> "100011"

Comma or period
If the period is replaced by a comma in these format strings, the output features a decimal comma instead of a decimal point. Otherwise, the
period can be omitted (Example: "f23" is equivalent to "f2.3"; however, "f2,3" forces the use of a decimal comma).

If the period is replaced by a semicolon in these format strings, the output is formatted in accordance with the global presetting for the preferred
decimal separator for real numbers ("Extra"/"Options"/"Display & Curve Window", or according to SetOption("Display.DecimalSeparator",...).

The output box in the main window is emptied before any formulas are executed. When a sequence is processed in single-step mode or a
formula is executed using the operation box directly, only the output of the last BoxOutput command is visible.
The position at which the dialog box appears can be specified with the help of the function SetBoxPos().
The position and size of the output box can also be changed manually; the program memorizes the current position and size for the duration
of each session.
If an endless loop was accidentally programmed, the sequence can be interrupted by the combination of keys "CTRL" and "Break".
Multithreading: The function may only be called in the standard execution thread with [SvOption] = 0 (ie separate output box). A call within a
BEGIN_PARALLEL block (i.e. within sequence functions that are executed in a separate thread) is not permitted.

Examples:

imc FAMOS Func on Reference - 60 -

(c) 2024 imc Test & Measurement GmbH

leng = Leng?(data)
BoxOutput("Length of data: ", leng, "", 0)

VMean = Mean(data)
BoxOutput("Calculated Mean : ", VMean, "f23", 0)
DELETE data
BoxOutput("Calculation Completed!", EMPTY, "", 1)

See also:
BoxMessage, BoxValue?, BoxText?, SetBoxPos, DlgFileName, Dialog

imc FAMOS Func on Reference - 61 -

(c) 2024 imc Test & Measurement GmbH

BoxText?

Calls a dialog box for entering text

Declaration:
BoxText? (TxTitle, TxInit, SvOption) -> TxInput

Parameter:

TxTitle Title of box

TxInit Suggested input in box upon calling

SvOption Defines the size of the window.

0 : Position and size as recently used or defined with SetBoxPos().

1 : The size of the box is calculated on the required size for a complete display of [TxTitle]. Position of the box as recently used or
defined with SetBoxPos() . Explicit line breaks in [TxTitle] (with CarriageReturn/LineFeed combination "~013~010") are observed.

TxInput

TxInput Text entered

Description:
A small dialog box to enter a text is called. After successful entry and confirmation with [OK], the entered value is returned.

The position at which the dialog box appears can be specified with the help of the function SetBoxPos().
The position and size of the output box can be changed manually; the program memorizes the current position and size for the duration of
each session and is valid also for the BoxValue? function.
The maximum length of the returned text is 255 characters.
If an endless loop was accidentally programmed, the sequence can be interrupted by the combination of keys "CTRL" and "Break".
Multithreading: The function may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e. within
sequence functions that are executed in a separate thread) is not permitted.

Examples:

TxName = BoxText?("Please enter the file name:", "default.dat", 0)

With automatic sizing (2 lines):

TxName = BoxText?("Please enter the file name:~013~010(EXCEL format required)", "default.xls", 1)

See also:
BoxValue?, BoxOutput, BoxMessage, SetBoxPos, DlgFileName, Dialog

imc FAMOS Func on Reference - 62 -

(c) 2024 imc Test & Measurement GmbH

BoxValue?

Calls a dialog box for entering a number.

Declaration:
BoxValue? (TxTitle, SvInit, SvOption) -> SvInput

Parameter:

TxTitle Title of box

SvInit Entry in the input box upon calling

SvOption Defines the size of the window.

0 : Position and size as recently used or defined with SetBoxPos().

1 : The size of the box is calculated on the required size for a complete display of [TxTitle]. Position of the box as recently used or
defined with SetBoxPos() . Explicit line breaks in [TxTitle] (with CarriageReturn/LineFeed combination "~013~010") are observed.

SvInput

SvInput Entered value

Description:
A small dialog box is called to enter a value; after input and confirmation with [OK], the value entered is assigned to a variable. If the entry
cannot be converted to a value, the dialog is not ended.

The position at which the dialog box appears can be specified with the help of the function SetBoxPos().
The position and size of the output box can be changed manually; the program memorizes the current position and size for the duration of
each session and is also valid for the BoxText?() function.
If an endless loop was accidentally programmed, the sequence can be interrupted by the combination of keys "CTRL" and "Break".
Multithreading: The function may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e. within
sequence functions that are executed in a separate thread) is not permitted.

Examples:

Count = BoxValue?("Please specify the number of measurements:", 1, 0)

With automatic sizing (2 lines):

Count = BoxValue?("Please specify the number of measurements.~013~010Must be smaller than 10.", 1, 1)

See also:
BoxText?, BoxOutput, BoxMessage, SetBoxPos, Dialog

imc FAMOS Func on Reference - 63 -

(c) 2024 imc Test & Measurement GmbH

BoxVarSelector

A dialog window with a list of the variables present in FAMOS at the time of the call is displayed. The function returns the names of the variables selected by the user.

Declaration:
BoxVarSelector (SelectionType [, TxNameFilter] [, TxTypeFilter] [, TxTitle] [, TxDescription]) -> TxOrTxaVariablesSelection

Parameter:

SelectionType Specifies whether the user can select exactly 1 variable (single selection) or any number of variables (multiple selection). Also determines the data type of the result
(text or textarray).

"single" : Single selection

"multi" : Multiple selection

TxNameFilter

Only variables whose names correspond to the name pattern defined here are displayed. The wildcard characters "*" (any number of arbitrary characters) and "?"
(exactly 1 arbitrary character) can be used in their usual interpretation can be used. A preceding "!" negates the condition, so all variables that do not match the
pattern are displayed. Empty text means no filtering by name will be performed. The filter set here can be changed by the user in the dialog window. (optional ,
Default value: "")

TxTypeFilter Only variables whose data type corresponds to the constraint defined here are displayed. Empty text means no filtering by type is performed. (optional , Default
value: "")

"" : No filtering by type

"SV" : Single value (normale data set of length 1)

"ND" : Normal data set

"ND(..)" : Normal data set, Length > 1

"ND(->)" : Normal data set; no events, no segments

"ND(..,->)" : Normal data set; no events, no segments, Length > 1

"CX" : Complex data set

"!CX" : Data set, not complex

"CX(->)" : Complex data set; no events, no segments

"RI" : Complex data set in Real-/Imaginary-part representation

"MP" : Complex data set in Magnitude/Phase-representation

"DP" : Complex data set in Decibel/Phase-representation

"XY" : XY-data set

"!XY" : Data set; not XY

"XY(->)" : XY-data set; no events, no segments

"XY(/)" : XY-data set with monotonically increasing x-track

"XY(->,/)" : XY-data set with monotonically increasing x-track; no events, no segments

"TSA" : Data set, TimeStamp-ASCII

"!TSA" : Data set; not TimeStamp-ASCII

"TSA(->)" : TimeStamp-ASCII; no events, no segments

"DS" : Data set (any type), therefore no text, text array or data group

"Evn" : Data set (any type) with events

"Seg" : Data set (any type) with segments

"SegEvn" : Data set (any type) with segments and events

"!Evn" : Data set (any type) without events

"!Seg" : Data set (any type) without segments

"!SegEvn" : Data set (any type); no events, no segments

"->" : Abbreviation for "!SegEvn"; data set (any type), no events, no segments

"Monotone" : Single value, normal data set or XY-data set with monotonically increasing x-track

"/" : Abbreviation for "Monotonic". Single value, normal data set or XY-data set with monotonically increasing x-track

"Digital" : Digital data set

"!Digital" : Data set; not digital

"TXT" : Text

"!TXT" : No text; therefore data set, text array or data group

"TXA" : Text array

"!TXA" : No text array; therefore data set, text or data group

"TX*" : Text or text array

"!TX*" : No text or text array; therefore data set or data group

"Group" : Data group

"!Group" : No data group

"Empty" : Variable is empty. Length 0 for data sets; text length 0 for texts; element count 0 for text arrays and TSA.

"!Empty" : Variable is not empty

"@M" : The variable is assigned to a measurement.

"!@M" : The variable is not assigned to any measurement.

TxTitle The text displayed in the title bar of the dialog window. An empty text means that a standard title ("Select Variables") is used. (optional , Default value: "")

TxDescription Additional text that may be displayed above the selection list. (optional , Default value: "")

imc FAMOS Func on Reference - 64 -

(c) 2024 imc Test & Measurement GmbH

TxOrTxaVariablesSelection

TxOrTxaVariablesSelection If [SelectionType]="multi" a textarray with the selected variable names. If the dialog box was canceled or no variable was selected, the dimension of the array is 0. For
[SelectionType]="single" a text with the selected variable name. If the dialog window was canceled, an empty text variable is returned.

Description:
The function displays a dialog window in which the user can select from a list of the variables available at the time of call. The names of the selected variables are returned.

Local variables are not displayed.
In order for a variable name to be specified in formulas, it must obey certain rules (e.g. no spaces, first character no number etc.). If this is not the case, the name must also be enclosed in curly
brackets {...} The names supplied by this function are automatically supplemented with the curly brackets if necessary.
The position at which the box appears can be specified using the SetBoxPos() function. You can also change the position of the box manually (e.g. by moving it with the mouse). The position is
remembered for the duration of the current session.
Multithreading: The function may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e. within sequence functions that are executed in their own thread) is
not permitted.

Examples:

; Single selection from all variables
txName = BoxVarSelector("single")

; Single selection from all variables whose name begins with "channel"
txName = BoxVarSelector("single", "channel*")

; Multiple selection from all variables whose name does not start with "_".
txaNames = BoxVarSelector("multi", "!_*")

; Multiple selection from all variables that are of data type "XY",
; have a monotonically growing x-track and have neither events nor segments
txaNames = BoxVarSelector("multi", "", "XY(->,/)")

; Multiple selection from all variables that belong to the measurement "0001" and are sampled equidistantly
; and do not have any events or segments. Window title and description are specified.
txaNames = BoxVarSelector("multi", "*@0001", "ND(->)", "Spectral Analysis", "Please select the data for which you want to perform a spectral analysis.")

The user selects a variable from which the spectrum is then calculated. Only variables are displayed whose name begins with "chan" and whose type is permitted as a parameter for which the
following calculation is carried out.

txaName = BoxVarSelector("single", "chan*", "ND(->)")
IF txName <> ""
spectrum = Spec(<txName>)
 SHOW <txName>
 SHOW spectrum
END

The user makes a selection from the variables associated with the measurement, whose name contains the subtext "engine". The selected variables are smoothed.

txaNames = BoxVarSelector("multi", "*engine*", "@M", "Smooth data")
FOREACH ELEMENT txName IN txaNames
 <txName> = Smo5(<txName>)
END

The user selects variables that are then to be saved together in a file. Texts and text fields are not offered for selection.

txaNames = BoxVarSelector("multi", "", "!TX*", "", "Please select the data to be saved.")
c = TxArrayGetSize(txaNames)
IF c > 0
 fh = FileOpenDSF("result.dat", 1)
 IF fh <>> 0
 FOR i = 1 TO c
 txaName = txaNames[i]
 FileObjWrite(fh, <txaName>)
 END
 FileClose(fh)
 END
END

See also:
VarGetInit, VarGetInit2, VarGetName?, VarExist?, BoxText?, SetBoxPos, Dialog

Supported since:
Version 2024

imc FAMOS Func on Reference - 65 -

(c) 2024 imc Test & Measurement GmbH

BREAK

The command interrupts the processing of the higher-level loop. Running of the sequence resumes after the end of the loop body.

Declaration:
BREAK

Description
The command can be used within a WHILE-, FOR- or FOREACH-loop.

Examples:
The first text object located in a file containing multiple data objects is read out.

fh = FileOpenDSF("test.dat", 0)
IF fh > 0
 n = FileObjNum?(fh)
 FOR i = 1 to n
 IF FileObjType?(fh, i) = 2
 text = FileObjRead(fh, i)
 BREAK ; exit loop
 END
 END
 FileClose(fh)
END

See also:
WHILE, FOR, FOREACH, CONTINUE

imc FAMOS Func on Reference - 66 -

(c) 2024 imc Test & Measurement GmbH

BSave

Saves data sets, single values or text as a binary file.

Declaration:
BSave (SvOption, Data, TxFile) -> SvError

Parameter:

SvOption Configuration of the output file's format. See description.

Data Variable to be saved. Data set, single value or text

TxFile Name of the file. Unless a full pathname is specified, the default loading folder is used. Unless a file extension is specified, ".BIN" is
used.

SvError

SvError Error code

0 : The file has been saved successfully.

1 : Insufficient working memory available

2 : Error in creating the file. Please check the filename specified.

3 : Unable to write a file. Available space on the data carrier may not be sufficient.

Description:
Meaning of the parameter [SvOption]:

0 Create new file

1 Append to existing file

add
these:

0 Intel-format (LSB first)

10 Motorola format (MSB first)

add
these:

0 save as Bytes (8-bit, Range: 0..255)

100 save as Words (16-bit; Range: 0..65535)

200 save as Longs (32-bit; Range: 0..4.2E9)

300 as 4-Byte Floating-Point number as per IEEE

400 as 8-Byte Floating-Point number as per IEEE

add
these:

1000 The values are saved in two's complement. With Bytes, Words and Longs, the ranges consequently change as follows: Bytes: -128..127,
Words: -32768..32767, Long: -2.1E9..2.1E9

Unless a full filename is specified, the current default folder is used. Upon starting FAMOS, the current default folder is set to the preset (dialog:
'Options'/ 'Folders'). It can be changed using the function SetOption().

Examples:
Supposing a file "Curve.bin" is created, which contains at its beginning "Length:xxxxxxxx". xxxxxxxx is the number of number of values following,
as a 4Byte-Integer number, which are saved as 2Byte-Integer numbers.

BSave(0, "Length:", "Curve")
Len = Leng?(Data)
BSave(201, Len, "Curve")
BSave(101, Data, "Curve")

See also:
FileSave

imc FAMOS Func on Reference - 67 -

(c) 2024 imc Test & Measurement GmbH

CASE

Designates one alternative in a case distinction initialized by the command SWITCH (multiple branching). The expression supplied here is
compared with the value specified with the SWITCH block. If they are equal, the instructions belonging to the associatedd CASE block are carried
out.

Declaration:
CASE TestExpression

Parameter:

TestExpression Value or value list with which the SWITCH comparison value is compared.

Description
The end if the instructions belonging to this CASE is determined by another CASE, a DEFAULT-command or an END-command.

Once the CASE-block has run all the way through, execution of the sequence is resumed at the corresponding END. Subsequent CASE instructions
are thus no longer executed, even if they would meet the entry condition.

Resolution of the test expressino must result in either a number or a text, and its type must match that of the comparison value specified for the
SWITCH.

Here, you can specify a constant, a variable, or an arithmetical expression:

CASE 0
CASE "Monday"
CASE var
CASE var+1

A list of expressions separated by commas is also allowed. The comparison condition is met if at least one of the values is identical to the
comparison value.

CASE 0, 2, 5
CASE "Monday", "Tuesday", "Friday"
CASE var1, var2
CASE var1+1, var+2

If the comparison value is numerical, it is also possible to specify a range by using the keyword TO ('LowerLimit TO UpperLimit'). The comparison
condition is met if the comparison value lies within the specified range (including edges).

CASE 0 TO 10
CASE var1 TO var1+10

Text comparison does not distinguish between upper and lower case.

Examples:
A descriptive text is formed for a value normally lying between 0 and 100.

SWITCH Round(value, 1)
CASE 0
 Tx = "Lower limit"
CASE 1 TO 48
 Tx = "Lower half"
CASE 49,50,51
 Tx = "Center"
CASE 52 To 99
 Tx = "Upper half"
CASE 100
 Tx = "Upper limit"
DEFAULT
 Tx = "Invalid Value"
END

The user is prompted to select a file to open. based on the file extension, the file format is recognized and the corresponding function for
opening it is called.

TxFileName = DlgFileName("", "", "",0)
TxFileExt = FsSplitPath(TxFileName, 3)
SWITCH TxFileExt
CASE ".dat", ".raw"
 ; Load imc data file
 fh = FileOpenDSF(TxFileName, 0)
 ;...
CASE ".xls"
 ; Load EXCEL file

imc FAMOS Func on Reference - 68 -

(c) 2024 imc Test & Measurement GmbH

 fh = FileOpenXLS(TxFileName, 0)
 ;...
DEFAULT
 PAUSE ==> Invalid file format
END

See also:
SWITCH, DEFAULT, IF

imc FAMOS Func on Reference - 69 -

(c) 2024 imc Test & Measurement GmbH

CCF

Cross correlation of a data set with a reference data set

Declaration:
CCF (ReferenceData, TestData) -> Result

Parameter:

ReferenceData Reference data set

TestData Test data set

Result

Result Results of the cross correlation

Description:
The cross-correlation function (CCF) indicates how similar two data sets are for different shifts in the x direction. The cross-correlation function
returns values between -1 and +1.

A value of 1 means that the signals are identical for that shift; a value of -1 means that both signals are the inverse of each other. If one of the
signals is positive, the other signal has the same amplitude but a negative sign. A value of 0 means that both signals have nothing in common (are
not correlated). All values between -1 and +1 are possible.

Cross-correlation allows the user to determine whether a signal is hidden in another signal, and what the time shift is with respect to the other
data set. The maximum of the cross-correlation function is especially interesting: its position indicates the exact time shift in the other data set.
Its height indicates how similar the two signals are.

In order to be able to correctly interpret the signals' delay, it is essential to list the parameters of the CCF function in the correct order. The first
parameter is the reference channel, which contains the original signal. The second parameters contains the test channel which contains a
delayed (and often distorted) signal. The x-coordinate of the maximum in the cross correlation function indicates directly the time shift of the
test channel with respect to the reference channel. In this implementation, cross-correlation is calculated using the FFT and iFFT functions to
achieve a reasonable calculation time. Aside from saving computing time, this has important consequences:

First, the shorter of two data sets is extended with zeros so that the data sets have exactly the same length. Then both data sets are shortened to
the next power of two points, if their length is not already a power of two. Use the Red2 function to avoid losing any data. Using the FFT function
also means that the data set are treated as periodic, i.e. they are treated as if they were extended periodically in both xdirections. If a data set
represents one impulse, the signal is interpreted as if a series of these impulses were contained.

The cross-correlation function itself is calculated for the complete length of the shortened, supposedly periodic waveforms. It is not of use to
calculate the cross-correlation function for a different range, since the function is periodic and all ranges will show the same period. If a large
shift of 0.9 periods results from a cross-correlation function, this means the same as a small shift in the negative direction, i.e. -0.1 periods.

The window function set for FFT is used for cross-correlation. Following any necessary truncation, the channels to be correlated are weighted
according to the selected FFT window function. Use this to suppress edge effects and large signal jumps introduced by the periodic extension of
the signals. See the FFT function description for more detailed information. If window functions are not desired, select the rectangular window
function.

The x-scaling of the CCF is the scaling of the specified waveforms; thus the two specified data sets should have the same x-scaling.
Otherwise, a warning message is generated and the scaling of the reference channel is used.
Because it is normalized, the CCF function has no y-unit.
If the length of a parameter exceeds 2^27, an error message is generated and calculation is not possible. Shorten the relevant data set using
the Leng or Red2 functions. The maximum length of a data set to be processed is 134.217.728.
If the length of a data set is not a power of two, an error message is usually generated. If necessary, the data set is then automatically
truncated (cut off).
The CCF function uses the FFT function internally. This requires temporary (working) memory; if insufficient memory is available, calculation
is stopped.
The CCF function is normalized, so that it is independent of the amplitudes of the specified data sets. One of the data sets can be multiplied
by a constant before correlation without any influence on the result. If the data sets to be correlated have a high mean value (y-offset), it is
better to subtract this mean value from the data sets before correlation, as the mean value would influence the result more than the actual
signal. In fact, it would no longer be the cross correlation function but the cross covariance function which is calculated.
The CCF implemented here is normalized to the product of the RMS values of the specified data sets, so that the created data set has no y-
unit. The RMS is the square root of the ACF function at the zero position.

Examples:

NDccf = CCF(NDref, NDtest)

Simplest application of CCF: data sets are shortened to the next power of two points, if necessary.

NDccf= CCF(NDref-Mean(NDref),NDtest-Mean(NDtest))

Simple application of CCF: data sets are shortened to the next power of two points, if necessary. To allow better comparison of data sets with a

imc FAMOS Func on Reference - 70 -

(c) 2024 imc Test & Measurement GmbH

high y-offset (mean value), the mean value is subtracted from both data sets before the CCF function is executed.

NDtest1 = Red2(NDtest)
NDref1 = RSamp(NDref, NDtest1)
NDccf = CCF(NDref1, NDtest1)
maxi = Max(NDccf)

It is to be checked whether a short reference signal (NwRef) can be found in a longer, slightly distorted data set NwTest. The longer data set is
truncated to a power of two using the Red2 function, so that no values are cut off. The shorter data set is sampled using the function RSamp so
that the sampling rates match exactly. These manipulated data sets are then correlated. If the maximum of the CCF is greater than 0.8, it can be
concluded that the test signal significantly resembles the reference signal.)

See also:
ACF, CorrCoeff, FFT, Red2

imc FAMOS Func on Reference - 71 -

(c) 2024 imc Test & Measurement GmbH

CFCFilter

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Calculation of a CFC-filters as per SAE J211/1.

Declaration:
CFCFilter (Signal, CFC_value, Filter start-up) -> Result

Parameter:

Signal Time-based data to be filtered

CFC_value CFC-value, e.g. 60, 180, 600, 1000.

Filter
start-up Handling of filter start-up transients:

0 : Polar symmetry around 1st value: The method suggested by SAE, of extending the signal in both directions with polar symmetry.
The symmetry center is the respective endpoint value. (Data transposed about end points)

1 : Polar symmetry around 0.0: The method suggested by SAE, of extending the signal in both directions with polar symmetry. The
symmetry pole is then the point 0.0.(Data transposed about zero magnitude)

2 : Constant 0.0: The signal is extrapolated beyond its margins with a value of zero.

3 : Axially symmetric across the end value: the signal is mirrored across an axis given by x = end value.

Result

Result Filtered waveform

Description:
The CFC-filter is a digital, non-causal filter. this filter is applied to the time-based signal. The filter has a smoothing effect, but attempts to avoid
displacing the edges in time.

Algorithm as per the standard SAE J211/1, March 1995.

On the basis of the CFC-value, a low-pass filter with the following cutoff frequency is formed:

fg = 2.0775 * CFC_Value

The filter's cutoff frequency must be below half of the sampling frequency in order for the filter to be calculated.

The filter only begins to work properly (have a truly smoothing effect) once the CFC-value is well below 1/8 of the sampling frequency, and
preferably far lower.

Examples:

Smoother = CFCFilter (Signal, 600, 0)

A signal is smoothed with a CFC-value of 600. The transient effect as per SAE is used.

See also:
FilterAnalog, FiltLP, dFilt, Smo

imc FAMOS Func on Reference - 72 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

CharToSv

Returns the ASCII code from first character in a text.

Declaration:
CharToSv (TxText) -> SvCode

Parameter:

TxText The text whose first character's ASCII-code is to be determined

SvCode

SvCode ASCII-code of the character

Description:
A text is specified as the parameter. The ASCII-code of the text's first character is determined and returned.

The ASCII-codes permitted are 1..255.
For an empty text, a 0 is returned.
For example, tabulator character's code = 9, carriage return = 13, line feed = 10.
Not all ASCII codes can be displayed in Windows. Above all be sure that ANSI character set is used. ASCII tables made for the DOS
environment display the characters in the OEM character set.

Examples:
The ASCII codes for a lower-case and an upper-case letter are determined:

aLower = CharToSv("a")
aUpper = CharToSv("A")

See also:
SvToChar, TtoSv, TReplace, TConv

imc FAMOS Func on Reference - 73 -

(c) 2024 imc Test & Measurement GmbH

Chrct

Correction by characteristic curve

Declaration:
Chrct (Data, CharacteristicData) -> Corrected

Parameter:

Data Waveform with raw data to be corrected using characteristic curve Allowed data types: [ND],[XY]

CharacteristicData Characteristic data set Allowed data types: [ND],[XY]

Corrected

Corrected Corrected data set

Description:
This function can be used for correcting the data values in a data set with a characteristic (e.g. from a sensor). If a raw data value lies between two
characteristic values, linear interpolation is performed.

The characteristic curve data set may contain a maximum of 8388608 values.
If the characteristic curve data set is of the type XY, the X-track must increase monotonically.
The correction data set may be structured (events/segments).
Because linear interpolation is performed between the two characteristic values, approximation errors should be reduced by using
sufficiently large characteristic data sets, especially for non-linear characteristics.

Examples:
A data set [sensor_data] is corrected according to a characteristic curve data set.

sensor_corr = Chrct(sensor_data, characteristic)

See also:
LFit, eFit, MatrixGet

imc FAMOS Func on Reference - 74 -

(c) 2024 imc Test & Measurement GmbH

Clip

Imposes a boundary on the Y-value range to a specified band.

Declaration:
Clip (Data, SvTop, SvLow) -> Result

Parameter:

Data Data set to be clipped; allowed types: [ND],[XY].

SvTop Upper boundary

SvLow Lower boundary

Result

Result Clipped data set. Y-value range lies between [SvBottom] and [SvTop]

Description:
This function clips all Y-values in the data set between down to the value range specified by the second and third parameters. Any values which
exceed these thresholds are set to the respective limit value. The upper limit is always the greater value of the second and third parameter, so
when calling the function it isn't necessary to ensure the matching of parameter to respective limit.

The first parameter may be structured (events/segments).
The units of the single values should match those of the data set, but are not checked, which makes calling the function particularly
convenient when numerical values are used instead of variables.
Band-limiting in the sense applicable to frequencies is not performed.

Examples:
Data are limited to a range between positive and negative supply voltage to simulate the saturation effect:

NDsaturated = Clip(NDdata, Uplus, Uminus)

See also:
Cut, STri, Scale

imc FAMOS Func on Reference - 75 -

(c) 2024 imc Test & Measurement GmbH

CLIPBOARD

Copies curve window to the Windows Clipboard
This command is obsolete; instead of it, the more powerful function CwAction("Clipboard.Copy") should be used.

Declaration:
CLIPBOARD VariableName

Parameter:

VariableName Variable whose curve graph is to be copied to the Windows Clipboard.

Description
With this command, a curve graph is copied to the Clipboard. From there, it can be pasted into other Windows applications (DTP, text processing,
graphics program).

Examples:

CLIPBOARD slope

The curve-graph of the variable "slope" is copied to the Clipboard. If the data set wasn't yet displayed, then it will first be displayed in accordance
with the valid presettings, then copied and the curve window subsequently deleted,

See also:
CwAction

imc FAMOS Func on Reference - 76 -

(c) 2024 imc Test & Measurement GmbH

ClsLvlCr

Available in: Enterprise Edition and above (ClassCounting-Kit)

Classification by level crossing counting

Declaration:
ClsLvlCr (Channel, MaxValue, MinValue, Number of bins, Reference, Hysteresis, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Reference Reference level

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

2 : automatic reference level

3 : open-ended outer bins, automatic reference level

Result

Result Distribution

Description:
Level-crossing procedure as per DIN 45667.

In the level-crossing-counting method, the tally increases in classes whose upper levels are at or above the reference line whenever the signal
crosses the upper level from below.

The tally increases in classes whose upper levels are below the reference line when the signal crosses the upper level from above.

Examples:

Distribution = ClsLvlCr(Data, 3, -3, 12, 0, 0.25, 1)

See also:
ClsTimeAtLevel

imc FAMOS Func on Reference - 77 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsMaxSt

Available in: Enterprise Edition and above (ClassCounting-Kit)

Classification by the Maximum value storage

Declaration:
ClsMaxSt (Channel, MaxValue, MinValue, Number of bins, Distance between samples, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Distance between samples

Options

0 : no options

1 : open-ended outer bins

Result

Result Distribution

Description:
Class-counting of measured data by the maximum-value-storage method as per DIN 45667.

Measured data are classed according to the maximum-value-storage method, which is a variation of the sampling method.

The largest sample value occurring within a given time interval is found and tallied in a bin.

In the Class-counting Kit, the maximum value is the highest valued sample among the number of samples given by the parameter SvDistance
(sampling distance).

Examples:

Distribution = ClsMaxSt(Data, 12, 0, 12, 5, 1)

See also:
ClsTimeAtLevel

imc FAMOS Func on Reference - 78 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOff2ChannelHistogram

Available in: Enterprise Edition and above (ClassCounting-Kit)

Calculation of the mutual density, 2D histogram.

Declaration:
ClsOff2ChannelHistogram (Channel1, Channel2, Min1, Max1, Classes1, Min2, Max2, Classes2, Options) -> Result

Parameter:

Channel1 The first input channel. Its classes are plotted along the matrix' x-axis, in other words, its classes are arrayed in a column.

Channel2 The second input channel. Its classes are plotted along the matrix' z-axis, in other words, its classes are arrayed in a row.

Min1 Minimum of range of 1st channel

Max1 Maximum of range of 1st channel

Classes1 Number of bins for 1st channel

Min2 Minimum of range of 2nd channel

Max2 Maximum of range of 2nd channel

Classes2 Number of bins for 2nd channel

Options

0 : Closed outer bins, axes labelled by class

1 : Open-ended outer bins, axes labelled by class

2 : Closed outer bins, use physical units

3 : Open-ended outer bins, use physical units

Result

Result

Description:
The values in Channel1 and Channel2 are allotted to classes defined by the specified number of classes and the limits of the input range.

Each matrix cell represents a combination of a Channel1 class and a Channel2 class, and contains a tally of such combinations which occur.

For each pairing of one measured value from Channel1 and one from Channel2, the tally in a matrix' cell is raised by 1.

The outer bins (classes) can be open-ended or closed.

In the case of open-ended outer bins, the values outside of the range Min..Max are included in the outer bins.

If the outer bins are closed, values outside of the range Min..Max are not counted.

The labelling of the axes (x-axis and z-axis) can either refer to classes (Class 0, Class 1, Class 2, ...) or to the input channels' physical units (e.g., -0.1
Nm .. +0.1 Nm).

Min1, Max1, Classes1: The first channel's input range. The bins (classes) extend from Min1 (<Max1) .. Max1 and their number is given as the
parameter Classes1 (>=4).

Min2, Max2, Classes2: The second channel's input range. The bins (classes) extend from Min2 (<Max2) .. Max2 and their number is given as the
parameter Classes2 (>=4).

Examples:

Min1 = -0.1
Max1 = 0.1
Classes1 = 30
Min2 = -10.0
Max2 = 10.0
Classes2 = 40
Options = 3
MutualDensity = ClsOff2ChannelHistogram (a1, a2, Min1, Max1, Classes1, Min2, Max2, Classes2, Options)

Mutual density class-counting of two channels a1 and a2.

The first channel is divided into 30 classes extending through -0.1 .. 0.1, the second channel into 40 classes through -10.0 .. +10.0.

The outer bins are open-ended. The matrix axes are labelled in terms of physical units.

See also:
ClsTimeAtLevel, ClsOffRevolutionsHistogram, ClsOffRevolutionsMatrix

imc FAMOS Func on Reference - 79 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffFromRainflowGetLevelCrossing

Available in: Enterprise Edition and above (ClassCounting-Kit)

level-crossing-count from Rainflow-matrix

Declaration:
ClsOffFromRainflowGetLevelCrossing (ClsHandle, Reference) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Reference signal amplitude which is to serve as the reference line (zero-line).

Result

Result Distribution

Description:
A level-crossing-count is determined from the current Rainflow-matrix and the current residue.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix)
ClsOffRainflowFeedResidue (ClsHandle, Residue, 1.0)
_Reference = 0.0 ; reference level used for various DIN-based procedures
DurchgangOff = ClsOffFromRainflowGetLevelCrossing(ClsHandle, _Bezug)

The Rainflow-analysis is first initalised.

An already existing matrix, togther with its residue, is fed in.

The DIN-based procedure is performed on the basis of these data.

See also:
ClsOffRainflowInit1, ClsLvlCr, ClsOffFromRainflowGetRangePair

imc FAMOS Func on Reference - 80 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffFromRainflowGetMinMaxPeak

Available in: Enterprise Edition and above (ClassCounting-Kit)

Peak-count (Method 3) from Rainflow-matrix

Declaration:
ClsOffFromRainflowGetMinMaxPeak (ClsHandle, Min_Or_Max) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Min_Or_Max What shall be counted?

0 : All minima are class-counted.

1 : All maxima are class-counted.

Result

Result Distribution

Description:
A peak-count (Method 3) is determined from the current Rainflow-matrix and the current residue.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix)
ClsOffRainflowFeedResidue (ClsHandle, Residue, 1.0)
Peak3PosOff = ClsOffFromRainflowGetMinMaxPeak(ClsHandle, 1)
Peak3NegOff = ClsOffFromRainflowGetMinMaxPeak(ClsHandle, 0)

The Rainflow-analysis is first initalised.

An already existing matrix, togther with its residue, is fed in.

The DIN-based procedure is performed on the basis of these data.

The results for the minima and for the maxima are determined separately.

See also:
ClsOffRainflowInit1, ClsPeak3, ClsOffFromRainflowGetZeroCrossingPeak, ClsOffFromRainflowGetLevelCrossing

imc FAMOS Func on Reference - 81 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffFromRainflowGetPeak

Available in: Enterprise Edition and above (ClassCounting-Kit)

Peak-count (Method 2) from Rainflow-matrix

Declaration:
ClsOffFromRainflowGetPeak (ClsHandle, Reference) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Reference signal amplitude which is to serve as the reference line (zero-line).

Result

Result Distribution

Description:
A peak-count (Method 2) is determined from the current Rainflow-matrix and the current residue.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix)
ClsOffRainflowFeedResidue (ClsHandle, Residue, 1.0)
_Reference = 0.0 ; reference level used for various DIN-based procedures
Peak2Off = ClsOffFromRainflowGetPeak(ClsHandle, _Reference)

The Rainflow-analysis is first initalised.

An already existing matrix, togther with its residue, is fed in.

The DIN-based procedure is performed on the basis of these data.

See also:
ClsOffRainflowInit1, ClsPeak2, ClsOffFromRainflowGetZeroCrossingPeak, ClsOffFromRainflowGetLevelCrossing

imc FAMOS Func on Reference - 82 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffFromRainflowGetRangePair

Available in: Enterprise Edition and above (ClassCounting-Kit)

Range-pair-count from Rainflow-matrix

Declaration:
ClsOffFromRainflowGetRangePair (ClsHandle) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Result

Result Distribution

Description:
A range-pair-count is determined from the current Rainflow-matrix and the current residue.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix)
ClsOffRainflowFeedResidue (ClsHandle, Residue, 1.0)
RangePairOff = ClsOffFromRainflowGetRangePair(ClsHandle)

The Rainflow-analysis is first initalised.

An already existing matrix, togther with its residue, is fed in.

The DIN-based procedure is performed on the basis of these data.

See also:
ClsOffRainflowInit1, ClsRngPr, ClsOffFromRainflowGetLevelCrossing

imc FAMOS Func on Reference - 83 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffFromRainflowGetReconstruction

Available in: Enterprise Edition and above (ClassCounting-Kit)

Reconstruction of time-based signal from Rainflow-matrix

Declaration:
ClsOffFromRainflowGetReconstruction (ClsHandle, EdgeValue, PosMin, PosMax, Stretch, SV_1, SV_2, SV_3) ->
Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

EdgeValue
This is the value at the beginning and at the end of the signal. If a number >= 1e30 is specified, then no supplementary value will
be added. Caution: adding supplementary values can cause the class-count to be changed significantly, since under some
circumstances new extrema can result.

PosMin

the relative location of a relative minimum between the bin (class) limits. A value between 0.0 and 1.0. For instance these values:
0.0 the local minimum is positioned at the lower limit of the bin. 1.0 the local minimum is positioned at the upper limit. 0.5 in the
exact center of the bin. When in doubt, set to 0.5. Values near 0.0 and 1.0 are risky, because the values might be counted in an
adjacient bin in the process of any subsequent class-count. For a minimum, the value could well be set at 0.1. This makes the
ranges somewhat larger. If a small value for the hysteresis opens the possibility of the starting and the target classes of an half-
cycle being the same, then PosMax should be set as > PosMin.

PosMax as PosMin, but for a relative maximum. When in doubt, set to 0.5. The value 0.9 can also be used, in order to differentiate from a
minimum located in the same class.

Stretch
a local extremum in the result waveform is lengthened by this many data points. No lengthening for the setting 0. In that case, an
extremum is one sample in size. When in doubt, set to 1. If a signal reversal (extremum) is only of short duration in the signal, then
the procedure might miss it. By lengthening the reversal this is avoided. 0 <= ExStretch <= 100

SV_1 Reserved. = 0

SV_2 Reserved. = 0

SV_3 Reserved. = 0

Result

Result Reconstruction

Description:
A time-based signal which would represent similar stresses on the examined system is reconstructed from the current Rainflow-matrix and the
current residue.

Class-counting the reconstructed signal with an hysteresis value of 0 would return the identical matrix and residue.

The signal course in time can deviate.

The function only produces correct results if the matrix and the residue are derived from the same class-count. If one of the two was unilaterally
changed, the result will also be undefined.

The exact amount of cycles recorded in the matrix will be reconstructed. The amount can be too large to fit in a result-waveform.

In that case, the values in the matrix should be reduced by dividing them by a fixed factor > 1.

The residue should be available separately rather than already being tallied into the matrix.

Under certain circumstances, the residue of the result will differ from the original one.

In some cases, the edge value can cause extra ranges to be identified and counted.

This is because the linkup with the edge value can require an additional extremum in order that adjoining extrema are recognized as such.

An attempt is made to preserve the orientation of ranges. I.e., a range extending from Bin (Class) 5 to Bin 7 is different from one which goes from
Bin 7 to Bin 5. However, this is not always possible to accomplish, especially if both directions occur.

Reconstruction is returned as the reconstructed waveform. The sampling rate and units must be set subsequently.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix)
ClsOffRainflowFeedResidue (ClsHandle, Residue, 1.0)
_PosMin = 0.2 ; 0 .. 1, standard 0.5
_PosMax = 0.8 ; 0 .. 1, standard 0.5
_Stretch = 0
_EdgeVal = 1e30 ; 1e30 if not desired. Otherwise, the value of EdgeVal

imc FAMOS Func on Reference - 84 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

Reconstruction = ClsOffFromRainflowGetReconstruction (ClsHandle, _EdgeVal, _PosMin, _PosMax, _Stretch, 0, 0, 0)
yUnit Reconstruction Nm
xdelta Reconstruction 0.001

A Rainflow analysis performed earlier has produced a Rainflow-matrix and residue.

Both are entered into the reconstructing function.

A compact, reconstructed time-based waveform is returned.

See also:
ClsOffRainflowInit1

imc FAMOS Func on Reference - 85 -

(c) 2024 imc Test & Measurement GmbH

ClsOffFromRainflowGetSpans

Available in: Enterprise Edition and above (ClassCounting-Kit)

Number of occurences of spans from the Rainflow matrix. For each class (level of span) the total number of cycles will be determined.

Declaration:
ClsOffFromRainflowGetSpans (ClsHandle) -> Span count

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Span count

Span count Span count

Description:
The function determines for each span (amplitude) the total number of cycles. The information is extracted from the Rainflow matrix.

A vector is constructed from the Rainflow matrix.

With Amplitude-Mean counting, all cycles that have been counted for a certain amplitude are added together. The information on the mean
value is lost. The x-axis is scaled as amplitudes.

With Span-Mean counting, all cycles that have been counted for a certain span are added up. The information on the mean value is lost. The x-
axis is scaled as spans.

With start- and target class counting, the span is the difference between start and target class. For each span, all cycles from the matrix are added
up. The information on the slope is lost. The x-axis is scaled as spans.

The number of cycles actually measured is determined from the Rainflow-matrix. The residue is not taken into account. If you wish it to be taken
into account, it must first be included in the matrix count.

If classification by physical units is selected with ClsOffRainflowInit1 (), then the x-axis will be scaled in physical units. Otherwise in classes.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1)
ClsOffRainflowAddResidue (ClsHandle, 1)
Spans = ClsOffFromRainflowGetSpans (ClsHandle)

The Rainflow-analysis is first initalised.

A Rainflow counting will be performed. The number of spans for each class shall be determined.

See also:
ClsOffRainflowInit1, ClsOffRainflowSetMatrix, ClsOffRainflowFeedSamples

imc FAMOS Func on Reference - 86 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffFromRainflowGetZeroCrossingPeak

Available in: Enterprise Edition and above (ClassCounting-Kit)

Zero-crossing-peak-count from Rainflow-matrix

Declaration:
ClsOffFromRainflowGetZeroCrossingPeak (ClsHandle, Reference) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Reference signal amplitude which is to serve as the reference line (zero-line).

Result

Result Distribution

Description:
A zero-crossing-peak-count is determined from the current Rainflow-matrix and the current residue.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix)
ClsOffRainflowFeedResidue (ClsHandle, Residue, 1.0)
_Reference = 0.0 ; reference level used for various DIN-based procedures
Peak1Off = ClsOffFromRainflowGetZeroCrossingPeak(ClsHandle, _Reference)

The Rainflow-analysis is first initalised.

An already existing matrix, togther with its residue, is fed in.

The DIN-based procedure is performed on the basis of these data.

See also:
ClsOffRainflowInit1, ClsPeak1, ClsOffFromRainflowGetPeak, ClsOffFromRainflowGetLevelCrossing

imc FAMOS Func on Reference - 87 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffMarkov

Available in: Enterprise Edition and above (ClassCounting-Kit)

Transition counting; calculation of the Markov matrix

Declaration:
ClsOffMarkov (Input data, Min, Max, Classes, Hysteresis, UnitOption) -> Result

Parameter:

Input data Data set of input data, from which the Markov-matrix is calculated

Min Range minimum

Max Range maximum

Classes Bin count

Hysteresis Hysteresis for suppressing small oscillations; stated in physical units

UnitOption

0 : axes labelled by class

1 : use physical units

2 : Axes labelled by class, small spans within one class are counted.

Result

Result Markov matrix

Description:
The transition from a start class to a target class is calculated for each span between two neighboring extreme values. The extreme values are
assigned to classes. All classes have the same size. Their width is determined by the range (Min, Max) and the bin count.

An alternative name for the Markov matrix is transition matrix.

The result is a segmented waveform representing an N * N matrix, where N is the number of classes.

The segments of the result represent the columns of the matrix. The first segment corresponds to the first column.

To each column, a start class is assigned; to each row a target class. E.g. the first column (first segment) contains all transitions from the first start
class to any target class.

The x-coordinate of the segmented waveform represents the target class. The z-coordinate represents the start class.

Rising spans are counted into the lower triangular matrix. For rising spans the row index is greater than the column index. Falling spans are
counted into the upper triangular matrix.

The diagonal of the matrix always contains only zeroes with UnitOption =1 or =2.

If extrema are located outside of the range, they will be limited to the bounding values. This is equivalent to open-ended outer bins.

The hysteresis is specified in physical units of the input data. A hysteresis of about one class width makes sense.

Examples:

MarkovMatrix = ClsOffMarkov (Data, 0.0, 1000.0, 100, 10.0, 1)

The range from 0.0 to 1000.0 is divided into 100 classes. Each has a width of 10.0. A hysteresis of 10.0 is used which equals 100% of the class width.

These rising spans have been counted: 4 from class 1 to 2, 5 from 1 to 3 and 2 from 2 to 3. Furthermore, these falling spans have been counted: 6
from 2 to 1, 3 from 3 to 1 and 1 from 3 to 2:

Input matrix:

0 6 3

4 0 1

5 2 0

Segment 1 = Column 1: 0 4 5

Segment 2 = Column 2: 6 0 2

Segment 3 = Column 3: 3 1 0

E.g.. MarkovMatrix[1,3] = 5. Thus 5 transitions from 1 to 3.

imc FAMOS Func on Reference - 88 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffMatrixSum1Triangle

Available in: Enterprise Edition and above (ClassCounting-Kit)

makes triangle matrix

Declaration:
ClsOffMatrixSum1Triangle (Matrix, Uo) -> Result

Parameter:

Matrix Matrix, e.g.. Rainflow matrix

Uo Lower or upper triangle matrix

0 : The upper triangle matrix (above the main diagonal) is filled. Only the first cell of the first column (1st segment of the resulting
waveform) is filled. The last column is completely filled.

1 : the lower triangle matrix (below the main diagonal) is filled. The matrix' first coumn (1st segment of the resulting waveform) is then
complete. The last column has only its last cell filled.

Result

Result TriangleMatrix

Description:
A triangle matrix is produced by taking a square matrix, subtracting the value in each of its cells on one side of the main diagonal (thus leaving
zero in those cells) and adding each such value to the value in the corresponding cell on the other side.

This function is mainly used on Rainflow matrices, in which the columns and rows represent the starting-class and the target-class, respectively.
After the function has been executed, the direction of the signal range is no longer recognizable.

Algorithm:

For all i > k

x[i,k] := x[i,k] + x[k,i]

x[k,i] := 0

This function can only be applied to square matrices.

Examples:

RainflowTriangle = ClsOffMatrixSum1Triangle (RainflowMatrix, 1)

All cycles are tallied into the lower triangle.

The diagonal remains unchanged.

Input matrix:

2 2 2

4 1 6

5 2 3

Segment1 = Column 1: 2 4 5

Segment2 = Column 2: 2 1 2

Segment3 = Column 3: 2 6 3

Output matrix:

2 0 0

6 1 0

7 8 3

Segment1 = Column 1: 2 6 7

Segment2 = Column 2: 0 1 8

Segment3 = Column 3: 0 0 3

See also:
ClsOffRainflowGetMatrix, MatrixSumLines

imc FAMOS Func on Reference - 89 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffMatrixSumLines

Available in: Enterprise Edition and above (ClassCounting-Kit)

Sum of the contents of a columns or rows
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and its predecessors. Please use instead the function
MatrixSumLines().

Declaration:
ClsOffMatrixSumLines (Matrix, Rows) -> Result

Parameter:

Matrix Matrix, e.g.. Rainflow matrix

Rows Sum of the contents of a columns or rows

0 : rows. Sum of the contents of a row. The resulting vector's first row contains the sum of all input segments' first elements.

1 : columns. Sum of the contents of a column, in other words, of one segment's elements.

Result

Result Sum

Description:
The function produces a vector consisting of the sums of either the matrix' rows or its columns.

The matrix does not need to be a square matrix.

Examples:

ColumnSum = ClsOffMatrixSumLines (Matrix, 1)

Input matrix:

2 1 0

4 1 1

5 2 0

Segment 1 = Column 1: 2 4 5

Segment 2 = Column 2: 1 1 2

Segment 3 = Column 3: 0 1 0

This vector is the result:

(11, 4, 1)

Each element is the sum of one matrix column's cells.

RowSum = ClsOffMatrixSumLines (Matrix, 0)

this returns (3, 6, 7).

See also:
MatrixSumLines

imc FAMOS Func on Reference - 90 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowAddResidue

Available in: Enterprise Edition and above (ClassCounting-Kit)

The current residue is tallied into the matrix and subsequently emptied.

Declaration:
ClsOffRainflowAddResidue (ClsHandle, WeightingFactor)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

WeightingFactor 0... 1: When in doubt, set to 1. The function will not increment the count in the matrix cells by 1, but rather by the factor
specified. This allows the residue to make a weakened impact on the class-count.

Description:
The residue is tallied into the matrix. However, each 'oscillation' of the 'signal' is weighted by the specified WeightingFactor.

The weighting factor will be used to increment the corresponding places in the matrix.

WeightingFactor = 0.0: the matrix remains unchanged

WeightingFactor = 1.0: worst case scenario. Every 'oscillation' is counted at full strength. The result of this is that uncompleted cycles will be
entered into the tally as if they had been completed.

WeightingFactor = 0.5: A compromise. The ranges in the residue are interpreted as half-cycles experienced by the physical system.

The WeightingFactor can be set arbitrarily, typicallly within the range 0...1.

In order to tally the residue into the matrix, it is fed into the matrix as if it were a time-plotted waveform.

To make sure that the complete residue is counted, it may be necessary to insert intermediary values into it.

A residue of length 1 is ignored.

Afterwards, the residue is emptied.

A discontinuity is inserted at the beginning and at the end.

With the ASTM E1049 option this function must be called! The residue is counted into the matrix using a weighting of 0.5. The option
"WeightingFactor" is ignored and can be set to 0.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1)
ClsOffRainflowAddResidue (ClsHandle, 1)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)

A Rainflow-count is performed on the waveform 'data_chan1'.

After all range-pairs have been tallied into the matrix, a residue is left. The residue is not to be stated separately, rather it is to be included in the
matrix.

So some of the matrix cells are incremented.

Afterwards, the residue is empty and its data no longer available.

See also:
ClsOffRainflowInit1, ClsOffRainflowFeedResidue, ClsOffRainflowGetResidue, ClsOffRainflowFeedMatrix

imc FAMOS Func on Reference - 91 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowClearMatrix

Available in: Enterprise Edition and above (ClassCounting-Kit)

The current matrix is set to zero.

Declaration:
ClsOffRainflowClearMatrix (ClsHandle)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Description:
All previously counted values are deleted. The current residue remains unchanged.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
 ... ; additional operations
ClsOffRainflowClearMatrix (ClsHandle)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix2)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)

The current matrix is emptied using *ClearMatrix(). Afterwards, another matrix is added to it using *FeedMatrix().

See also:
ClsOffRainflowInit1, ClsOffRainflowSetMatrix, ClsOffRainflowClearResidue

imc FAMOS Func on Reference - 92 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowClearResidue

Available in: Enterprise Edition and above (ClassCounting-Kit)

The current residue is emptied.

Declaration:
ClsOffRainflowClearResidue (ClsHandle)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Description:
Rather than being tallied into the matrix, it's contents are deleted and lost.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1)
ClsOffRainflowClearResidue (ClsHandle)
...

The measured values of data_chan1 are tallied into a matrix.

The resulting residue is then deleted.

Afterwards, other operations are performed to which the residue was not intended to contribute.

See also:
ClsOffRainflowInit1, ClsOffRainflowGetResidue, ClsOffRainflowFeedResidue, ClsOffRainflowAddResidue, ClsOffRainflowClearMatrix

imc FAMOS Func on Reference - 93 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowFeedDiscontinuity

Available in: Enterprise Edition and above (ClassCounting-Kit)

A discontinuity is inserted.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and its predecessors.

Declaration:
ClsOffRainflowFeedDiscontinuity (ClsHandle)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Description:
Measured values fed in subsequently are regarded as data from a new measurement which is not to be directly appended to the other data sets.

See also:
ClsOffRainflowFeedSamples

imc FAMOS Func on Reference - 94 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowFeedMatrix

Available in: Enterprise Edition and above (ClassCounting-Kit)

The current matrix' count is increased by the values of the paramter Matrix. The current residue remains unchanged.

Declaration:
ClsOffRainflowFeedMatrix (ClsHandle, Matrix)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Matrix The added matrix must have the same dimensions as the internal, current matrix.

Description:
The internal matrix is incremented value by value.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix1)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix2)
ClsOffRainflowFeedResidue (ClsHandle, Residue2, 1.0)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)
Residue = ClsOffRainflowGetResidue (ClsHandle)

Various class-counting results are already available for a certain channel. The Rainflow-matrix and residue of the old values is always available.

The matrices and the residues are all fed to the function. Everything is counted together.

Where there are residues, they are also fed in. In this case, there was only a residue for the 2nd measurement.

The total mechanical stress is then obtained.

See also:
ClsOffRainflowInit1, ClsOffRainflowFeedResidue, ClsOffRainflowSetMatrix

imc FAMOS Func on Reference - 95 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowFeedResidue

Available in: Enterprise Edition and above (ClassCounting-Kit)

A residue which was previously determined is entered into the current matrix. This alters both the current matrix and the current residue.

Declaration:
ClsOffRainflowFeedResidue (ClsHandle, Residue, WeightingFactor)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Residue the waveform of the residue

WeightingFactor 0... 1: When in doubt, set to 1. The function will not increment the count in the matrix cells by 1, but rather by the factor
specified. This allows the residue to make a weakened impact on the class-count.

Description:
Note: The hysteresis is ignored if "_Precise" < 6. The y-scaling of the residue is interpreted according to the value of UnitUse in the function
ClsOffRainflowInit1().

The residue including any necessary artificial intermediate values (applicable if "Precise" < 5) is fed to the function. If the residue internally
available is empty, no intermediate values are inserted.

If the residue is expressed in terms of physical units, class-midpoints should be used. In fact, where the residue takes physical units, the bins
shift position downward by 1/1000 of a class width if "_Precise" < 5.

The residue must be valid, i.e., its values must all lie within the permitted range, neighboring values must be located in different classes. Invalid
residues will produce unexpected results! A residue of length 1 is ignored, if "_Precise" < 6.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix1)
ClsOffRainflowFeedResidue (ClsHandle, Residue1, 1.0)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix2)
ClsOffRainflowFeedResidue (ClsHandle, Residue2, 1.0)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)
Residue = ClsOffRainflowGetResidue (ClsHandle)

Various class-counting results are already available for a certain channel. The Rainflow-matrix and residue of the old values is always available.
The matrices and the residues are all fed to the function. Everything is counted together. The total mechanical stress is then obtained.

See also:
ClsOffRainflowInit1, ClsOffRainflowFeedMatrix, ClsOffRainflowGetResidue, ClsOffRainflowFeedSamples

imc FAMOS Func on Reference - 96 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowFeedSamples

Available in: Enterprise Edition and above (ClassCounting-Kit)

New measured data are tallied into the matrix. The matrix and the residue are updated accordingly.

Declaration:
ClsOffRainflowFeedSamples (ClsHandle, Samples)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Samples one or more new measurement values; load vs. time; load spectrum

Description:
It is especially effective to first join multiple measurement values to a single waveform in order to apply this function to them.

The function ClsOffTM() can be used to improve precision.

The new measurement values are interpreted as if they are appended directly onto the most recent value. This ensures that extrema located at
the transition point are detected.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_test1)
ClsOffRainflowFeedSamples (ClsHandle, data_test2)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)
delete ClsHandle

A Rainflow-analysis is initialised and performed. The measurement files were separate, because each contained only the data collected in 1
hour. Each of the separate waveforms is appended and counted.

See also:
ClsOffRainflowInit1, ClsOffRainflowInit2, ClsOffRainflowInit3, ClsOffRainflowGetMatrix, ClsOffTM

imc FAMOS Func on Reference - 97 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowGetMatrix

Available in: Enterprise Edition and above (ClassCounting-Kit)

Returns the current matrix.

Declaration:
ClsOffRainflowGetMatrix (ClsHandle) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Result

Result Matrix

Description:

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1)
ClsOffRainflowAddResidue (ClsHandle, 1)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)

A Rainflow-count is conducted.

The resulting matrix is then collected.

Since no separate residue is called for here, the residue was first tallied into the current matrix.

See also:
ClsOffRainflowInit1, ClsOffRainflowSetMatrix, ClsOffRainflowGetResidue

imc FAMOS Func on Reference - 98 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowGetResidue

Available in: Enterprise Edition and above (ClassCounting-Kit)

Returns the current residue.

Declaration:
ClsOffRainflowGetResidue (ClsHandle) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Result

Result Residue

Description:
If the residue takes physical units, then bin (class)-midpoints are returned.

Otherwise, the residue is expressed in classes (0, 1, 2, ...).

The residue's x-axis has no significance. The values are simply arrayed along it.

Two adjacient residue values are denoted as a span (range).

With Precise = 4 the values of the residue are not rounded. They can have any values between the boundaries.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)
Residue = ClsOffRainflowGetResidue (ClsHandle)

A Rainflow-count is performed on the waveform 'data_chan1'.

The matrix and residue are determined.

The residue is not tallied into the matrix, instead it is stated separately.

The residue is expressed as a vector in which all remaining signal extrema are recorded. The ranges between the extrema can be read off directly
from a graphical representation.

See also:
ClsOffRainflowInit1, ClsOffRainflowGetResidue, ClsOffRainflowGetResidueMtx, ClsOffRainflowFeedResidue, ClsOffRainflowAddResidue

imc FAMOS Func on Reference - 99 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowGetResidueMtx

Available in: Enterprise Edition and above (ClassCounting-Kit)

The current residue is returned in matrix format.

Declaration:
ClsOffRainflowGetResidueMtx (ClsHandle) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Result

Result Matrix

Description:
The returned matrix is structured in the same manner as a class-count matrix.

In this case, however, the tallies in the matrix cells state the number of occurences in the residue of a particular range.

The value, then, is 0 if the corresponding range does not appear in the residue.

And the value is 1 if, it appears once.

'n' for 'n' times etc.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)
ResidueMtx = ClsOffRainflowGetResidueMtx (ClsHandle)

A Rainflow-count is performed on the waveform 'data_chan1'.

The matrix and residue are determined.

The residue is not tallied into the matrix, instead it is stated separately.

The residue is returned as a matrix which records the ranges it contains.

See also:
ClsOffRainflowInit1, ClsOffRainflowGetResidue, ClsOffRainflowFeedResidue, ClsOffRainflowAddResidue, ClsOffRainflowGetMatrix

imc FAMOS Func on Reference - 100 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowInit1

Available in: Enterprise Edition and above (ClassCounting-Kit)

Initialises a Rainflow-count. Always to be called prior to the Rainflow function.

Declaration:
ClsOffRainflowInit1 (Classes, UnitUse, UnitColumn, UnitRow, UnitCounter, Unit_Y_Residue, SV_0) -> Result

Parameter:

Classes the number of classes, e.g. 32 or 64. >= 4 and <= 1000

UnitUse This determines how the matrix and other results class widths and the residue values are scaled.

0 : scaling by classes (0, 1, ...)

1 : scaling by the physical units of the input data

UnitColumn This unit is marked along the x-direction of the matrix. It characterizes the elements arrayed along a column.

UnitRow This unit is marked along the z-direction of the matrix. It characterizes the elements arrayed along a row.

UnitCounter the unit for the matrix y-axis, which counts the number of oscillations.

Unit_Y_Residue The unit for the residue's y-axis. If other counting methods are derived from the Rainflow-matrix, this unit is used for the x-
axis.

SV_0 always set to 0

Result

Result The return value is used in all other ClsOffRainflow* functions and may not be changed. However, it can be changed by the
function itself.

Description:
All units can also be set as empty strings.

Examples:

_NumberClasses = 50
_TypeOfUnit = 1 ; 0 Classes, 1 physical unit
_UnitX = "Mean [Nm]"
_UnitZ = "Span [Nm]"
_UnitCount = "Count"
_UnitRes = "ResClasses"
ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitX, _UnitZ, _UnitCount, _UnitRes, 0)
_Min = -5
_Max = 5
_Hysteresis = (_Max - _Min) / _NumberClasses
_Axis = 1 ; 0 x is dest class or Amplitude, 1 x is start class or mean
_Type = 2 ; 0 start and target class, 1 amplitude and mean, 2 span and mean
_CalcOptions = 0 ; 0 base algorithm, 1 Clormann Seeger correction, 2 ASTM E1049, 3 HCM
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)
delete ClsHandle

A Rainflow analysis is initialized and performed.

See also:
ClsOffRainflowInit2, ClsOffRainflowInit3

imc FAMOS Func on Reference - 101 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowInit2

Available in: Enterprise Edition and above (ClassCounting-Kit)

Continued initialisation of a Rainflow-count. Always use immediately after ClsOffRainflowInit1 (). Sets the current matrix to zero and empties the
residue.

Declaration:
ClsOffRainflowInit2 (ClsHandle, Min, Max, Hysteresis, Axes, Type, OuterBins, Calculation)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Min Lower limit of input range

Max

Upper limit of the input range of the signal to be processed. This determines the matrix' input range. Max > Min. This range should
be made to cover the input signal's whole amplitude range, or even provide extra 'room'. Example: Min = -1Nm and Max = +1Nm,
with 32 classes, lead to very unwieldly lass widths, namely 2/32 Nm. If the class width is to take a handy value, then round off Min
and Max somewhat, e.g. +- 1.28 Nm or +- 1.6Nm.

Hysteresis hysteresis, scaled in physical units. Hysteresis value to be used for finding the extrema. Must be >= 0. The value of one class width
is recommended. Set to zero when in doubt.

Axes x-Axis use?

0 : the target class or amplitude is marked along the columns (x-direction). Thus, the x-axis can be designated as the amplitude or
target class. The index for an element within a column states which target class or amplitude is referred to. The mean or start class
decides which column is referred to. A column of the matrix is a segment.

1 : The mean or start class is marked along the columns (x-direction). The opposite case from '0'.

Type specifies significance of the x- and z-axes.

0 : start- and target class. This refers to the counting algorithm. The start class is the bin into which the first extreme value of the
signal is alloted, the target class is the bin for the second extreme value. The cases of a signal sweep from Bin 10 to Bin 16 and from
Bin 16 to Bin 10 are differentiated.

1 : amplitude and mean. The mean is the midpoint of an oscillation, i.e. (start class + target class) / 2. The amplitude is the absolute
value of (start class - target class)/ 2. Since there are equal amounts of mean-classes and amplitude-classes (square matrix), the
resolution of the amplitudes is twice as good. The amplitude is half of the value of (peak-to-peak).

2 : The mean is the midpoint of an oscillation, i.e. (start class + target class) / 2. The span is the absolute value of (start class - target
class).

OuterBins Treatment of outside values

0 : Closed. Before the extrema are found, the signal is truncated to the range Min..Max.

1 : Open: Before the extrema are found, the signal is truncated to the range Min..Max. Recommended

Calculation Algorithm

0 : standard-algorithm 4 points

1 : Clormann Seeger correction. Gives consideration to the zero-level dependencies. Counts transitions from x[1] -> x[2], if 1) on of
x[1] and x[2] is > 0 and one is < 0; 2) abs. value of (x[2]) <= abs. value of (x[1]); 3) abs. value of (x[1]) <= abs. value of (x[3]).

2 : Calculation according to ASTM E1049, reapproved 1990.

3 : RAINFLOW-HCM method. U.H. Clormann, T. Seeger; Stahlbau 3/1986

Description:
With the ASTM E1049 option, the sequence of numbers before step (6) will be treated as the residue. The function ClsOffRainflowAddResidue
must be called to get the matrix according to the standard!

With the ASTM E1049 option, the residue is counted into the matrix using a weighting of 0.5. The option "Precise" must be 5 or higher.

With RAINFLOW-HCM, the option "Precise" must be 5 or higher.

Examples:

_NumberClasses = 50
_TypeOfUnit = 1 ; 0 Classes, 1 physical unit
_UnitX = "Mean [Nm]"
_UnitZ = "Span [Nm]"
_UnitCount = "Count"
_UnitRes = "ResClasses"
ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitX, _UnitZ, _UnitCount, _UnitRes, 0)

imc FAMOS Func on Reference - 102 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

_Min = -5
_Max = 5
_Hysteresis = (_Max - _Min) / _NumberClasses
_Axis = 1 ; 0 x is dest class or Amplitude, 1 x is start class or mean
_Type = 2 ; 0 start and target class, 1 amplitude and mean, 2 span and mean
_CalcOptions = 0 ; 0 base algorithm, 1 Clormann Seeger correction, 2 ASTM E1049, 3 HCM
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1)
RainflowMatrix1 = ClsOffRainflowGetMatrix (ClsHandle)

ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
ClsOffRainflowFeedSamples (ClsHandle, data_chan2)
RainflowMatrix2 = ClsOffRainflowGetMatrix (ClsHandle)
delete ClsHandle

A Rainflow-analysis is initialised and performed. Subsequently, another channel is processed.

See also:
ClsOffRainflowInit1, ClsOffRainflowInit3

imc FAMOS Func on Reference - 103 -

(c) 2024 imc Test & Measurement GmbH

ClsOffRainflowInit3

Available in: Enterprise Edition and above (ClassCounting-Kit)

Continued initialisation of a Rainflow-count. Always use immediately after ClsOffRainflowInit2 ().

Declaration:
ClsOffRainflowInit3 (ClsHandle, IgnoreSmallSpans, Precise, CountStartEnd, SV_Null1, SV_Null2, SV_Null3)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

IgnoreSmallSpans specifies whether small spans which fit within one class are to be ignored

0 : Count the spans.

1 : Ignore: small spans are not counted.

Precise Precise calculation of the spans? Highest value recommended

0 : compatible: Extreme values are first related to classes. Next, in the calculation of amplitudes/mean values, the
amplitude or span is determined by subtraction, which is not very precise.

1 : Precise calculation of the spans and mean values and subsequent relating to classes.

2 : Precise calculation of the spans and mean values and subsequent allocation to classes. Additionally, more precise
removal from the residue.

3 : Precise calculation of the spans and mean values and subsequent allocation to classes. Additionally, more precise
removal from the residue even with residue fading away.

4 : Like Precise 3, but additionally precise (unrounded) residue, without rounding even with multiple calls of
ClsOffRainflowFeedSamples.

5 : Like Precise 4, but more precise

6 : Like Precise 5, but more precise at boundary values

CountStartEnd Count boundary time values?

0 : Boundary time values are not counted.

1 : The boundary time values are counted as extreme values. Recommended!

SV_Null1 0

SV_Null2 0

SV_Null3 0

Description:
Precise = 6 is recommended.

With the ASTM E1049 or HCM option, the parameter Precise must be set to 5 or higher.

Examples:

_IgnoreSmallSpans = 1 ; 1 ignore, 0 count
_Precise = 6
_CountStartEnd = 0 ; 1 start- and end values count as extreme values. 0 does not.
ClsOffRainflowInit3 (ClsHandle, _IgnoreSmallSpans, _Precise, _CountStartEnd, 0, 0, 0)

See also:
ClsOffRainflowInit1, ClsOffRainflowInit2, ClsOffRainflowFeedSamples

imc FAMOS Func on Reference - 104 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRainflowSetMatrix

Available in: Enterprise Edition and above (ClassCounting-Kit)

The current matrix is replaced by a new matrix.

Declaration:
ClsOffRainflowSetMatrix (ClsHandle, Matrix)

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

Matrix the new matrix. Must take the same dimensions as the internal, current matrix.

Description:
All tallied values in the old matrix will be lost.

The current residue remains unchanged.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
 ... ; additional operations
ClsOffRainflowSetMatrix (ClsHandle, Matrix1)
ClsOffRainflowFeedMatrix (ClsHandle, Matrix2)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)

Here, *SetMatrix() is used to set the current matrix. Then *FeedMatrix() is used to increase its cell values by the contents of another.

See also:
ClsOffRainflowInit1, ClsOffRainflowGetMatrix, ClsOffRainflowFeedMatrix

imc FAMOS Func on Reference - 105 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffRevolutionsHistogram

Available in: Enterprise Edition and above (ClassCounting-Kit)

The number of turns is counted in reference to a channel.

Declaration:
ClsOffRevolutionsHistogram (Channel, RPM, Min, Max, Classes, OuterBins, UnitOption) -> Result

Parameter:

Channel The input channel (e.g. plot of torque over time). This channel's values are allotted to bins (classes).

RPM The turns are calculated on the basis of this channel. The rpms's is given in rotations per min: "rpm".

Min Minimum of 1st channel

Max Maximum of 1st channel

Classes Number of bins for 1st channel

OuterBins

0 : closed outer bins

1 : open-ended outer bins

UnitOption

0 : axes labelled by class

1 : use physical units

Result

Result Histogram containg number of revolutions

Description:
The number of turns is derived from the revolutions signal.

Each measured value of a channel is allotted to one of the bins (classes), and the actual number entered into the bin is the number of turns
derived from the measured rpm's.

The classes themselves are defined by the specified number of classes and the limits of the input range, given by the range Min .. Max.

The rpm measurement is converted to an absolute value.

Subsequent to this, the turns are calculated.

A turn denotes a complete revolution of the turning axis.

If the axis turns at 6000 rpm, this corresponds to 100 rotations per second.

Within one sampling interval both channels' values are assumed as constant.

Min, Max, Classes: The first channel's input range. The bins (classes) extend from Min .. Max and their number is given as the parameter Classes
(>=4).

The outer bins (classes) can be open-ended or closed.

In the case of open-ended outer bins, the values outside of the range Min..Max are included in the outer bins.

If the outer bins are closed, values outside of the range Min..Max are not counted.

The labelling of the axes (x-axis and z-axis) can either refer to classes (Class 0, Class 1, Class 2, ...) or to the input channels' physical units (e.g., -0.1
Nm .. +0.1 Nm).

Examples:

MinTo = 0 ;Nm
MaxTo = 200 ; Nm
ClassesTo = 40
OpenEnd = 1 ; outer bins: 0 closed, 1 open
UnitOption = 1 ; 0 in classes, 1 in physical units
RevHistogram = ClsOffRevolutionsHistogram (Torque, RPMs, MinTo, MaxTo, ClassesTo, OpenEnd, UnitOption)

An rpm-curve 'RPMs' and a torque curve 'Torque' (in Nm) are the input channels for the count of wheel turns.

The range of torques is divided into 40 bins (classes) through the range 0Nm .. 200Nm.

Open-ended outer bins and the labelling of the resulting histogram in terms of physical units are specified.

See also:

imc FAMOS Func on Reference - 106 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsTimeAtLevel, ClsOff2ChannelHistogram, ClsOffRevolutionsMatrix

imc FAMOS Func on Reference - 107 -

(c) 2024 imc Test & Measurement GmbH

ClsOffRevolutionsMatrix

Available in: Enterprise Edition and above (ClassCounting-Kit)

The number of turns is determined on the basis of the input data from Channel and RPM and put into a matrix.

Declaration:
ClsOffRevolutionsMatrix (Channel, RPM, Min, Max, Classes, MinRPM, MaxRPM, ClassesRPM, Options) -> Result

Parameter:

Channel The input channel (e.g. plot of torque over time). This channel's values are allotted to bins (classes).

RPM The turns are calculated on the basis of this channel. The rpms's is given in rotations per min: "rpm". The rpm values are allotted to
bins.

Min Minimum of 1st channel

Max Maximum of 1st channel

Classes Number of bins for 1st channel

MinRPM Minimum of RPM

MaxRPM Maximum of RPM

ClassesRPM Classes for RPM

Options Options for outer bins, unit and orientation

0 : outer bins closed, axes labelled by class, rpm's in z-direction

1 : outer bins open, axes labelled by class, rpm's in z-direction

2 : outer bins closed, use physical units, rpm's in z-direction

3 : outer bins open, use physical units, rpm's in z-direction

4 : outer bins closed, axes labelled by class, rpm's in x-direction

5 : outer bins open, axes labelled by class, rpm's in x-direction

6 : outer bins closed, use physical units, rpm's in x-direction

7 : outer bins open, use physical units, rpm's in x-direction

Result

Result mutual density, 2D histogram

Description:
The number of turns is derived from the revolutions signal.

Each measured value of Channel is allotted to one of the bins (classes), and each measured value of RPM is allotted to a rpm-bin, where the actual
bin entry is the number of turns calculated from the measured rpm. The function returns a matrix as the result.

The rpm measurement is converted to an absolute value.

Subsequent to this, the turns are calculated.

A turn denotes a complete revolution of the turning axis.

If the axis turns at 6000 rpm, this corresponds to 100 rotations per second.

Within one sampling interval both channels' values are assumed as constant.

The outer bins (classes) can be open-ended or closed.

In the case of open-ended outer bins, the values outside of the range Min..Max are included in the outer bins.

If the outer bins are closed, values outside of the range Min..Max are not counted.

The labelling of the axes (x-axis and z-axis) can either refer to classes (Class 0, Class 1, Class 2, ...) or to the input channels' physical units (e.g., -0.1
Nm .. +0.1 Nm).

It is also possible to assign the channels to the desired coordinate in the resulting matrix.

For instance, if the rpm's are designated for the matrix z-axis, the classes of the input channel 'Channel' are plotted along the matrix x-axis.

A column of the matrix is equivalent to a segment of the waveform returned as the function's result.

Min, Max, Classes:The first channel's input range. The bins (classes) extend from Min (<Max) .. Max and their number is given as the parameter
Classes (>=4).

MinRPM, MaxRPM, ClassesRPM: The input range for the rpm-channel. The bins (classes) extend from MinRPM (<MaxRPM) .. MaxRPM and their
number is given as the parameter ClassesRPM (>=4).

imc FAMOS Func on Reference - 108 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

Examples:

MinTo = 0 ;Nm
MaxTo = 200 ; Nm
ClassesTo = 40
MinRPM = 0 ;rpm
MaxRPM = 6000 ; rpm
ClassesRPM = 30
Option = 3 ; outer bins open, use physical units, rpm's in z-direction
RevMatrix = ClsOffRevolutionsMatrix (Torque, RPMs, MinTo, MaxTo, ClassesTo, MinRPM, MaxRPM, ClassesRPM, Option)

An rpm-curve 'RPMs' and a torque curve 'Torque' (in Nm) are the input channels for the count of wheel turns.

The torque input range of 0 .. 200Nm is divided into 40 classes.

The rpm values are sorted in 30 classes in the range 0 .. 6000 rpm.

See also:
ClsTimeAtLevel, ClsOff2ChannelHistogram, ClsOffRevolutionsHistogram, ClsOffRevolutionsMatrix2

imc FAMOS Func on Reference - 109 -

(c) 2024 imc Test & Measurement GmbH

ClsOffRevolutionsMatrix2

Available in: Enterprise Edition and above (ClassCounting-Kit)

Determines the number of revolutions as a function of Channels 1 and 2.

Declaration:
ClsOffRevolutionsMatrix2 (Channel1, Channel2, RPM, MinChannel1, MaxChannel1, ClassesChannel1, MinChannel2,
MaxChannel2, ClassesChannel2) -> Result

Parameter:

Channel1 1st input channel (e.g. torque over time)

Channel2 2nd input channel (e.g. temperature over time).

RPM the revolutions are computed from this RPM channel's data.

MinChannel1 lower limit of the 1st channel's class range

MaxChannel1 upper limit of the 1st channel's class range

ClassesChannel1 number of bins (classes) for the 1st channel, >= 4

MinChannel2 lower limit of the 2nd channel's class range

MaxChannel2 upper limit of the 2nd channel's class range

ClassesChannel2 number of bins (classes) for the 2nd channel, >= 4

Result

Result RevolutionsMatrix

Description:
Determines the number of revolutions as a function of Channels 1 and 2.

The number of turns is derived from the revolutions signal.

Each of a channel's measurement values is assigned to one of the classes, and the actual entry in a class is the amount of revolutions derived from
the corresponding RPM-measurement.

This procedure produces a matrix.

The rpm measurement is converted to an absolute value.

Then the revolutions are computed.

A turn denotes a complete revolution of the turning axis.

If the axis turns at 6000 rpm, this corresponds to 100 rotations per second.

The RPM-value is always scaled in revolutions per minute: "revs/min" or "rpm".

Within one sampling interval both channels' values are assumed as constant.

The outer bins (classes) are closed, i.e., values lying outside of the range Min..Max are discarded, and don't affect the count.

The matrix is labeled both in the x- and z-direction in terms of the input channels' physical units.

The matrix's x-axis (column, segment) is scaled in terms of the physical quantity represented by the 1st channel.

The z-axis (row) is scaled in terms of the 2nd channel's quantity.

Examples:

Min1 = 0 ; Nm
Max1 = 200 ; Nm
Classes1 = 40
Min2 = 0 ; Nm
Max2 = 300 ; Nm
Classes2 = 60
RevMatrix = ClsOffRevolutionsMatrix2 (Torque1, Torque2, RPMs, Min1, Max1, Classes1, Min2, Max2, Classes2)

An rpm-signal RPMs (expressed in revolutions per minute) and 2 torque signals Torque1 and Torque2 (in Nm) serve as the input channels for a
count of revolutions.

The torque range extends through 0 .. 200Nm and is divided into 40 classes in the 1st channel and in the 2nd channel through 0 .. 300Nm in 60
classes.

See also:
ClsTimeAtLevel, ClsOff2ChannelHistogram, ClsOffRevolutionsHistogram, ClsOffRevolutionsMatrix

imc FAMOS Func on Reference - 110 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffTM

Available in: Enterprise Edition and above (ClassCounting-Kit)

Application of the imc TrueMax procedure.

Declaration:
ClsOffTM (Input) -> Result

Parameter:

Input Input data

Result

Result Filtered signal

Description:
If a signal is measured by sampling, it is not certain that any sample will coincide with the true reversals (extrema) in the physical signal.

This fact is especially noticeable if the signal frequency is high.

Maxima often are found (far) too low and minima too high.

Subjecting such distorted raw data to the Rainflow class-count then causes significant errors.

For band-limited signals (signals sampled with a correctly-adjusted anti-aliasing filter), the complete signal course can be reconstructed and the
true signal reversals thus determined.

The procedure gives a good approximation and improves the signal's course by (slightly) changing the local extreme values. The waveform which
results is only suitable for class-counting.

The time plot of the corrected signal can appear unnatural.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
ClsOffRainflowInit2 (ClsHandle, _Min, _Max, _Hysteresis, _Axis, _Type, 1, _CalcOptions)
ClsOffRainflowInit3 (ClsHandle, 1, 6, 1, 0, 0, 0)
data_chan1_TM = ClsOffTM (data_chan1)
ClsOffRainflowFeedSamples (ClsHandle, data_chan1_TM)
RainflowMatrix = ClsOffRainflowGetMatrix (ClsHandle)

The local extrema of a measurement are corrected befor the measurement is subjected to Rainflow-analysis.

This increases the accuracy of the class-count.

See also:
ClsOffRainflowInit1, ClsOffRainflowFeedSamples

imc FAMOS Func on Reference - 111 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsOffWoehlerSN

Available in: Enterprise Edition and above (ClassCounting-Kit)

Cumulative fatigue damage from the Rainflow-matrix. The Palmgren / Miner rule is used.

Declaration:
ClsOffWoehlerSN (ClsHandle, S-N diagram, class relation, Interpolation) -> Result

Parameter:

ClsHandle data returned by ClsOffRainflowInit1 ()

S-N diagram

Data set describing the S-N curves in the XY-format (stress over lifetime [cycles]). The Y-coordinate contains the nominal values
of (mechanical) stress. These values are ordered by decreasing value. The X-coordinate contains the values for the associated
lifetime, a number of values which is usually increasing, typically about: 10, 1000, 1000000, ...For X and Y only values > 0 are
allowed.

class relation How is the corresponding Y-coordinate of the S-N curve derived from the value range of a Rainflow-matrix class, from which in
turn the lifetime will be according to the S-N curve?

0 : Automatic: the assumption that all cycles in a class of the Rainflow-matrix are distributed equally over the entire extent of
the class.

1 : The maximum value (upper edge of a class) is assumed for all cycles of the class.

2 : The median (midpoint between a class's upper and lower limits) is assumed for all of the class's cycles.

Interpolation Which interpolation is to be used to connect the individual points of the S-N curve?

0 : Automatic. The S-N curve is plotted over a double logarithmic scale. With this scaling, the stated points of the line are
connected with straight lines. For metals.

1 : The S-N curve is plotted over a scale in which the lifetime scaling is logarithmic and the stress linear. In this scale, the stated
points on the line are connected with straight lines. For concrete.

Result

Result The result is the cumulative fatigue damage. The typical value range lies between 0 and 1, where 0 means no damage, and 1
means damage leading to breakage. Values above 1 are also possible.

Description:
The number of cycles actually measured is determined from the Rainflow-matrix. The residue is not taken into account. If you wish it to be taken
into account, it must first be included in the matrix count.

The Rainflow matrix must previously have been created with the functions ClsOffRainflowInit1() etc. In the process, such functions as
ClsOffRainflowFeedSamples () can be used, if there is a time history of stress, or functions such as ClsOffRainflowSetMatrix(), if there is already a
Rainflow-matrix available.

The Y-coordinate of the S-N curve is always expressed as a range. The range is the difference between the maximum value and the minimum
value of a vibration, in other words twice the amplitude. It does not matter whether the Rainflow count consisted of amplitudes, ranges or start-
target classes.

The Y-coordinate of the S-N curve must take the same unit as the time history of stress. If the Rainflow count was made with a stress expressed in
N/mm^2, then the S-N curve must also be expressed in N/mm^2.

The Y-coordinate of the S-N curve is typically given as a stress, force or torque. Please note that the S-N curve for a certain material is often
represented in a normalized form. Then this normalized curve needs to be adapted to the unit of the time history used for rainflow counting.

The S-N curve is often given by 2 points. The underlying equation is S = a * N ^ b, with S = stress, N= lifetime [cylces], a and b as constants. With
double-logarithmic scaling, this forms a straight line. Since the function is interpolated adequately, stating just these two points is sufficient.

The S-N curve should be defined over a sufficiently wide stress range, generally at least as wide as the classification range.

If the stress exceeds the largest value stated in the S-N curve (meaning the first Y-value), the lifetime assigned to the largest value is assumed.

If the stress falls below the smallest value stated in the S-N curve, an infinitely long lifetime is assumed.

Please note that the S-N curve only approximates a real workpiece. The Palmgren / Miner rule is also only an approximation technique which
ignores, for example, the mean values of the cycles and their order. Consequently, the accumulated damage calculated here is only an
approximation of the damage sustained by the workpiece.

A return value of 0.1, for instance, means that 10% of the workpiece's lifetime has elapsed.

Suppose that 10 cycles at a certain stress level have been counted into the rainflow, and that you can read from the S-N curve a lifetime of 10000
cylces for that stress level, then 0.1% of the liefetime has elapsed due to this stress.

Examples:

ClsHandle = ClsOffRainflowInit1 (_NumberClasses, _TypeOfUnit, _UnitRow, _UnitColumn, _UnitCount, _UnitRes, 0)
.... various others such as ClsOffRainflowFeedSamples() or ClsOffRainflowSetMatrix

imc FAMOS Func on Reference - 112 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

Y = join (2000, 20) ; stress
X = join (1e3, 1e8) ; lifetime [cycles]
SN = xyof (X, Y) ; S-N curve
Damage = ClsOffWoehlerSN (ClsHandle, SN, 0, 0)

The Rainflow analysis is first performed and then the Rainflow matrix calculated.

Then the S-N curve is created from 2 points for a steel workpiece and the damage is determined.

See also:
ClsOffRainflowInit1, ClsOffRainflowSetMatrix, ClsOffRainflowFeedSamples

imc FAMOS Func on Reference - 113 -

(c) 2024 imc Test & Measurement GmbH

ClsPeak1

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by zero-crossing (Peak-counting Procedure 1)

Declaration:
ClsPeak1 (Channel, MaxValue, MinValue, Number of bins, Reference, Hysteresis, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Reference Reference level

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

2 : automatic reference level

3 : open-ended outer bins, automatic reference level

Result

Result Distribution

Description:
Class-counting of measured data by the peak-counting Method 1 (Zero-crossing peak counting), as per DIN 45667.

This class-counting method tallies the most extreme value within each interval between two crossings of the signal over the reference line. The
extrema identified are tallied in bins which reflect their values.

Examples:

Distribution = ClsPeak1(Data, 15, 5, 20, 0, 0.5, 3)

See also:
ClsTimeAtLevel, ClsPeak2, ClsPeak3, ClsOffFromRainflowGetZeroCrossingPeak

imc FAMOS Func on Reference - 114 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsPeak2

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by peak-counting Procedure 2

Declaration:
ClsPeak2 (Channel, MaxValue, MinValue, Number of bins, Reference, Hysteresis, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Reference Reference level

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

2 : automatic reference level

3 : open-ended outer bins, automatic reference level

Result

Result Distribution

Description:
Class-counting of measured data by the peak-counting Method 2, as per DIN 45667.

This method tallies all local maxima lying above the reference line and all local minima lying below the reference line in bins.

Examples:

Distribution = ClsPeak2(Data, 28, 12, 32, 0, 0.5, 1)

See also:
ClsTimeAtLevel, ClsPeak1, ClsPeak3, ClsOffFromRainflowGetPeak

imc FAMOS Func on Reference - 115 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsPeak3

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by peak-counting Procedure 3

Declaration:
ClsPeak3 (Channel, MaxValue, MinValue, Number of bins, Hysteresis, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

2 : negative peaks

3 : open-ended outer bins, negative peaks

Result

Result Distribution

Description:
Class-counting of measured data by the peak-counting Method 3, as per DIN 45667.

Peak-counting Method 3 entails tallying all local maxima, and separately, all local minima in bins.

The results of this method, then are organized in two distributions.

This function in the Class-counting Kit, however, produces a distribution either for only the minima or only the maxima. As the default, the
results are based on the maxima.

Examples:

Distribution = ClsPeak3(Data, 0.6, 0.1, 25, 0.02, 3)

See also:
ClsTimeAtLevel, ClsPeak1, ClsPeak2, ClsOffFromRainflowGetMinMaxPeak

imc FAMOS Func on Reference - 116 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsPkSmp

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by peak value/sampling procedure

Declaration:
ClsPkSmp (DataSet1, DataSet2, MaxValue, MinValue, Number of bins, Hysteresis, Options) -> Result

Parameter:

DataSet1 1st set of data to be classified

DataSet2 2nd set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

Result

Result Distribution

Description:
Class-counting of measured data by the Peak /Sample method

Waveform 1 is processed according to peak-counting Method 3.

All local extrema are given regard.

Wherever a local extremum is found in Waveform 1, the sample in Waveform 2 at the corresponding location is tallied in the appropriate bin.

If, for instance, the fifth value in Waveform 1 is a local minimum, its value is classed and so is the fifth value of Waveform 2.

In the second stage, the reverse procedure is carried out; the local extrema of Waveform 2 are tallied in bins, as well as the corresponding data
points of Waveform 1.

The results of the class-counting method are arranged in a correlation matrix; the matrix columns represent the bins of Waveform 1 and the rows
the bins of Waveform 2. A tally is made to that cell of the matrix where one coordinate corresponds to the value of a local extremum in one
waveform, and the other coordinate corresponds to the value of the contemporaneous data point in the other waveform.

Examples:

Distribution = ClsPkSmp(Data, 10, -10, 40, 0.5, 1)

See also:
ClsTimeAtLevel, ClsPeak3, ClsSmSmp

imc FAMOS Func on Reference - 117 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsQuantile

Available in: Enterprise Edition and above (ClassCounting-Kit)

Quantile of a frequency distribution. Up to which x-coordinate a particular percentage of all values are located.

Declaration:
ClsQuantile (Frequency distribution, Proportion, Rounding) -> Result

Parameter:

Frequency
distribution Frequency distribution for which the quantile is to be determined

Proportion Proportion, stated in percent, 0 to 100

Rounding Rounding

0 : If the quantile does not lie exactly on a class boundary, an intermediate value is calculated. The underlying assumption is that
the values within a class are uniformly distributed. This corresponds to a display of the signal in stair-steps.

1 : If the quantile does not lie exactly on a class boundary, then the next lower class boundary is returned. A somewhat smaller
actual proportion may be contained up to that point.

2 : If the quantile does not lie exactly on a class boundary, then the next higher class boundary is returned. A somewhat larger
actual proportion may be contained up to that point.

Result

Result Quantile

Description:
The sum of all y-values is regarded as an aggregate and declared to be 100%.

The function summates all y-values from the beginning of the data set (i.e. from the left) onwards, until the sum reaches the desired percentage
of the total.

Returns the x-coordinate at this location.

The summation correctly applies the values' signs.

The quantile divides a distribution into 2 regions.

Thus, for instance, a 75%-quantile is the x-coordinate from where 75% of the surface is on the left side and 25% on the right.

The input data are treated as stair-steps/columns.

For instance, if the distribution has values at the x-positions 3, 4, 5, then there are three stair-steps with frequencies, each of width 1. The last
step extends from 5 to 6. The 100%-quantile is thus 6, unless the classes contain zero-values.

Available from imc FAMOS 7.1 onwards

The median is the 50% quantile. With tertiles (terciles) the range is split into 3 equal intervals. There are 4 quartiles, each of which has a width of
1/4 of the range. There are 100 percentiles of width 1%.

Examples:

Quantile = ClsQuantile (Histogram, 95, 0)
Percentile90 = ClsQuantile (Histogram, 90, 0) - ClsQuantile (Histogram, 89, 0)
MedianValue = ClsQuantile (Histogram, 50, 0)

See also:
ClsTimeAtLevel

imc FAMOS Func on Reference - 118 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsRange

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by range-counting

Declaration:
ClsRange (Channel, MaxValue, MinValue, Number of bins, Hysteresis, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

2 : negative ranges

3 : open-ended outer bins, negative ranges

Result

Result Distribution

Description:
Class-counting of measured data by the Range-counting method as per DIN 45667.

Ranges in this context are defined to be the sweeps of the signal between two adjacent local extema. Ppositive ranges are defined as the signal
between a local minimum and the following local maximum, negative ranges are defined as the signal between a local maximum and the
following local minimum.

The function will tally either all positive ranges or all negative ranges.

Countint positive ranges is the default option.

Examples:

Distribution = ClsRange(Data, 13, -1, 28, 0.5, 3)

See also:
ClsTimeAtLevel, ClsRMean, ClsRngPr

imc FAMOS Func on Reference - 119 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsRFlow

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by the Rainflow-procedure

Declaration:
ClsRFlow (Channel, MaxValue, MinValue, Number of bins, Hysteresis, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

2 : Amplitude-Mean-representation

3 : open-ended outer bins, Amplitude-Mean-representation

Result

Result Histogram

Description:
Before the function returns, the residue is tallied into the matrix.

Examples:

Rainflow = ClsRFlow(Data, 25, 10, 30, 0.5, 3)
setseglen (Rainflow, 30)

; Standard function call. The matrix is not scaled.

_NumberClasses = 30
_Min = -5
_Max = 5
_option = 2+1 ;(+1 open end, +2 Amp-Mean)
_Hysteresis = (_Max - _Min) / _NumberClasses
RainflowMatrix = ClsRFlow (data_chan1, _Max, _Min, _NumberClasses, _Hysteresis, _option)
setseglen (RainflowMatrix, _NumberClasses)
xoffset RainflowMatrix _Min
_dx = (_Max - _Min) / _NumberClasses
xdelta RainflowMatrix _dx
if _option >= 2
 ; mean plotted along x-axis
 ; amplitude plotted along z-axis
 setzdel (RainflowMatrix, _dx / 2)
 setzoff (RainflowMatrix, 0)
 setunit (RainflowMatrix, "Mean [Nm]", 0) ; x
 setunit (RainflowMatrix, "Ampl [Nm]", 2) ; z
else
 setzdel (RainflowMatrix, _dx)
 setzoff (RainflowMatrix, _Min)
 setunit (RainflowMatrix, "Nm", 0) ; x
 setunit (RainflowMatrix, "Nm", 2) ; z
end
setunit (RainflowMatrix, "Count", 1) ; y

The Rainflow-matrix is determined.

A segmented waveform with scaling is generated.

See also:
ClsOffRainflowInit1

imc FAMOS Func on Reference - 120 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsRMean

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by range-mean counting

Declaration:
ClsRMean (Channel, MaxValue, MinValue, Number of bins, Hysteresis, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

2 : Amplitude-Mean-representation

3 : open-ended outer bins, Amplitude-Mean-representation

Result

Result Distribution

Description:
Class-counting of measured data by the range-mean-counting method as per DIN 45667.

A range refers to the difference in signal value between two adjacent extrema.

A range located between a minimum and a subsequent maximum is termed a positive range, and the opposite case is termed a negative range.

In contrast to the case of single-parameter range-based counting methods, the positive and negative ranges are not treated separately but are
lumped together, and also, the mean values of the ranges are weighted.

This function offers both the correlation matrix and amplitude-mean representation as options for the output of the results. The default setting
is the correlation matrix.

Where the correlation matrix is used, each range is tallied in the matrix at the location where one coordinate corresponds to the bin where the
range began and the other coordinate corresponds to the bin where the range ended.

If amplitude-mean representation is applied, each range is evaluated in terms of its magnitude and its mean value.

The range is then tallied in the result matrix at the location where one coordinate corresponds to the magnitude of the range, measured in
classes (bin widths), and the other coordinate corresponds to the class (bin) where the range's mean value is situated.

Ranges which are between 0 and 1 bin width in magnitude are tallied in the matrix where the magnitude coordinate is Bin 1.

Ranges larger than 1 and up to 2 bin widths in magnitude are tallied in the matrix where the magnitude coordinate is Bin 2, etc.

Examples:

Distribution = ClsRMean(Data, 50, 0, 50, 1, 1)

See also:
ClsTimeAtLevel, ClsRange, ClsRFlow

imc FAMOS Func on Reference - 121 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsRngPr

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by range-pair counting

Declaration:
ClsRngPr (Channel, MaxValue, MinValue, Number of bins, Hysteresis, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Hysteresis Hysteresis for suppressing small oscillations

Options

0 : no options

1 : open-ended outer bins

2 : Precise calculation

3 : Precise calculation with start value

4 : Spans between extreme values

Result

Result Distribution

Description:
Class-counting of measured data by the range-pair class-counting method as per DIN 45667.

The system recognizes positive ranges as signal sweeps subsequent to minima and negative ranges as signal sweeps subsequent to maxima.

A tally is only then occasioned, when a positive range is matched to a negative range of equal magnitude; in other words, when a range-pair has
occurred.

A small range-pair can be counted several times, before a bigger one will be counted.

With the option "Precise calculation", the algorithm is optimised. Open-ended outer bins are applied.

If the precise calculation is not selected, the algorithm will be compatible with previous versions.

If the option contains "with start value", the first value of the input data will be considered as an extreme value. Otherwise the algorithm starts
with the search for the first relative extreme value.

With the option "Spans between extreme values", a precise calculation with start value is performed. But spans are only counted between
extreme values. If, for instance, the input data contain a single cycle, then only a single "1" is returned instead of all "1"s up to the corresponding
class. This does not conform to DIN 45667.

Examples:

Distribution = ClsRngPr(Data, 24, -12, 36, 1, 1)

See also:
ClsTimeAtLevel, ClsRFlow, ClsRange, ClsOffFromRainflowGetRangePair

imc FAMOS Func on Reference - 122 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsSampl

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by sampling

Declaration:
ClsSampl (Channel, MaxValue, MinValue, Number of bins, Distance between samples, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Distance between samples

Options

0 : no options

1 : open-ended outer bins

2 : random sampling

3 : open-ended outer bins, random sampling

Result

Result Distribution

Description:
Class-counting of measured data by the Sampling method as per DIN 45667.

In this procedure,samples of the momentary value of the measured waveform are tallied into classes (bins). The samples can be spaced at either
fixed or randomly fluctuating intervals.

Examples:

Distribution = ClsSampl(Data, 20, -20, 40, 3, 3)

See also:
ClsTimeAtLevel, ClsMaxSt

imc FAMOS Func on Reference - 123 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsSmSmp

Available in: Enterprise Edition and above (ClassCounting-Kit)

Class-count by sample/sample procedure

Declaration:
ClsSmSmp (DataSet1, DataSet2, MaxValue, MinValue, Number of bins, Distance between samples, Options) -> Result

Parameter:

DataSet1 1st set of data to be classified

DataSet2 2nd set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Distance between samples

Options

0 : no options

1 : open-ended outer bins

2 : random sampling

3 : open-ended outer bins, random sampling

Result

Result Distribution

Description:
Class-counting of measured data by the Sample-/sample method.

Waveform 1 is treated according to the Sampling method,

A tally is made in the bin corresponding to the value of those samples of Waveform 2 located where Waveform 1 has tallied values.

For instance, if Data Point 5 of Waveform 1 is tallied, then so is Data Point 5 of Waveform 2.

The results of the class-counting method are arranged in a correlation matrix; the matrix columns represent the bins of Waveform 1 and the rows
the bins of Waveform 2. A tally is made to that cell of the matrix where one coordinate corresponds to the sample value in one waveform, and
the other coordinate corresponds to the value of the contemporaneous data point in the other waveform.

Examples:

Distribution = ClsSmSmp(Data1, Data2, 3, -3, 24, 5, 3)

See also:
ClsTimeAtLevel, ClsPkSmp, ClsSampl

imc FAMOS Func on Reference - 124 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsTAtLv

Available in: Enterprise Edition and above (ClassCounting-Kit)

Classification by time-at-level procedure

Declaration:
ClsTAtLv (Channel, MaxValue, MinValue, Number of bins, Options) -> Result

Parameter:

Channel Set of data to be classified

MaxValue Upper limit of the value range to be classified

MinValue Lower limit of the value range to be classified

Number of bins

Options

0 : no options

1 : open-ended outer bins

Result

Result Histogram

Description:
Instead of this function, the newer function ClsTimeAtLevel() should be used!

Class-counting of measured data by the Time-at-level as per DIN 45667.

The cumulative time spent by the signal in each partial range is reflected in the bin corresponding to that range.

The Class-counting kit accomplishes this by tallying every sample of the waveform in the appropriate bin.

This function is equivalent to using the Sampling-method function and specifying the sampling distance as 1 (data point).

The time-at-level procedure is what is usually called 'histogram' or 'distribution of amplitudes'.

Examples:

Distribution = ClsTAtLv(Data, 10, -10, 40, 1)

See also:
Histo, ClsOff2ChannelHistogram, ClsTimeAtLevel

imc FAMOS Func on Reference - 125 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

ClsTimeAtLevel

Available in: Enterprise Edition and above (ClassCounting-Kit)

Histogram, time-at-level; determines the occurrence count of amplitudes

Declaration:
ClsTimeAtLevel (Channel, MinValue, MaxValue, Number of bins, Interpolation, OuterBins, X-unit, Calculation) ->
Result

Parameter:

Channel Set of data to be classified

MinValue Lower limit of the value range to be classified

MaxValue Upper limit of the value range to be classified

Number of
bins

Interpolation

0 : Stair-steps; standard-algorithm for a histogram. Each sample value applies to the entire sampling interval. The data set's
sample values are counted by class.

1 : Linear; the individual sample values are imagined to be connected by straight lines. The entire signal plot is counted, not just
the sample values themselves.

OuterBins

0 : Closed outer bins; if any value is outside of the range, it is not counted.

1 : Open-ended outer bins; if any value is outside of the range, it is counted in the corresponding outer bin.

X-unit

0 : axes labelled by class

1 : use physical units

Calculation

0 : Count of measured values

1 : Time expressed in the physical unit of the X-axis of the data set to be classified

2 : Percent; as a proportion of the total duration/total count; value range: 0 .. 100%

3 : Amplitude probability density. The integral over the entire range equals 1. The integral over any partial range equals the
probability of the amplitude lying within that partial range.

4 : Cumulative relative count. Representing the percent of values lying either in this or any lower range. Value range: 0 .. 100%

Result

Result Histogram

Description:
Classification of measured value by the Time-at-level procedure as per DIN 45667, in case of interpolation with stair-steps

The function replaces ClsTAtLv()

Examples:
Histogram, also DIN 45667

TimeAtLevel = ClsTimeAtLevel (channel, -10.0, 10.0, 100, 0, 1, 0, 0)

Time-at-level

TimeAtLevel = ClsTimeAtLevel (channel, -10.0, 10.0, 100, 0, 1, 1, 1)

Precise Time-at-level

TimeAtLevel = ClsTimeAtLevel (channel, -10.0, 10.0, 100, 1, 1, 1, 1)

Amplitude probability density

TimeAtLevel = ClsTimeAtLevel (channel, -10.0, 10.0, 100, 0, 1, 1, 3)

imc FAMOS Func on Reference - 126 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/ClassCountingKit.pdf

See also:
ClsTAtLv, ClsQuantile

imc FAMOS Func on Reference - 127 -

(c) 2024 imc Test & Measurement GmbH

Cmp1

First component of a complex data set

Declaration:
Cmp1 (Data) -> Component1

Parameter:

Data Complex data set, whose first componente is to be returned [KX]

Component1

Component1 First component of the complex data set

Description:
This function returns the first component of a complex data set. The first component is either the real part, the magnitude or the magnitude in
dB, depending on the type of complex data set.

Intermediate results in a formula cannot be used in combination with the name extensions ".R", ".M" , etc. to form a complex data set. In
such cases, the Cmp1 function should be used instead.
If the complex type is unknown, the Cmp1 function should not be used. First use the Pol or Rect functions to create a definite data type.
The parameter may be structured (events/segments).

Examples:
The magnitude of the spectrum is to be determined; taking advantage of the fact that the Spec function always returns the complex data type
MP:

magnitude = Cmp1(Spec(NDdata))

The real part of a complex data set is assigned to a variable. Both instructions are equivalent:

NDreal = Cmp1(RIdata)
NWreal = RIdata.R

See also:
Cmp2, Compl, IsCplx, Pol, Rect

imc FAMOS Func on Reference - 128 -

(c) 2024 imc Test & Measurement GmbH

Cmp2

Second component of a complex data set

Declaration:
Cmp2 (Data) -> Component2

Parameter:

Data Complex data set whose second componente is to be returned [KX]

Component2

Component2 Second component of the complex data set

Description:
This function returns the second component of a complex data set. The second component is either the imaginary part or the phase, depending
on the complex data type.

Intermediate results in a formula cannot be used in connection with the name extensions ".I", ".P", etc. to form a component of a complex
data set. In such cases, use the Cmp2 function instead.
If the complex data type is unknown, Cmp2 cannot be used. Use the Pol or Rect functions to create definite data types.
The parameter may be structured (events/segments).

Examples:
A spectrum's phase is to be determined; it is used so that the function Spec() always returns the complex type MP (magnitude/phase):

Phase = Cmp2(Spec(NDdata))

The imaginary part of a complex data set is assigned to a variable. Both instructions are equivalent:

NDimag = Cmp2(RIdata)
WDimag = RIdata.I

See also:
Cmp1, Compl, IsCplx, Pol, Rect

imc FAMOS Func on Reference - 129 -

(c) 2024 imc Test & Measurement GmbH

CmpX

X-component of an XY-data set

Declaration:
CmpX (Data) -> ComponentX

Parameter:

Data XY-data set whose X-component is to be returned [XY]

ComponentX

ComponentX X-component of the data set

Description:
The X-component of an XY-data set is returned.

Use the suffixes .X and .Y for access to the components of an XY-data set.
The parameter may be structured (events/segments).

Examples:
The X-component of an XY-data set is multiplied by 2. Both instructions are equivalent:

data.X = CmpX(data) * 3
data.X = data.X * 3

See also:
CmpY, XYof, IsXY

imc FAMOS Func on Reference - 130 -

(c) 2024 imc Test & Measurement GmbH

CmpY

Y-component of an XY-data set

Declaration:
CmpY (Data) -> ComponentY

Parameter:

Data XY-data set whose Y-component is to be returned [XY]

ComponentY

ComponentY Y-component of the data set

Description:
The Y-component of a XY-data set is returned.

Use the suffixes .X and .Y for access to the components of an XY-data set.
The parameter may be structured (events/segments).

Examples:
The Y-component of an XY-data set is multiplied by 2. Both instructions are equivalent:

data.Y = CmpY(data) * 2
data.Y = data.Y * 2

See also:
CmpX, XYof, IsXY

imc FAMOS Func on Reference - 131 -

(c) 2024 imc Test & Measurement GmbH

CodeRange

Available in: Professional Edition and above

A list of numerical values (codes) is assigned to and returned for a list of ranges of Y-values of the input signal.

Declaration:
CodeRange (input data, Lower boundaries, Upper boundaries, Codes [, Comparison]) -> Result

Parameter:

input data input data

Lower boundaries List of the lower boundaries of all value ranges; or triplets

Upper boundaries List of the upper boundaries of all value ranges; 0 with triplets

Codes List of the codes for all value ranges; 0 with triplets

Comparison Formulation of the comparison (optional , Default value: "L<=y<=H")

"L<=y<=H" : Lower Boundary <= Input data <= Upper boundary

"L<y<=H" : Lower Boundary < Input data <= Upper boundary

"L<=y<H" : Lower Boundary <= Input data < Upper boundary

"L<y<H" : Lower Boundary < Input data < Upper boundary

Result

Result Result

Description:
Encoding of a range

The 3 datasets "Lower, "Upper" and "Codes" have equal lengths. For each range (defined by the lower and upper boundaries) the corresponding
code is definied.

The list of value ranges does not need to be sorted. The function works through the list from start to end. Upon the first match, the code found is
returned.

An input value is considered to be assigned to a value range if the comparison condition is met according to its exact formulation (< or <=).

The function can be considered as a Switch instruction with Case instructions for each value range. The Switch instruction is run for each
measurement start of the input signal.

If the value of the input data does not lie within any of the value ranges, a zero is returned. This can be regarded as the default situation of the
Switch instruction.

The input data can have events and segments. If they are of the type XY, the range encoding is applied to the Y-component.

In a way which is compatible with imc Inline FAMOS, it is possible to specify a single data set containing the triplet consisting of lower boundary,
upper boundary and code in succession; the remaining function parameters are all zero; see example.

Examples:
Gear recognition: rpm_in, rpm_out are the input and output RPM values at the transmission. Invalid ranges are somewhat widened.

Lo = [0.4, 0.7, 0.9, 1.1]
Hi = [0.5, 0.8, 0.93, 1.17]
Co = [1, 2, 3, 4]
Ratio = CodeRange (rpm_out / rpm_in, Lo, Hi, Co)
Change1 = (Ratio = 0) OR (rpm_in < 20)
Change2 = Monoflop (Change1, 0.5, "1 retrig", "0-1")
Change3 = Monoflop (Change2, 0.5, "1 retrig", "0-1", "reverse") ; =1 when gears are changed
Gear = Ratio * (1-Change3)

One data set provides all triplets; application like 1st example

Compatible with imc Inline FAMOS and imc Online FAMOS

The parameter Control contains the sequence of values low[1], high[1], code[1], low[2], high[2], code[2], ...

Control = [0.4, 0.5, 1, 0.7, 0.8, 2, 0.9, 0.93, 3, 1.1, 1.17, 4] ; 4 triples of low/high/code
Ratio = CodeRange (rpm_out / rpm_in, Control, 0, 0)

See also:
switch, RangeSet

imc FAMOS Func on Reference - 132 -

(c) 2024 imc Test & Measurement GmbH

Coherence

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

The coherence is determined through linear averaging of power spectra. It is calculated by means of FFT.

Declaration:
Coherence (InputChannel, OutputChannel, WindowWidth, WindowType, Overlapping [, Base2]) -> Result

Parameter:

InputChannel The reference channel. A system excitation. Input channel, scaled in seconds.

OutputChannel The (delayed) output channel. A system response. InputChannel and OutputChannel have the same time base and are scaled
in seconds.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result Result

Description:
With x = input, y = output and G being a power spectrum, then | Gxy | ^ 2 / (Gxx * Gyy) is calculated. Value range: 0.0 ... 1.0

The averaging is performed on the real and imaginary parts separately.

This calculation becomes significant only if there are many values to be averaged.

Examples:

Coh = Coherence (Force, Movement, 1000, 0, 50, 0)

This calculates a sequence of 1000 point-power-spectra, which each overlap their neighbors by 50%. A force operates on a mechanical part. The
part's movement is measured on the opposite end. The result is formed from the averaged power spectra.

See also:
FrequencyResponse, CrossPowerDS

imc FAMOS Func on Reference - 133 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

Color?

Queries the color for a data set's curve window representation

Declaration:
Color? (Data) -> SvColorValue

Parameter:

Data Data set whose color attribute is to be queried

SvColorValue

SvColorValue Color value; -1 means automatic color assignment

Description:
Normally, data sets are displayed in the curve window configuration's color for graphs. But you ca assign to the data set a fixed color in which it
will appear in any curve window, regardless of the curve window's current color setting.

This function returns the color value with which the data set is displayed, or -1, if no fixed color has been assigned.

The color value is a so-called RGB-value in which the portions of the 3 primary colors red, green and blue are stated.

To achieve a color value from primary color components, you can use the function RGB().

Examples:

green = RGB(0, 255, 0)
clr = Color?(data)
IF clr = -1
 SetColor(data, green)
END

Unless a fixed color has already been assignedd to the data set, it will be colored green in the future.

See also:
SetColor, RGB

imc FAMOS Func on Reference - 134 -

(c) 2024 imc Test & Measurement GmbH

Comm?

Queries the comment on a data set, text or data group

Declaration:
Comm? (Dataobject) -> TxComment

Parameter:

Dataobject Data set, text or data group whose comment is to be determined

TxComment

TxComment Comment

Description:
The comment on a data set, text or group is queried. A comment can be assigned to each of these data types, which can be specified either by
means of a dialog or using the function SetComm().

Examples:
The comment on a data set is queried. If none has been specified (length: 0), the user is prompted to enter a comment, which will then be
assigned to the data set.

txComment = Comm?(data)
IF TLeng(txComment) = 0
 txComment = BoxText?("Please enter comment:", "",0)
 SetComm(data, txComment)
END

See also:
SetComm, Name?

imc FAMOS Func on Reference - 135 -

(c) 2024 imc Test & Measurement GmbH

COMMENT

Begins a comment
This command is obsolete; for reasons of better legibility, a semicolon should be used instead to begin a line of comment.

Declaration:
COMMENT Comment

Parameter:

Comment Arbitrary text for the comment

Description
This command begins a comment. All characters following this command are interpreted as comments. This command is useful for embedding
commentary in sequences.

Comments initialized with a semicolon can also be positioned after a command or formula in the same code line.

Examples:

COMMENT -- This is a short sequence,
COMMENT -- which loads and displays a file.
; -- A parameter must be supplied.
LOAD PA1 ; Load parameter
SHOW PA1 ; Show parameter

A data set is loaded and displayed. The first three lines are comments.

See also:
SEQUENCE

imc FAMOS Func on Reference - 136 -

(c) 2024 imc Test & Measurement GmbH

Compl

Combines two real number data sets to one complex data set.

Declaration:
Compl (Component1, Component2) -> ComplexData

Parameter:

Component1 Real part of magnitude of the complex data set [ND] to be formed

Component2 Imaginary part or phase of the complex data set [ND] to be formed.

ComplexData

ComplexData Resulting complex data set [BP],[DP] or [RI]

Description:
This function combines two real data sets (type Nw) to form one complex data set. One of the two specified parameters must be a equidistant
data set, the other can be a single value. The single value is then automatically expanded to a equidistant data set of the required length.

Both parameters may be structured (events/ segments), however, in that case, both parameters must have exactly the same structure (same
segment length, event-count and -length). The combination of a structured parameter with a single value is also allowed.

The complex data type created depends on the units of the specified data sets. The complex data type is determined according to the following
criteria:

If the units of both data sets are the same, or if the data sets have no units, the type RI is created.

If the criteria for the type RI are not fulfilled, the type DP is created if the unit of the first specified data set is dB.

The type MP is created if the criteria for the types RI or DP are not met.

Always specify a definite unit for phase, i.e. "Rad" or "Degr".
Both of the specified real data sets should have the exact same x-scaling and length. Otherwise, a warning message is generated and if
necessary, the waveforms are adjusted automatically.
Use the extensions ".M" or ".P" etc. to change only one component of a complex data set.

Examples:
The following three formulas generate an imaginary data set, i.e. a complex data set with a real part of 0. Note that when a single value is
specified, its unit must correspond to that of the specified data set to create a complex data set of the type RI.

RIdata = Compl(RIdata.R * 0, RIdata.I)
RIdata = Compl(0 'V', RIdata.I)
RIdata = Compl(0 'V', NDdata)

A complex data set is created with a magnitude which grows from 0 Hz to 511 Hz at a constant phase of 90°. This complex data set is completely
imaginary, but can be used to represent the frequently used "i" (angular frequency).

MPjomega = Compl(Ramp(0, 1, 512) * 1'Hz', 90'°'* (1 - 0 * Ramp(0, 1, 512)))

See also:
Cmp1, Cmp2, IsCplx, Pol, Rect

imc FAMOS Func on Reference - 137 -

(c) 2024 imc Test & Measurement GmbH

ComplexSpectrum

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Complex spectrum (harmonics determined as RMS (root-mean-square) values) using a moving window and linear averaging. Calculated by means
of FFT.

Declaration:
ComplexSpectrum (InputData, WindowWidth, WindowType, Overlapping, Reduction, AveragingType [, Base2]) ->
Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

AveragingType method of summarizing all spectra

0 : no averaging

1 : averaging (arithmetic mean or linear averaging of the real and imaginary parts separately). The number of spectra over
which the average is taken is determined by the parameter 'Reduction'.

2 : Peak Hold Max, from beginning. Maximum values, based on the spectra calculated thus far in the algorithm.

3 : Peak Hold Max, interval. Maximum values, based on the number of spectra which the parameter 'Reduction' dictates.

4 : Peak Hold Min, from beginning. Minimum values, based on the spectra calculated thus far in the algorithm

5 : Peak Hold Min, interval. Minimum values, based on the number of spectra which the parameter 'Reduction' dictates.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result The result is complex, i.e., it has a magnitude and a phase. The phase is computed in degrees. The result is a segmented
waveform, where each segment represents a spectrum.

Description:
The linear averaging is performed on the real and imaginary parts separately. For the calculation of an averaged magnitude spectrum the use of
the function AmpSpectrumRMS() is recommended.

For Peak Hold calculations, the Peak Hold is applied to the magnitude. The phase is averaged, but is thereby rendered irrelevant and should be
ignored.

Examples:

Spectra = ComplexSpectrum (Channel, 1000, 0, 50, 1, 0, 0)

imc FAMOS Func on Reference - 138 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

This calculates a sequence of 1000 point-spectra, which each overlap their neighbors by 50%.

Spectra = ComplexSpectrum (Channel, 2048, 1, 0, 10, 1, 0)

This calculates a sequence of 2048 point-spectra with a Hamming window. The average is taken of each group of ten consecutive spectra and
recorded with the results.

See also:
ComplexSpectrum_exp, ComplexSpectrum_1, AmpSpectrumRMS

imc FAMOS Func on Reference - 139 -

(c) 2024 imc Test & Measurement GmbH

ComplexSpectrum_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

An averaged complex spectrum is calculated (harmonics determined as RMS (root-mean-square) values). The averaging is taken of as many
spectra as there are windows within the waveform. Calculated by means of FFT.

Declaration:
ComplexSpectrum_1 (InputData, WindowWidth, WindowType, Overlapping, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

AveragingType method of summarizing all spectra

1 : averaging (arithmetic mean or linear averaging of the real and imaginary parts separately). The mean is taken over all
spectra computed.

2 : Peak Hold Max, maximum values, based on the spectra calculated thus far in the algorithm

4 : Peak Hold Min, minimum values, based on the spectra calculated thus far in the algorithm

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result One averaged spectrum. The result is complex, i.e., it has a magnitude and a phase. The phase is computed in degrees.

Description:
The linear averaging is performed on the real and imaginary parts separately. For the calculation of an averaged magnitude spectrum the use of
the function AmpSpectrumRMS_1() is recommended.

For Peak Hold calculations, the Peak Hold is applied to the magnitude. The phase is averaged, but is thereby rendered irrelevant and should be
ignored.

Examples:

Spectrum = ComplexSpectrum_1 (Channel, 1000, 0, 50, 1, 0)

This calculates an averaged spectrum. The averaging is performed on a sequence of 1000 point-spectra which each overlap their neighbors by
50%. The input channel contains approx. 20000 measured values.

See also:
ComplexSpectrum, ComplexSpectrum_exp, AmpSpectrumRMS_1

imc FAMOS Func on Reference - 140 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

ComplexSpectrum_exp

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Complex spectrum (harmonics determined as RMS (root-mean-square) values) using a moving window and exponential averaging. Calculated by
means of FFT.

Declaration:
ComplexSpectrum_exp (InputData, WindowWidth, WindowType, Overlapping, Reduction, TimeConstant [, Base2]) ->
Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

TimeConstant The time constant used in taking the exponential mean. Specified in seconds.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result The result is complex, i.e., it has a magnitude and a phase. The phase is computed in degrees. The result is a segmented
waveform, where each segment represents a spectrum.

Description:
The averaging is performed on the real and imaginary parts separately. For the calculation of an averaged magnitude spectrum the use of the
function AmpSpectrumRMS_exp() is recommended.

Examples:

Spectra = ComplexSpectrum_exp (Channel, 1000, 0, 50, 2, 40.0, 0)

The channel has a sampling time of 10ms. Therefore, a 1000 point-spectrum is computed every 5s. These are smoothed with a time constant of
40.0s. Every second spectrum is returned.

See also:
ComplexSpectrum, ComplexSpectrum_1, AmpSpectrumRMS_exp

imc FAMOS Func on Reference - 141 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

CONTINUE

This command ends the current iteration of the loop. If the loop condition is still met, the loop is resumed upon the next iteration.

Declaration:
CONTINUE

Description
The command can be used within a WHILE-, FOR- or FOREACH-loop.

Examples:
All files in a specified folder and having the extension "*.dat" are found and enumerated in a loop. If the file time is later than a fixed deadline,
the file is loaded and edited.

list = FsFileListNew("c:\imc\dat", "*.dat", 0, 0, 0)
count = FsFileListGetCount(list)
deadline = TimeJoin(1, 1, 2012, 0, 0, 0)
FOR i = 1 TO count
 time = FsFileListGetTime(list, i)
 IF time < deadline
 CONTINUE
 END
 ; load and process file
 TxName = FsFileListGetName(list, i)
 fh = FileOpenDSF(TxName, 0)
 ; ...
END
FsFileListClose(list)

See also:
WHILE, FOR, FOREACH, BREAK

imc FAMOS Func on Reference - 142 -

(c) 2024 imc Test & Measurement GmbH

CONTROL

Available in: Professional Edition and above

Send command via DDE to another application
This command is obsolete; instead of it, the more powerful function DDESend() should be used.

Declaration:
CONTROL Application Topic Command VariableName

Parameter:

Application Name of the DDE-application to be addressed

Topic Designation of the DDE topic

Command DDE-command in accordance with the format-specifications of the server application

VariableName Name of the FAMOS-variable for receiving the return value

Description
FAMOS operates as a DDE-client, the application addressed as a DDE-server. The entries "Application" and "topic" cause FAMOS to select another
DDE-capable application and request a conversation. If the request is complied with, FAMOS then transfers the desired command. FAMOS waits
until the server either confirms having transferred the data or responds in the negative. Then FAMOS ends the conversation.

The optional variable specified under [VariableName] contains the return value of the DDE-application addressed.

The individual parameters for the Control-command may not contain space characters.
FAMOS does not check the syntax of the "Command"-entry. Please check that the format of the entry accords with the DDE-specification of
the application to be addressed.
FAMOS generates an error message when the DDE-application (server) addressed either does not respond or does not accept the command.
If the application (server) addressed is busy, imc FAMOS waits until it is free.
FAMOS-commands are case-insensitive (upper or lower-case letters are equally valid). However, some DDE applications do distinguish
between upper and lower case. Have regard, therefore, for correct spelling.

Examples:

CONTROL Trans Timebase [dt=1.5e-3]

"Trans" is the name of the receiving DDE application, "Timebase" the name of the topic. The DDEcommand is "dt=1.5e-3" in this case. No return
value is requested.

CONTROL Trans TimeBase [trigger][arm] ReturnValue

'Trans' is the name of the receiving DDE application, 'Timebase' the name of the topic. Two commands are being issued by Control
simultaneously, and are written together. The return value of the DDE conversation is contained in the variable 'RetVal'. In this way, the value is
made available for checking.

See also:
DDESend, DDEInq, DDESet, REQUEST

imc FAMOS Func on Reference - 143 -

(c) 2024 imc Test & Measurement GmbH

ConvertUnit

Converts a unit and changes the data set's numerical values/characteristic parameters accordingly.

Declaration:
ConvertUnit (Data, TxUnit, SvChoice) -> Result

Parameter:

Data Data set to be converted

TxUnit Unit into which the conversion is made. If special values such as "SI+", then conversion is performed from the current unit to an unsigned SI-unit.

SvChoice Selection of the unit

0 : X-unit for 1-component data. Unit of the X-component for XY-data. Unit of the phase/imaginary part for complex data.

1 : Y-unit with 1-component data. Unit of the Y-component for XY-data. Unit of the magnitude/real part for complex data.

2 : Z-unit

3 : Unit of the parameter for 2-component data

-1 : Only allowed for the purpose of standardization to SI-units (2nd parameter has a special value such as "SI+"). Then, all units existing in the data set are
standardized.

Result

Result Converted data set

Description:
The function converts a unit in the data set and changes the numerical value accordingly.

Typical applications:

Conversion of unit prefixes, e.g. 'mV' to 'V' => all numerical values are divided by 1000.
Conversion of related units, e.g. '°C' to 'K' (Kelvin) => 273.15 is added to all target values.

This function is particularly useful in mathematics operation for adapting the parameter before the actual calculation. In particular, this applies to basic arithmetic, but also to
integration (see example), differentiation and FFT (time axis in s).

The current unit and the target unit must be mutually convertible in a sensible way. For example, conversion from 'mA' to 'V' is not sensible and returns an error.

Conversion of temperature units:

Temperatures are converted in conjunction with their offsets, e.g.

T [K] = T [°C] + 273.15
T [°F] = T [°C] * 1.8 + 32

Temperature differentials are mutually converted without offsets:

DeltaT [K] = DeltaT [°C]
DeltaT [°F] = DeltaT [°C] * 1.8

Once the fractions have been cancelled, the function can distinguish among temperature differentials according to the following indications: the temperature unit appears in the
denominator, for instance 1/°C or mV//°C. The temperature unit appears in combination with other units, for instance with °C/ W. It is recommended when calculating
temperature differentials, to assign the unit K right away even though °C is also allowed and customary.

Special values of the 2nd parameter

With all special values of the type "SI...", standardization to the appropriate SI-unit is performed. Such prefixes as milli, kilo etc. are eliminated and the numerical values are
converted accordingly. The SI-units consist of the basic SI-units A, cd, K, kg, m, mol, s and the derivative SI-units Bq, °C, C, F, Gy, H, Hz, J, kat, lm, lx, Ohm, N, Pa, rad, sr, S, Sv, T,
V, W, Wb.

With "SI+" and "SI+D", additional units such as Bark, Bft, dB, Grad (Degree), phon, Scoville, sone are retained.

With the special values, the special handling of temperature is performed as follows:

"SI0" The temperature unit is K. When a temperature is detected, then 0°C = 273,15K, for example, is used.

"SI0D" All temperatures detected are interpreted as a temperature differential, where 1K=1°C is applied and K is always generated.

"SI+" The temperature unit is °C, but K is retained. When a temperature is detected, then 32°F = 0°C, for example, is used.

"SI+D" All temperatures detected are interpreted as a temperature differential, where 1.8°F=1°C is applied and °C is generated but K retained.

Recognition and conversion of units is governed by a number of presettings which can be set in FAMOS in the dialog 'Extras'/'Options'/'Units', or by means of the function
SetOption().

The function can be used on normal (equidistantly sampled) data sets, as well as on XY- and complex data.

Examples:

; Signal has the Y-unit 'm/s'
Signal = ConvertUnit(Signal, "km/h", 1)
; => all Y-values are multiplied by 3.6

; Signal has the X-unit 's'
Signal = ConvertUnit(Signal, "min", 0)
; => Normal (1-component) data set: the characteristic parameters x-offset (pretrigger) and x-delta (sampling interval) are divided by 60.
; => XY-data set: all values of the X-component are divided by 60

Signal = ConvertUnit(Signal, "SI0", 1)
; Y-unit 'kV' => Result: 'V', all Y-values multiplied by 1000
; Y-unit 'min' => Result: 's', all Y-values multiplied by 60
; Y-unit '°C' => Result: 'K', to every Y-value, 273.15 is added
; Y-unit 'km/h' => Result: 'm/s', all Y-values are divided by 3.6

imc FAMOS Func on Reference - 144 -

(c) 2024 imc Test & Measurement GmbH

; Y-unit 'V/A' => Result: 'Ohm', Y-values unchanged

Electric power is calculated. The voltage is measured in mV, the current in mA. For correct calculation, before multiplication, the two readings are converted to base units, and the
result is automatically associated with the unit 'W'.

P = ConvertUnit(U, "SI0", 1) * ConvertUnit(I, "SI0", 1)

An acceleration signal has the Y-unit 'g' (standard gravity), the time axis is stated in seconds. For the calculation of the velocity by means of integration, the signal must first be
converted to 'm/s^2'.

SetOption("Units.Read.g", "gravity") ; "g" as acceleration (instead of mass [gram])
v = Int(ConvertUnit(a, "SI0", 1))

Conversion of a rotation speed signal (in revolutions per minute) into angular velocity and frequency:

tr = ConvertUnit(60'RPM', "Hz", 1) ; => 1Hz
tr = ConvertUnit(60'RPM', "rad/s", 1) ; => 6.2832 rad/s
tr = ConvertUnit(60'RPM', "Degr/s", 1) ; => 360 Degr/s

See also:
SetUnit, Unit?

imc FAMOS Func on Reference - 145 -

(c) 2024 imc Test & Measurement GmbH

CorrCoeff

Available in: Professional Edition and above

Correlation coefficient, also moving

Declaration:
CorrCoeff (Pattern, Test data [, Calculation] [, Parameter]) -> Result

Parameter:

Pattern Data set x, the first of the two data sets to be correlated. For a moving calculation, the (short) pattern or reference data set, whose
occurrence is to be located in the test data set.

Test data Data set y, the second of the two data sets to be correlated. For a moving calculation of the (long) data set, in which the pattern is
to be located.

Calculation Calculation (optional , Default value: 0)

0 : A correlation coefficient for the two data series is calculated. No moving calculation is performed.

1 : A series of moving correlation coefficients is determined based on Pattern and on a moving window on Testdata.

2 : Like "Moving correlation coefficient", but additionally, the result is weighted by a factor SF_rms.

3 : Like "Moving correlation coefficient", but additionally, the result is weighted by a factor SF_span.

4 : Like "Moving correlation coefficient", but additionally, the result is weighted by a factor SF_fred.

Parameter
The value required, depending on the calculation type. For "Correlation coefficient F_rms", the minimum RMS-value (>=0) of a
window on Testdata. For "Correlation coefficient F_span", the minimum span (>=0) of a window on Testdata. For "Correlation
coefficient F_fred", the minimum relative span from 0 to 1 for 0 to 100%. Else 0. (optional , Default value: 0)

Result

Result Result

Description:

Correlation coefficient
When calculating the correlation coefficient, the function is called only with the first two arguments.

The calculation of the correlation coefficient r is performed according to the following formula, where n is the number of samples, x means
Pattern and y means Testdata.

For a non-moving calculation, the shorter of the two input data Pattern and Testdata determines for how many points the calculation is
performed.

For instance, if 2 normal data sets for Pattern and Testdata, each having 1000 readings, are available, then the correlation coefficient is
determined over these 1000 values and returned as one value.

The calculation of the correlation coefficients always inclueds subtraction of the mean value. For instance, if Pattern has the values [0, 2, 2, 0], it
is equivalent to [-1, 1, 1, -1].

The calculation is performed point-by-point. The sampling interval of Pattern is not taken into account.

The correlation coefficient's value range is from -1 to +1. For a value of +1/-1, there is complete positive/negative linear correlation. A value of 0
means there is absolutely no correlation between the two data sets.

The correlation coefficient is also referred to as the correlation value, product-moment-correlation, Bravais-Pearson correlation or Pearson
correlation.

Moving correlation coefficient
In the moving calculation, a window is moved along the data set "Testdata". The width of the window is the length of the data set "Pattern". The
first position is the left edge of Testdata. The window then shifts forward point-by-point. For each point, the correlation coefficient is
determined. The window is only shifted forward until its edge reaches the right edge of Testdata.

Typically, the function is called with 3 parameters for this purpose, where Calculation is set to = 1.

The calculation of the correlation coefficient r is performed according to the following formula, where k represents the window shifting and n is
the length of Pattern (x).

imc FAMOS Func on Reference - 146 -

(c) 2024 imc Test & Measurement GmbH

With moving calculations, the number of result data is calculated as [Length(Testdata) - Length(Pattern) + 1].

The result may be an empty data set, if it is impossible to calculate a result because the input data are too short.

For a moving calculation, the result has the time base of Testdata, but is shorter.

A moving calculation with a long Pattern data set, and much longer data set Testdata, can require considerable time to calculate.

Formats
The input data sets Pattern and Testdata must be equidistant.

Pattern and Testdata may possess events and segments. If they have events and segments, Pattern and Testdata must have the same structure.
Then, when calculating each event/segment of Testdata, the associated event/segment of Pattern is used for the calculation.

Alternatively, Testdata may have events and segments, while Pattern is a normal data set without any events/segments. Then, in the calculation
of each event/segment belonging to Testdata, the correlation is calculated with one and the same Pattern.

Special conditions
Optionally, the calculation of an additional factor F can be performed. The moving correlation coefficient is thus weighted (multiplied). The
result is r', the correlation coefficient weighted with F:

The purpose of the additional factor is to reduce the correlation for low values. As an illustration, consider a pattern which is to be located in a
long signal. At all locations where the correlation coefficient is around 1, this pattern occurs. Now if the signal is a measured signal, it might be
noisy, including in the form of chatter of the LSB due to the AD-converter. But exactly such noise, in an otherwise constant signal, can have the
same shape as the pattern to be found. Since the definition of the correlation coefficient makes the result independent of the size, there is the
appearance of a very high correlation coefficient.

This is where the extra factor plays a role. Below a specifiable boundary, the factor reduces the result, and above it, it retains the calculated
correlation coefficient unchanged.

This avoids generating high correlation coefficient values in very small signal regions.

What is considered too "small" is determined according to the various ways of calculating the factor.

If one of the following calculations results in a factor > 1, the factor is limited to 1.

Correlation coefficient F_rms
Within the window under investigation, the mean value of Testdata is determined, and next subtracted from Testdata, and finally the RMS value
is computed.

The parameter is interpreted as an RMS-value. If the mean square deviation within the window is smaller than the reference value, reduction (F
< 1) of the result is performed.

If the denonimator = 0, the resulting factor is 1.

Correlation coefficient F_span
Within the window under investigation, the amplitude span of Testdata is determined.

The parameter is interpreted as a span. If the span within the window is smaller than the reference value, reduction (F < 1) of the result is
performed.

If the denonimator = 0, the resulting factor is 1.

Correlation coefficient F_fred
This is an algorithm that works with spans between maximum and minimum. It calculates "F" in order to decrease the value of "r".

Within the window under investigation, the amplitude span of Testdata is determined. This returns Max_window and Min_window

The Minimum and Maximum over the entire data set passed are found. With segments and events, not over each individual segment/event, but
rather once over all segments/events. This returns Max_total and Min_total.

The parameter is interpreted as a relative span. The calculation is performed according to the formula. If one of the denominators is = 0, the
resulting factor is 1.

Examples:
Calculation of the correlation coefficient between two time series and test for good conformance.

CoCo = CorrCoeff (data1, data2)
if CoCo > 0.9
end

A search for a pattern is to be conducted in a long data set.

imc FAMOS Func on Reference - 147 -

(c) 2024 imc Test & Measurement GmbH

pattern = [0,0,1,2,3,2,1,0,0]
mvc = CorrCoeff (pattern, data, 1)
interesting = xmaxi (mvc, 0.9)

A search for a pattern is to be conducted in a long data set. However, if it is chatter of the LSB of the measured data, it is to be rejected. The LSB
chatter has an RMS-value of about 0.02

pattern = [0,0,1,2,3,2,1,0,0]
mvc = CorrCoeff (pattern, data, 2, 0.05)

A search for a pattern is to be conducted in a long data set. If a section of the data set has a span of less than 5% of the entire span, it is to be
assigned less weighting.

pattern = [0,0,1,2,3,2,1,0,0]
mvc = CorrCoeff (pattern, data, 0, 4, 0.05)

See also:
CCF, ACF

imc FAMOS Func on Reference - 148 -

(c) 2024 imc Test & Measurement GmbH

cos

Cosine, trigonometric function

Declaration:
cos (Parameter) -> Result

Parameter:

Parameter Input data (angle). Allowed types: [ND],[XY].

Result

Result Cosine of the parameter

Description:
The trigonometric function cos is calculated using radians or degrees, corresponding to the unit of the specified parameter.

The x-coordinate(s) of the results and the parameter are the same.

Remarks

The parameter of the cos function should not have a unit or the units 'rad', 'degr', or '° '. Any other units will cause an error message to be
generated and the unit will be used for the result.
The parameter may be structured (events/segments).
The corresponding inverse function is acos.

Examples:
cos(0)= 1, cos(PI/2)= 0, cos(PI)= -1

one = cos(0.0)

Creates a cosine shaped waveform:

NDcos = cos(Ramp(0, 0.2, 100))

For the corresponding unit, the parameter is interpreted in degrees.

zero = cos(90 '°')
zero = cos(90 'degree')

See also:
sin, tan, acos

imc FAMOS Func on Reference - 149 -

(c) 2024 imc Test & Measurement GmbH

CrossPowerDS

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Cross Power Density spectrum, using a moving window and linear averaging. Calculated by means of FFT.

Declaration:
CrossPowerDS (InputChannel, OutputChannel, WindowWidth, WindowType, Overlapping, Reduction, AveragingType [,
Base2]) -> Result

Parameter:

InputChannel The reference channel. A system excitation. Input channel, scaled in seconds.

OutputChannel The (delayed) output channel. A system response. InputChannel and OutputChannel have the same time base and are scaled
in seconds.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

AveragingType method of summarizing all spectra

0 : no averaging

1 : averaging (arithmetic mean or linear averaging of the real and imaginary parts separately). The number of spectra over
which the average is taken is determined by the parameter 'Reduction'.

2 : Peak Hold Max, from beginning. Maximum values, based on the spectra calculated thus far in the algorithm.

3 : Peak Hold Max, interval. Maximum values, based on the number of spectra which the parameter 'Reduction' dictates.

4 : Peak Hold Min, from beginning. Minimum values, based on the spectra calculated thus far in the algorithm

5 : Peak Hold Min, interval. Minimum values, based on the number of spectra which the parameter 'Reduction' dictates.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result The result is a segmented waveform, where each segment represents a spectrum. The result is complex, i.e., it has a
magnitude and a phase.

Description:
Conjugate complex RMS-spectrum of InputChannel, multiplied by the complex RMS-spectrum of OutputChannel, divided by the frequency line
distance.

The linear averaging is performed on the real and imaginary parts separately.

For Peak Hold calculations, the Peak Hold is applied to the magnitude. The phase is averaged, but is thereby rendered irrelevant and should be
ignored.

The result is divided by the ENBW (Equivalent noise bandwidth) according to the window type used. E.g. division by 1.5 in the case of a Hanning

imc FAMOS Func on Reference - 150 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

window.

Examples:

CrossPowerDensity = CrossPowerDS (Force, Movement, 1000, 0, 50, 1, 0, 0)

This calculates a sequence of 1000 point-spectra, which each overlap their neighbors by 50%. A force operates on a mechanical part. The part's
movement is measured on the opposite end.

CrossPowerDensity = CrossPowerDS (Force, Movement, 2048, 1, 0, 10, 1, 0)

This calculates a sequence of 2048 point-spectra with a Hamming window. The average is taken of each group of ten consecutive spectra and
recorded with the results.

See also:
CrossPowerDS_exp, CrossPowerDS_1, CrossPowerNorm

imc FAMOS Func on Reference - 151 -

(c) 2024 imc Test & Measurement GmbH

CrossPowerDS_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

A mean cross power density is calculated. The averaging is taken of as many spectra as there are windows within the waveform.

Declaration:
CrossPowerDS_1 (InputChannel, OutputChannel, WindowWidth, WindowType, Overlapping, AveragingType [, Base2]) ->
Result

Parameter:

InputChannel The reference channel. A system excitation. Input channel, scaled in seconds.

OutputChannel The (delayed) output channel. A system response. InputChannel and OutputChannel have the same time base and are scaled
in seconds.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

AveragingType method of summarizing all spectra

1 : averaging (arithmetic mean or linear averaging of the real and imaginary parts separately). The mean is taken over all
spectra computed.

2 : Peak Hold Max, maximum values, based on the spectra calculated thus far in the algorithm

4 : Peak Hold Min, minimum values, based on the spectra calculated thus far in the algorithm

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result One averaged cross power density spectrum. The result is complex, i.e., it has a magnitude and a phase.

Description:
Conjugate complex RMS-spectrum of InputChannel, multiplied by the complex RMS-spectrum of OutputChannel, divided by the frequency line
distance.

The averaging is performed on the real and imaginary parts separately.

For Peak Hold calculations, the Peak Hold is applied to the magnitude. The phase is averaged, but is thereby rendered irrelevant and should be
ignored.

The result is divided by the ENBW (Equivalent noise bandwidth) according to the window type used. E.g. division by 1.5 in the case of a Hanning
window.

Examples:

CrossPowerDensity = CrossPowerDS_1 (Force, Movement, 1000, 0, 50, 1, 0)

This calculates an averaged spectrum. The averaging is performed on a sequence of 1000 point-spectra which each overlap their neighbors by
50%. The input channels contains approx. 20000 measured values. A force operates on a mechanical part. The part's movement is measured on

imc FAMOS Func on Reference - 152 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

the opposite end.

See also:
CrossPowerDS, CrossPowerDS_exp, CrossPowerNorm_1

imc FAMOS Func on Reference - 153 -

(c) 2024 imc Test & Measurement GmbH

CrossPowerDS_exp

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Cross Power Density using a moving window and exponential averaging. Calculated by means of FFT.

Declaration:
CrossPowerDS_exp (InputChannel, OutputChannel, WindowWidth, WindowType, Overlapping, Reduction, TimeConstant [,
Base2]) -> Result

Parameter:

InputChannel The reference channel. A system excitation. Input channel, scaled in seconds.

OutputChannel The (delayed) output channel. A system response. InputChannel and OutputChannel have the same time base and are scaled
in seconds.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

TimeConstant The time constant used in taking the exponential mean. Specified in seconds.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result The result is a segmented waveform, where each segment represents a spectrum. The result is complex, i.e., it has a
magnitude and a phase.

Description:
Conjugate complex RMS-spectrum of InputChannel, multiplied by the complex RMS-spectrum of OutputChannel, divided by the frequency line
distance.

The result is divided by the ENBW (Equivalent noise bandwidth) according to the window type used. E.g. division by 1.5 in the case of a Hanning
window.

Examples:

CrossPowerDensity = CrossPowerDS_exp (Force, Movement, 1000, 0, 50, 2, 40.0, 0)

This calculates a sequence of 1000 point-spectra, which each overlap their neighbors by 50%. A force operates on a mechanical part. The part's
movement is measured on the opposite end. Both channels have a sampling time of 10ms. Therefore, a spectrum is computed every 5s. These
are smoothed with a time constant of 40.0s. Every second spectrum is returned.

See also:
CrossPowerDS, CrossPowerDS_1

imc FAMOS Func on Reference - 154 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

CrossPowerNorm

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Normalized cross power density spectrum using a moving window and linear averaging. Calculated by means of FFT. Arithmetical (linear)
averaging is performed.

Declaration:
CrossPowerNorm (InputChannel, OutputChannel, WindowWidth, WindowType, Overlapping, Reduction [, Base2]) ->
Result

Parameter:

InputChannel The reference channel. A system excitation. Input channel, scaled in seconds.

OutputChannel The (delayed) output channel. A system response. InputChannel and OutputChannel have the same time base and are scaled
in seconds.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result The result is a segmented waveform, where each segment represents a spectrum. The result is complex, i.e., it has a
magnitude and a phase.

Description:
Conjugate complex RMS-spectrum of InputChannel, multiplied by the complex RMS-spectrum of OutputChannel.

The result is normalized to the product of the input signals' RMS values. Range of the result: -1 .. +1

The channel's RMS values are calculated after the moving window is applied.

The averaging is performed on the real and imaginary parts separately.

Arithmetical (linear) averaging is performed.

Examples:

NormCrossPower = CrossPowerNorm (Force, Movement, 1000, 0, 50, 1, 0)

This calculates a sequence of 1000 point-spectra, which each overlap their neighbors by 50%. A force operates on a mechanical part. The part's
movement is measured on the opposite end.

NormCrossPower = CrossPowerNorm (Force, Movement, 2048, 1, 0, 10, 0)

This calculates a sequence of 2048 point-spectra with a Hamming window. The average is taken of each group of ten consecutive spectra and
recorded with the results.

imc FAMOS Func on Reference - 155 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

See also:
CrossPowerNorm_1, CrossPowerDS

imc FAMOS Func on Reference - 156 -

(c) 2024 imc Test & Measurement GmbH

CrossPowerNorm_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Normalized cross power spectrum, using a moving window and linear averaging. Calculated by means of FFT.

Declaration:
CrossPowerNorm_1 (InputChannel, OutputChannel, WindowWidth, WindowType, Overlapping [, Base2]) -> Result

Parameter:

InputChannel The reference channel. A system excitation. Input channel, scaled in seconds.

OutputChannel The (delayed) output channel. A system response. InputChannel and OutputChannel have the same time base and are scaled
in seconds.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result One averaged cross power density spectrum. The result is complex, i.e., it has a magnitude and a phase.

Description:
Conjugate complex RMS-spectrum of InputChannel, multiplied by the complex RMS-spectrum of OutputChannel.

The result is normalized to the product of the input signals' RMS values. Range of the result: -1 .. +1

The channel's RMS values are calculated after the moving window is applied.

The averaging is performed on the real and imaginary parts separately.

Arithmetical (linear) averaging is performed.

The averaging is taken of as many spectra as there are windows within the waveform.

Examples:

NormCrossPower = CrossPowerNorm_1 (Force, Movement, 1000, 0, 50, 0)

This calculates an averaged spectrum. The averaging is performed on a sequence of 1000 point-spectra which each overlap their neighbors by
50%. The input channel contains approx. 20000 measured values. A force operates on a mechanical part. The part's movement is measured on the
opposite end.

See also:
CrossPowerNorm, CrossPowerDS_1

imc FAMOS Func on Reference - 157 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

CURVESETUP

Displays a waveform in a curve window configuration
This command is obsolete; instead of it, the more powerful function CwLoadCCV() should be used.

Declaration:
CURVESETUP Variable Filename

Parameter:

Variable Name of the variable to be displayed

Filename Name of the curve configuration file to be loaded

Description
A waveform is displayed as a curve window in a predefined curve window configuration.

The file with the curve configuration (*.ccv) must have been created in a curve window using the menu option 'Save' (Curve Window
documentation).

A complete pathname can be specified when the file is not located in the default directory.
The default folder for curve configurations can be set in the dialog "Options"/"Folders".

Examples:

CURVESETUP slope config1
CURVESETUP slope config1.ccv
CURVESETUP slope c:\imc\ccv\config1.ccv

Three options to load a curve window configuration and display in the configuration "Slope".

See also:
CwLoadCCV

imc FAMOS Func on Reference - 158 -

(c) 2024 imc Test & Measurement GmbH

Cut

Cuts a section of a data set at specified X-boundaries.

Declaration:
Cut (Data, SvIntervalStart, SvIntervalEnd [, IntervalMeaning]) -> Repl

Parameter:

Data Data set to be cut; allowed types: [ND],[XY].

SvIntervalStart Coordinate of the first value to be excised

SvIntervalEnd Coordinate of the last value to be excised

IntervalMeaning Sets how the specified interval boundaries are to be interpreted (as x-coordinates or as absolute time). (optional , Default
value: 0)

0 : As x-coordinate

1 : As absolute time

Repl

Repl Portion of the parameter data set

Description:
A section of a long data set can be copied from out of the rest of the data set for further processing. Specify this section by entering its beginning
and end as the second and third parameters. These boundaries are entered as x-coordinates.

Normal Data sets::

If the specified beginning or end of the section does not lie within the domain of the parameter data set, the data set is extended accordingly by
filling with zeros.

If the front end interval boundary does not exactly coincide with a sample value belonging to the data set, the system rounds off to the previous
sample value. A slight margin is applied. Thus if the value to be found is only slightly lower than a sample value, the value at this position is still
returned. The purpose of this behavior is to compensate for numerical deviations in cases of previously computed interval boundaries.

For IntervalInterpretation == 0 (stated in x-coordinates): A specified x-value is also considered an exact match with a sample value if it is located
less than 1/10000 of a sample interval before this sample value.

For IntervalInterpretation == 1 (stated in absolute time): In order to determine the difference by which a start value may deviate from a sample
point, and still be counted as an exact match, both 1/10000 of a sampling interval, and the product of the front-end interval boundary with 1e-14
are calculated, and the greater of the two values is used. The second expression may take effect for values of high magnitude, if a current time is
specified. LSB-errors cause deviations here in the range of microseconds, so that 1/10000 of the sampling interval as the margin may already be
insufficient.

If the back-end interval boundary does not exactly coincide with a sample value belonging to the data set, the next adjacent sample value is
used.

XY Data sets:

If the beginning and the end of the section no longer lie within the domain of the originally transferred data set, the results are confined to
within the data set's bounds. If one of the x-bounds is not exactly a node of the original data set, its corresponding y-value is determined by
linear interpolation.

The units of the second and third parameters should correspond to the x-unit of the data set.
The unit of the data set is not changed.
The x-offset of the resulting data set is adjusted.
The order of the second and third parameters is irrelevant; the smaller value is always interpreted as the lower boundary.
Alternatively, you can use the function CutIndex which requires you to specify the indices of the points of the data set as the bounds of the
section.
Another alternative is the function CutDt(). The main functional difference from the function Cut() is that any sample point located at the
end of the excerpted region is not included in the result. The function CutDt() is thus often easier to use, when successive sections of a data
are to be extracted in a loop, since then no overlapping effects occur at the window boundaries.
A section of a data set can also be isolated by creating a measurement value window for the curve window and exporting the section
between the measurement cursors. The advantage of this method is that the section is selected from the graph; more convenient for direct
operation, but inappropriate for automatic calculations in a sequence. Please refer to the Curve Manager manual, section 'Curve
Window/Measure' for more information.

Examples:
The section between 10s and 20.5s is cut out from a data set with a domain of 0s ... 100s.:

NDpart = Cut(NDdata, 10 's', 20.5 's')

imc FAMOS Func on Reference - 159 -

(c) 2024 imc Test & Measurement GmbH

A data set with the range 0s ... 100s is extended with zeros on both ends to create a range from -10s to 200s.

NDlonger = Cut(NDdata, -10 's', 200 's')

The section representing one day within an equidistant data set extending over multiple days:

time1 = TimeJoin(18, 7, 2018, 0, 0, 0)
time2 = TimeJoin(19, 7, 2018, 0, 0, 0)
Day_18_07_2018 = Cut(datagroup, time1, time2, 1)

Attention: In the example presented, the result will in most cases contain the first measured value on the July 20th, since the next adjacent value
is used if the far boundary does not exactly coincide with a sample value.

See also:
CutIndex, CutDt, Value2, ValueIndex, Repl, ReplIndex

imc FAMOS Func on Reference - 160 -

(c) 2024 imc Test & Measurement GmbH

CutDt

Excises a section of a data set by specifying the starting point and the (window) width.

Declaration:
CutDt (Data, Start, Width [, StartInterpretation] [, StartRounding] [, Extrapolation]) -> Repl

Parameter:

Data Data set from which to excerpt. Equidistantly sampled. No events, no segments.

Start Beginning of the excerpt in x-coordinates or absolute time

Width Width of the excerpt in x-coordinates. The system rounds to a multiple of the sample interval or of the x-direction
increment.

StartInterpretation Specifies how to interpret the start-parameter (as x-coordinate or as absolute time statement). (optional , Default value:
0)

0 : As x-coordinate

1 : As absolute time

StartRounding Governs how the first value to excise is determined when the specified start value does not exactly coincide with a sample
point of the data set (meaning it lies between sample points in the signal). (optional , Default value: 0)

0 : A sample point closer to the start value is used.

1 : The sample point directly following the start value is used.

2 : The sample point directly preceding the start value is used.

Extrapolation Governs the behavior of the function when the start or end of the region to be excised is located outside of the data set's
boundaries. (optional , Default value: 0)

0 : No extrapolation is performed. Only real values actually lying within the region are returned. The result may be shorter
than expected.

1 : The missing auxiliary values at the beginning or end are initialized as 0.

2 : The last or respectively first value of the data set is repeated forward/backward.

Repl

Repl Portion of the parameter data set

Description:
It is possible to cut out a portion of a data set for separate processing. To designate this section, a start point (stated either in x-coordinates or
absolute time) and its length (in x-coordinates) are entered.

This function can only be applied to equidistantly sampled data.

The length specified will be rounded to a multiple of the data set's sampling time.

The length of the result is calculated as the quotient of the width (rounded to a multiple of the sampling interval) and the sampling interval.
Thus, the sample value located exactly at the end of the region is not included.

Example: Data set [data]; Sampling interval: 1s; Offset: 0s

result = CutDt(data, 0, 10, 0, 0)

The result has 10 values (at the x-coordinates 0..9s). The sample value at the location 10s is no longer included.

The x-offset of the data set generated is modified; the trigger time remains intact.
The similar functions Cut() and CutIndex() offer alternative ways to specify the region to excise (by means of Start/End-coordinates or Start-
Index/Value-Count).
One main functional difference from the function Cut() is that a sample point located at the end of the excerpt region is not included in the
results. The function CutDt() is thus often easier to use when successive sections of a data are to be extracted in a loop, since then no
overlapping effects occur at the window boundaries.
Compared to the function CutIndex(), the function CutDt() is superior when data sets having different trigger times/sampling rate or
different x-offsets/x-increments are to be excerpted at the same time.
You can also generate a data set excerpt by generating a measurement value window in a curve window and exporting the region between
the measurement cursors there. This provides the advantage of letting you work in a graphical technique. For this reason, this approach is
often more convenient, but not suitable for automatic calculations in a sequence. See the user's manual for the curve manager, chapter
'Curve window/Measure'.

If the parameter [StartRounding] is non-zero, meaning that the preceding or subsequent sample value may be intended for use, and the start

imc FAMOS Func on Reference - 161 -

(c) 2024 imc Test & Measurement GmbH

value does not exactly coincide with a sample value belonging to the data set, the system applies a slight margin. Thus when [StartRounding] = 2,
for instance, if the value to be found is only slightly lower than a sample value, the value at this position is still returned. The purpose of this
behavior is to compensate for numerical deviations in cases of previously computed x-coordinates.

In order to determine the difference by which a start value may deviate from a sample point, and still be counted as an exact match, both 1/10000
of a sampling interval, and the product of the start value with 1e-14 are calculated, and the greater of the two values is used. The second
expression may take effect for start values of high magnitude, if a current time is specified. LSB-errors cause deviations here in the range of
microseconds, so that 1/10000 of the sampling interval as the margin may already be insufficient

Examples:
The data group [datagroup] in the xample below contains multiple channels of a multi-day endurance measurement. The channels' sampling
time are different. The measured valued for 3 days in succession are excised:

time = TimeJoin(18, 7, 2018, 0, 0, 0)
secondsPerDay = 60*60*24
Day_18_07_2018 = CutDt(datagroup, time, secondsPerDay, 1)
Day_19_07_2018 = CutDt(datagroup, time+ secondsPerDay, secondsPerDay, 1, 1)
Day_20_07_2018 = CutDt(datagroup, time+ 2*secondsPerDay, secondsPerDay, 1, 1)

The data set [data] in the example below is to have Offset =0s, Sampling interval =1s.

x5_to_14 = CutDt(data, 5, 10) ; cut 10 samples from x=5 to 14
x5_to_15 = Cut(data, 5, 15) ; cut 11 samples from x=5 to 15

x5_to_14 = CutDt(data, 5.2, 10) ; cut 10 samples from x=5 to 14
x6_to_15 = CutDt(data, 5.2, 10, 0, 1) ; cut 10 samples from x=6 to 15
x5_to_14 = CutDt(data, 5.2, 10, 0, 2) ; cut 10 samples from x=5 to 14
x5_to_15 = Cut(data, 5.2, 15.2) ; cut 11 samples from x=5 to 15

x5_to_14 = CutDt(data, 4.7, 10) ; cut 10 samples from x=5 to 14
x5_to_14 = CutDt(data, 4.7, 10, 0, 1) ; cut 10 samples from x=5 to 14
x4_to_13 = CutDt(data, 4.7, 10, 0, 2) ; cut 10 samples from x=4 to 13
x4_to_15 = Cut(data, 4.7, 14.7) ; cut 12 samples from x=4 to 15

x0_to_3 = CutDt(data, -1, 5, 0, 0, 0) ; cut 4 samples from x=0 to 3
xm1_to_3 = CutDt(data, -1, 5, 0, 0, 1); cut 5 samples from x=-1 to 3. xm1_to_3[1] = 0
xm1_to_3 = CutDt(data, -1, 5, 0, 0, 2); cut 5 samples from x=-1 to 3. xm1_to_3[1] = data[1]

See also:
CutIndex, Cut, Value2, ValueIndex, Repl, ReplIndex, MatrixPart

imc FAMOS Func on Reference - 162 -

(c) 2024 imc Test & Measurement GmbH

CutIndex

Cuts a section of a data set. Borders of the section are to be specified by indices of the data set's data points.

Declaration:
CutIndex (Data, SvStartIndex, SvEndIndex) -> Repl

Parameter:

Data Data set to be cut; allowed types: [ND],[XY].

SvStartIndex Index of the first value to be cut

SvEndIndex Index of the last value to be cut

Repl

Repl Portion of the parameter data set

Description:
A portion of a data set is copied. The portion is defined by specifying the indices of its first and of its last point (position). The original data set
remains intact.

The position (the index) [SvStartIndex] must lie between 1 and the length of the data set [Data]. Exclusively [SvEndIndex] is cut out. If the two
specified indices are the same, then exactly 1 value is copied. If [SvEndIndex] is greater than the data set length, everything up to the end of
[Data] is cut.

The data type of the first parameter and that of the result are the same. The x-offset of the data set generated is adapted.

The order of the second and third parameters is irrelevant; the smaller value is always interpreted as the lower boundary.

Alternatively, the functions Cut() or CutDt() can be used, in which the boundaries are specifed as x-coordinates.

In order to query a single value by means of its index int he data set, you can also address the data set's indices in formulas:

singleValue = Data[Index]

A section of a data set can also be isolated by creating a measurement value window for the curve window and exporting the section between
the measurement cursors. The advantage of this method is that the section is selected from the graph; more convenient for direct operation, but
inappropriate for automatic calculations in a sequence. Please refer to the Curve Manager manual, section 'Curve Window/Measure' for more
information.

Examples:
The portion of a data set from its tenth value to the end is coped. The piece is smoothed and copied back into the data set:

DataPart = CutIndex(Data, 10, Leng?(Data))
DataPart = Smo5(DataPart)
Data = ReplIndex(Data, DataPart, 10)

The following formulas are equivalent:

Sample2 = CutIndex(Data, 2, 2)
Sample2 = ValueIndex(Data, 2)
Sample2 = Data[2]

See also:
Cut, CutDt, Value2, ValueIndex, Repl, ReplIndex, MatrixPart, SamplesGate

imc FAMOS Func on Reference - 163 -

(c) 2024 imc Test & Measurement GmbH

CvAppendMarker

Scope: Curve Windows

This function sets a marker in a curve window.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvAppendMarker (NcWinChannel, SVx, SvY, Svr, SvCoordinates, SvCurveIndex, TXText, Sv1, Sv2) -> SvError

Parameter:

NcWinChannel specifies the curve window

SVx x-coordinate of the new marker

SvY y-coordinate of the new marker

Svr Svr

SvCoordinates SvCoordinates

1 : Svx and Svy in physical units

2 : Svx and Svy in percent of the axis length

SvCurveIndex 1, 2, 3, ... : index of the line used to manage the marker. Important when displaying in several coordinate systems or rescaling
the axes. If uncertain, set this value to 1.

TXText This the text string which appears in the marker.

Sv1 Sv1

Sv2 Sv2

SvError

SvError Return is SvError (optional)

Description:
Please use CwNewElement with the parameter Marker; then CwMarkerSet..
The new marker is added to the list of any already existing markers.

Svr = Sv1 = Sv2 = 0, if not specified otherwise

Return:

0: No errors, function successful

1: Error, marker could not be created

Examples:

error = CvAppendMarker (Channel1, 10, 20, 0, 2, 1, "Turn-on Transient", 0, 0)

See also:
CwNewElement, CwMarkerSet

imc FAMOS Func on Reference - 164 -

(c) 2024 imc Test & Measurement GmbH

CvAskTitle

Scope: Curve Windows

get title
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvAskTitle (NcWinChannel, SvTask) -> TxTitle

Parameter:

NcWinChannel specifies the curve window

SvTask SvTask

1 : If the channel NwChannel is displayed in a curve window, the title bar of the curve window is requested.

2 : Requests the name of the variable NwChannel. The name can be changed using the function CvTitle(). Variable group
names are ignored.

TxTitle

TxTitle TxTitle

Description:
Please use CwDisplayGetText with the parameter Title for Task 1, CwDataGetText for Task 2.

Examples:

Title = CvAskTitle (x, 1)

See also:
CwDisplayGetText

imc FAMOS Func on Reference - 165 -

(c) 2024 imc Test & Measurement GmbH

CvAttrib

Scope: Curve Windows

Specifies a display attribute for the curve window.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvAttrib (NcWinChannel, SVAttribute)

Parameter:

NcWinChannel specifies the curve window

SVAttribute SVAttribute

Description:
Please use CwDisplaySet.
SVAttribute

0: standard

1: curves stacked

Add:

0: no grid

2: grid

Add:

0: axis labeling

4: no axis labeling

Add:

00: draw directly to screen

10: use bitmap character (reduces flicker)

Add:

00: do not show trigger

20: show trigger

Add:

00: automatic adaptation to curve

40: no automatic adaptation (only used during imc FAMOS 2.x-compatible operation)

Add:

000:normal x-axis

100: x-axis for scroll mode (only used during imc FAMOS 2.x-compatible operation)

Add:

000: x-axis in seconds

200: x-axis in relative time (hours, minutes,...)

Add:

000: x-axis in seconds

400: x-axis in absolute time (date, time)

Add:

1000*number of symbols (0..99) per display. Only for symbols.

0 is standard for symbols with each measurement value

Examples:

CvAttrib (x, 1+400)

See also:
CwDisplaySet, CwAxisSet

imc FAMOS Func on Reference - 166 -

(c) 2024 imc Test & Measurement GmbH

CvConfig

Scope: Curve Windows

Shows channel using configuration file specified in TxFilename.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvConfig (NcWinChannel, TxFileName) -> TxError

Parameter:

NcWinChannel specifies the curve window

TxFileName TxFileName

TxError

TxError The return value is an empty text or an error message if an error occurred. (optional)

Description:
Please use CwLoadCCV.

Examples:

Error = CvConfig (x, "x.ccv")

See also:
CwLoadCCV

imc FAMOS Func on Reference - 167 -

(c) 2024 imc Test & Measurement GmbH

CvCursor

Scope: Curve Windows

Returns the measurement crosshair position in a measurement window.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvCursor (NcWinChannel, SvCursor) -> SVxValue

Parameter:

NcWinChannel specifies the curve window

SvCursor SvCursor

1 : x-coordinate of cursor from left mouse button

2 : x-coordinate of cursor from right mouse button

3 : the (current) left cursor (smaller parameter)

4 : the (current) right cursor (larger parameter)

5 : return value = 1, if measurement window exists, otherwise 0

6 : return value = 1, if curve window exists, otherwise 0

7 : return value = 1, if overview window exists, otherwise 0

8 : return 1 (x axis chosen x-unit), 2 (Date/Time: Absolute), 3 (Days/Hours/Minutes), 4 (Third/Octave Labeling), > 4 for future
expansion, 0 (not displayed)

9 : return 1 (Default), 2 (y-Axes Stacked), 3(Waterfall Diagram), 4 (Last Value As Number), 5 (Color Card), > 5 for future
expansion, 0 (not displayed)

10 : return xmin

11 : return xmax

12 : y-coordinate of cursor from left mouse button

13 : y-coordinate of cursor from right mouse button

14 : z-coordinate of cursor from left mouse button

15 : z-coordinate of cursor from right mouse button

16 : parameter of cursor from left mouse button

17 : parameter of cursor from right mouse button

SVxValue

SVxValue SVxValue

Description:
Please use CwDisplayGet, CwIsWindow for Option 5, CwAxisGet for Options 10, 11.
Returns 0 when no measurement window is present.

Examples:

xLeft = CvCursor (x, 1)

See also:
CwDisplayGet

imc FAMOS Func on Reference - 168 -

(c) 2024 imc Test & Measurement GmbH

CvLoadGlobalSetting

Scope: Curve Windows

This function loads a global setting from the file specified in TxFileName into the Curve Manager.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvLoadGlobalSetting (TxFileName, SvSetting, SvParameter)

Parameter:

TxFileName TxFileName

SvSetting SvSetting

1 : All curve windows are immediately displayed using the new color scheme. This includes all of the settings in the color dialog.

2 : For all subsequent printing procedures, for transfer to the Report Generator, copying to the Clipboard, and graphics export,
the new colors will be applied.

3 : All settings belonging to the dialog <Clipboard settings> are applicable effective immediately. For all subsequent printing
procedures, and transfer to the Report Generator, copying to the Clipboard and graphics export, these settings will be applied.
However, any reports for which the current settings are not to be applied upon transferring are unaffected.

4 : Some Settings made in the dialog <curve window presettings...> are loaded. These settings will be used for all curve windows.
The font used for screen display is one of these settings.

SvParameter SvParameter

Description:
Please use CwLoadSettings.
The file is usually expected in the CCV-directory (imc FAMOS). Some of the options affect all open windows. When not otherwise specified, set
SvParameter = 0.

Examples:
The file c:\imc\set\color.set was previously saved.

CvLoadGlobalSetting ("..\set\color.set", 1, 0)

See also:
CwLoadSettings

imc FAMOS Func on Reference - 169 -

(c) 2024 imc Test & Measurement GmbH

CvPosi

Scope: Curve Windows

Settings for the position and size of a curve window
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvPosi (NcWinChannel, SvX, SvY, SvdX, SvdY)

Parameter:

NcWinChannel specifies the curve window

SvX SvX

SvY SvY

SvdX SvdX

SvdY SvdY

Description:
Please use CwPosition or CwDisplaySet with the parameters win.x, win.dx etc..
SvX, SvY: upper left corner of the window

SvdX, SvWdY: size of the window

Examples:

CvPosi (x, 0, 0, 640, 480)

See also:
CwPosition

imc FAMOS Func on Reference - 170 -

(c) 2024 imc Test & Measurement GmbH

CvRefDB

Scope: Curve Windows

Defines the reference value for decibel (dB) values.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvRefDB (NcWinChannel, SvDB, SvTask)

Parameter:

NcWinChannel specifies the curve window

SvDB SvDB

SvTask SvTask

0 : NcWinChannel is set to 0. SvDB is stored and used as the decibel reference value for any new curve windows.

1 : NcWinChannel specifies the curve window and SvDB receives the new decibel reference value

Description:
Please use CwDisplaySet.
Before this function is called for the first time, the default value set in the curve window preferences is used. Only numbers greater than zero
may be specified. The new reference value is assigned to SvDB and is only implemented in curve windows. It is not used for mathematical
calculations.

Examples:

CvRefDB (0, 0.075, 0)
CvRefDB (RISE, 378.0, 1)

See also:
CwDisplaySet

imc FAMOS Func on Reference - 171 -

(c) 2024 imc Test & Measurement GmbH

CvReplaceChannel

Scope: Curve Windows

Replace channel
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvReplaceChannel (NcWinChannel, NwReplacement, TxOldName) -> NumberReplaced

Parameter:

NcWinChannel specifies the curve window

NwReplacement Replacing channel

TxOldName Old name

NumberReplaced

NumberReplaced Returns the number of channels replaced. (optional)

Description:
Please use CwReplace.
In a curve window, NwWindowChannel, a channel called TxOldName is displayed. This channel is to be replaced by NwReplacement. As a result,
the channel NwReplacement is displayed instead of TxOldName. If the channel is not currently present, the function has no effect. Separate
group names from the channel using ":". This function is useful for replacing channels which are automatically loaded by a curve window
configuration file.

Examples:
When the curve configuration x.ccv was created, channels x1 and x2 were displayed.

Error = CvConfig (x, "x.ccv")
Replaced = CvReplaceChannel (x, Channel1, "x1")
Replaced = CvReplaceChannel (x, Channel2, "x2")

These are replaced by Channel1 and Channel2 in the curve window

See also:
CwReplace

imc FAMOS Func on Reference - 172 -

(c) 2024 imc Test & Measurement GmbH

CvSave

Scope: Curve Windows

Saves the configuration of the curve window specified by NcWinChannel to the file indicated in TxFilename.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvSave (NcWinChannel, TxFileName) -> TxError

Parameter:

NcWinChannel specifies the curve window

TxFileName TxFileName

TxError

TxError The return value is an empty text or an error message if an error occurred. (optional)

Description:
Please use CwSaveCCV.
The standard directory is curves configuration directory (ccv) from imc FAMOS and the standard file extension is ".CCV". The return value is either
an empty text or, when an error was made, an error message.

Examples:

Error = CvSave (SLOPE, "an.ccv")

See also:
CwSaveCCV

imc FAMOS Func on Reference - 173 -

(c) 2024 imc Test & Measurement GmbH

CvSetCursor

Scope: Curve Windows

A measurement cursor (crosshair) is set to a specific position in a previously opened measurement window.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvSetCursor (NcWinChannel, SVx, SvPara1, SvPara2, SvRightLeft) -> SvError

Parameter:

NcWinChannel specifies the curve window

SVx

The new x-coordinate of the cursor rounded to the nearest pixel. The x-axis must already be scaled to display this coordinate.
For example, if the x-axis is displayed in absolute time, then the x-coodinate also has to be specified in absolute time. With
XY-plots, specify the parameter instead. In this latter case, the coordinate is rounded to a simple fraction of the parameter
increment. NOTE: Do not specify coordinates in dB, even if the window is scaled in dB.

SvPara1 SvPara1

SvPara2 SvPara2

SvRightLeft SvRightLeft

1 : Cursor assigned to left mouse button

2 : Cursor assigned to right mouse button

SvError

SvError Return is SvError (optional)

Description:
Please use CwDisplaySet with the parameters measure.*.
The curve window must not be frozen, i.e. do not use CvUpdate(0).

SvPara1 = SvPara2 = 0, if not specified otherwise

On colormap display SvPara1 is the y coordinate. If the window is scaled in dB, the value will not be given in dB.

Return:

0: No errors, function successful

1: Measurement cursor could not be set to the specified value.

Examples:

error = CvSetCursor (Channel1, 0.1, 0, 0, 1)

See also:
CwDisplaySet

imc FAMOS Func on Reference - 174 -

(c) 2024 imc Test & Measurement GmbH

CvTitle

Scope: Curve Windows

set title
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvTitle (NcWinChannel, TxTitle, SvTask)

Parameter:

NcWinChannel specifies the curve window

TxTitle title

SvTask SvTask

1 : If the channel NcChannel is displayed in a curve window, the title bar is set to TxTitle. This setting is valid only as long as the
curve window exists; when it is closed, the setting is lost.

2 : The variable name of the channel specified by NcChannel is changed in all curve windows. The new name for NcChannel is
used to save, display and export the variable in all further actions.

Description:
Please use CwDisplaySet with the parameter Title for Task 1, Rename for Task 2.

Examples:

CvTitle (x, "Result of spectral analysis:", 1)

See also:
CwDisplaySet

imc FAMOS Func on Reference - 175 -

(c) 2024 imc Test & Measurement GmbH

CvUpdate

Blocks updating of the curve window
This function is obsolete; the function CwUpdateEnable() should be used instead.

Declaration:
CvUpdate (SvUpdate)

Parameter:

SvUpdate Updating On/Off

0 : Blocks updating of the curve window

1 : Allow updating of the curve window (again)

Description:
If the [SVUpdate] is setting is non-0, then during running of a sequence, WM_PAINT- and other messages are allowed and imc FAMOS ist
operational.

Otherwse this is not the case! Thus, it is possible for example to prevent repeated updating of a curve window when redesigning.

Attention:
[SvUpdate] should only be set to 0 before a group of curve wineow configuration functions and subsequently back to 1. Severe malfunctioning of
the function due to inappropriate application is possible!!!

Examples:

CvUpdate(0)
CvYAxis(...)
CvYAxis(...)
CvUpdate(1)

See also:
CwUpdateEnable

imc FAMOS Func on Reference - 176 -

(c) 2024 imc Test & Measurement GmbH

CvVar

Scope: Curve Windows

swap variables
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvVar (NcOld, NcNew)

Parameter:

NcOld NcOld

NcNew NcNew

Description:
First, the channel with the name specified by NcOld is displayed in a curve window. Then the channel specified by NcNew replaces the old
channel. Hence, a new channel is assigned to the curve window.

Examples:

CvVar (Slope, Arches)

imc FAMOS Func on Reference - 177 -

(c) 2024 imc Test & Measurement GmbH

CvWin

Scope: Curve Windows

Opens or closes measurement or overview windows affiliated with a given curve window.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvWin (NcWinChannel, SvTask)

Parameter:

NcWinChannel specifies the curve window

SvTask SvTask

1 : show measurement window

2 : close measurement window

3 : show overview window

4 : close overview window

5 : close curve window, not for curves in dialog!

6 : reduce curve window to icon, not for curves in dialog!

7 : maximize curve window, not for curves in dialog!

8 : return curve window to normal size after reducing or maximizing

9 : make measurement window transparent, only cursors visible

10 : open navigator window

11 : open communicator window

Description:
Please use CwAction.

Examples:

CvWin (x, 1)

See also:
CwAction

imc FAMOS Func on Reference - 178 -

(c) 2024 imc Test & Measurement GmbH

CvXAxis

Scope: Curve Windows

Defines the range of the x-axis to be displayed.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvXAxis (NcWinChannel, SvxMin, SvxMax, SVAttribute)

Parameter:

NcWinChannel specifies the curve window

SvxMin xMin

SvxMax xMax

SVAttribute SVAttribute

Description:
Please use CwAxisSet.
SvAttribute

-1: retain old attribute setting

0: linear

1: logarithmic

Add:

00: fixed scaling with xMin, xMax

10: xMin, xMax rounded

20: x-axis automatic, display all curves; xMin, xMax are ignored

30: x-axis automatic, display all curves (rounded); xMin, xMax are ignored

40: like 20

50: like 30

Add:

100*markings (markings >= 2 und <= 99, markings=0 for automatic)

If the x-axis is displayed in absolute time, the function will work in compatibility with long-previous versions: if the variable identifying the
window is a data set, the function adds its absolute time to the values specified for xMin and xMax. If this is not the desired behavior, then the
absolute time can be set to zero. Or a text variable is used as the reference.

Examples:

CvXAxis (x, 0, 1, 0+10+100*5)

See also:
CwAxisSet

imc FAMOS Func on Reference - 179 -

(c) 2024 imc Test & Measurement GmbH

CvYAxis

Scope: Curve Windows

Defines the range of the y-axis to be displayed.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and predecessors!

Declaration:
CvYAxis (NcWinChannel, Channel, NcComponent2, SVyMin, SVyMax, SVAttribute, SvPosition)

Parameter:

NcWinChannel specifies the curve window

Channel channel to be scaled or modified

NcComponent2 second component in X-Y plots.

SVyMin yMin

SVyMax yMax

SVAttribute SVAttribute

SvPosition SvPosition

Description:
Please use CwAxisSet.
SvAttribute

-1: keep old attribute setting

-2: channel is removed from curve window; position unimportant

otherwise:

0: real

1: y-axis in XY-display; x-axis is the last channel presently displayed in the window!

2: locus diagram, NcWinChannel must be complex, NcComponent2 = 0

3: X-Y plot: NcWinChannel is x-axis, NcComponent2 is y-axis

4: X-Y plot: NcWinChannel is y-axis, NcComponent2 is x-axis

Add:

00: linear

10: logarithmic

20: logarithmic with decibels

Add:

000: fixed scaling

100: yMin, yMax are rounded

200: automatic

300: automatic with zero line

400: like previous y-axis

Add:

0000: lines

1000: dots

2000: steps

3000: bars

4000: symbols (squares, etc.) joined by lines

5000: symbols not joined by lines

Add:

00000: square

10000: circle

20000: triangle1

30000: triangle2

40000: diamond

imc FAMOS Func on Reference - 180 -

(c) 2024 imc Test & Measurement GmbH

50000: +

60000: x

70000: large dot

80000: Horiz. Lines

Add:

100000*markings (markings >= 2 and <= 99, markings =0 for automatic)

SvPosition:

-1 keep old position

-2 append as last curve

otherwise:

1, 2, 3, 4... index of the curve; position at which the new channel appears (1=first curve)

Examples:
channel a in window a is to be displayed with 5 ticks from -10 ... +10

CvYaxis (a, a, 0, -10.0, 10.0, 5*100000, 1)

append channel b to curve window a

CvYaxis (a, b, 0, 0, 0, 200, -2)

append x and y from X-Y plot to curve window a

CvYaxis (a, x, y, 0, 0, 200+3, -2)

See also:
CwAxisSet, CwLineSet

imc FAMOS Func on Reference - 181 -

(c) 2024 imc Test & Measurement GmbH

CwAction

Scope: Curve Windows

Performs an action on the selected curve window.

Declaration:
CwAction (Action)

Parameter:

Action Which action is to be performed?

"axes.fix" : Fix axes

"clipboard.copy" : Copy to Clipboard

"cosys.height.auto" : Sets the heights of all coordinate systems to automatic.

"delete.harmonic" : Delete all markers which form the harmonics cursor

"delete.lines" : Removes all lines and data from the curve window

"delete.markers" : Remove all markers

"dialog.display" : Starting the dialog: Display

"dialog.lines" : Starting the dialog: Lines

"dialog.more channels" : Starting the dialog: More waveforms

"dialog.x-axis" : Starting the dialog: x-Axis and other axes

"history.reset" : Delete history

"link.remove" : Delete x-link to other curve windows

"map.fit.axes" : With maps from Internet: Alignment of axes for better readability

"map.load" : Obsolete, please use CwActoinP! Load a file with background picture. The filename has just been set using CwDisplaySet (
"map.filename" ...).

"measure.close" : close measurement window

"measure.invisible" : An invisible measurement value window is opened but the measurement cursors are displayed

"measure.show" : show measurement window

"optimize" : Optimize (delete empty channels)

"overview.close" : close overview window

"overview.show" : show overview window

"print" : Print

"reset" : Reset

"slavepointer.reset" : Slave pointer reset

"start.link select" : Starting the mode: Link with other curve window

"start.modify values" : Starting the mode: Modify values

"start.zoom" : Starting the mode: Zoom

"win.close" : Closes a free-floating curve window

"win.disable" : Disables the curve window: nolonger operable by mouse (and keyboard

"win.enable" : Enables the curve window: can be operated by mouse (and keyboard).

"win.hide" : Hides a free-floating curve window

"win.icon" : Displays a free-floating curve window as an icon.

"win.maximize" : Displays a free-floating curve window in Maximize mode

"win.show" : Shows a free-floating curve window if it was previously hidden.

"win.sizenormal" : A free-floating curve window displayed as either an icon or maximized is restored to its normal size.

"win.twin" : Creates a free-floating twin window

imc FAMOS Func on Reference - 182 -

(c) 2024 imc Test & Measurement GmbH

"unzoom" : Rezoom

Description:

Examples:
Close curve window

CwSelectWindow("curve1")
CwAction("win.close")

See also:
CwActionP

imc FAMOS Func on Reference - 183 -

(c) 2024 imc Test & Measurement GmbH

CwActionP

Scope: Curve Windows

Performs an action (with additional parameter) on the selected curve window.

Declaration:
CwActionP (Action, Parameter1, Parameter2)

Parameter:

Action Which action is to be performed?

"export.graphics" : Exports the graphic to a file, e.g. .bmp, .png, .jpg or .pdf. The filename is specified in Parameter1.

"export.pdf.append" : Attaches the graphic to an existing pdf-file. The filename is specified in Parameter1. If the file does not yet
exist, it is created.

"link.set" : Establish x-link to another curve window

"map.load" : Loads a file with background image. The filename is specified as Parameter1.

Parameter1 Parameter1. Definition depends on the action selected

Parameter2 Parameter2 = 0, if not used

Description:
If graphics are exported, the curve window must be made visible in some cases. E.g. in order to create an exact copy of the screen, the definitive
size must be known and therefore the window must be made visible.

Examples:
Establish link between 2 curve windows

CwSelectWindow("curve1")
CwActionP("link.set", "curve2", 0)

Create PNG-file

CwActionP("export.graphics", "c:\1.png", 0)

Create PDF-file and append 2nd page

CwActionP("export.graphics", "c:\1.pdf", 0)
CwActionP("export.pdf.append", "c:\1.pdf", 0)

See also:
CwAction

imc FAMOS Func on Reference - 184 -

(c) 2024 imc Test & Measurement GmbH

CwAxisGet

Scope: Curve Windows

Get axis property

Declaration:
CwAxisGet (Property) -> Value

Parameter:

Property Get which property?

"range" : Range (1 auto, 2 auto with zero, 3 rounding, 4 fixed, 5 like previous)

"scale" : Scale. (1 default linear, 2 dB, 3 logarithmic, 4 absolute time, 5 relative time, 6 1/3-octaves)

"max" : Actual maximum value

"min" : Actual current value of minimum

"count.data" : Amount of data elements contained in this axis

"count.line" : Amount of lines contained in this y-axis

"count.userticks" : Count of user ticks present on this axis

"description.color" : Color of the description; for format, see rgb(), (-1 automatic)

"description.distance" : How far from the axis the description should be placed; in mm, also < 0.

"description.font.size" : Font size for description, in pt, e.g. 8, (0: auto)

"description.option" : Display description at the axis? (0: no, 1: fixed text, 2: unit, 3: [Unit], 4: unit name, 5: definable with
placeholders)

"description.orientation" : In which direction should the description extend? (0: auto, 1: parallel to axis, 2: perpendicular to axis)

"description.pos" : Exactly where should the description be placed? (0: auto, 1: centered, 2: flush with axis beginning, 3: flush with
axis end)

"description.symbol" : Display the line's symbol as displayed in a legend? (0: no, 1: yes; in front)

"description.text" : The text to be displayed; optionally with placeholders

"direction" : Should the numerical values along the axis increase in reverse direction? Only in special display styles. (0: auto, 1:
reverse)

"exponent" : Power of 10 for scale labeling (-12, -9, ...12), 1000 for auto

"font.color" : Font color (numerical value at the ticks); for format, see rgb(), (-1: automatic, -3: color of 1st line from axis)

"font.size" : Font size, in pt, e.g. 8 (0 auto)

"format.option" : Is the format valid? (0: Auto with three-row time format; 1: Auto, one-row time format; 2: Auto, two-row time
format; 3: freely defined format, one row; 4: freely defined format, two rows)

"labels.end" : Should the labels at the two axis ends be moved so that they do not extend past the end of the axis? (0: auto, 1:
always unmoved, 2: move if necessary)

"line.color" : Color of the axis line; for format see rgb(), (-1: automatic)

"line.show" : Should the axis line be displayed? (0: auto, 1: yes, 2: no)

"line.width" : Thickness of axis lines; in mm (0: auto)

"max.nominal" : Nominal value of the maximum

"min.nominal" : Nominal value of the minimum

"orientation.logical" : Logical orientation, direction (1: x, 2: y, 3: z or color axis for Standard and Color Map, or Angle for Polar, 4: color
axis for 3D)

"places.right" : Decimal places: 0..14; -1: automatic

"position.bot" : Relative position of the axis' bottom end. 0% means all the way down; 50% in the middle.

"position.place" : Should the axis be positioned to the left or the right of the coordinate system? (0: auto, 1: left, 2: right)

"position.top" : Relative position of the axis' top end. 100% means all the way up; 50% in the middle.

"resolution" : Resolution of an axis; generally for y-axis (0: auto; 1: same resolution as x-axis)

imc FAMOS Func on Reference - 185 -

(c) 2024 imc Test & Measurement GmbH

"small ticks.count" : Amount of small ticks, >= 0; -2 auto

"ticks.count" : Large tick count, > 1. Only valid if the tick option is set to "At axis end with fixed count".

"ticks.large.length" : Entire length of the large ticks; in mm (-1: auto)

"ticks.large.width" : Line thickness of the large ticks (0: auto, 1: like axis line, 2: 75% of axis line, 3: 50% of axis line, 4: 25% of axis
line)

"ticks.option" : Tick option (1 count auto at axis end, 2 count fixed at axis end, 3 distance auto, 4 distance fixed)

"ticks.orientation" : In what direction should the ticks be drawn? Outwards in the direction of the labeling, or inwards toward the
coordinate system? (0: auto, 1: outward, 2 inward, 3: out- and inward)

"ticks.small.length" : Entire length of small ticks in mm (-1: auto)

"ticks.small.width" : Line thickness of the small ticks (0: auto, 1: like axis line, 2: 75% of axis line, 3: 50% of axis line, 4: 25% of axis
line)

"ticks.spacing" : The fixed distance between ticks. Only valid if the tick option is set to fixed distance.

"unit.visible" : Units visibility (0: no, 1: auto=yes)

"userticks" : User ticks; desired? (0: no, 1: additionally; 2: exclusively)

"userticks.alignX" : User ticks; horiztontal alignment of text at reference point (0: auto; 1: left-aliged; 2: centered; 3: right-aligned; 4
left-aligned extended; 5: centered extended; 6: right-aligned extended; 7: other side). Access to the currently selected user tick

"userticks.alignY" : User ticks; vertical alignment of text reference point (0: auto; 1: bottom-aligned; 2: centered; 3: top-aligned; 4
bottom-aligned extended; 5: centered extended; 6: top-aligned extended; 7: other side). Access to the currently selected user tick

"userticks.clip" : User ticks; text clipping. Is labeling omitted when a tick lying outside is not itself drawn? (0: auto; 1: no). Access to
the currently selected user tick

"userticks.exclusive" : User ticks; exclusive. Draw exclusively user-defined tick at pixel position along axis? (0: no, a regular tick
could also be drawn; 1: yes, do not draw regular tick there). Access to the currently selected user tick

"userticks.grid" : User ticks; Gridlines visible? (0: auto; 1: when grid along window; 2: yes; 3: no). Access to the currently selected
user tick

"userticks.Label for raw data" : User ticks; derived from channel's user-defined property "Label for raw data". (0: No; 1: Yes; 2:
template). Access to the currently selected user tick

"userticks.position" : User ticks; Position. At which position (coordinate) is the tick to be attached? Stated as numerical value. Access
to the currently selected user tick

"userticks.position.type" : User ticks; how is the position defined? (0: auto = coordinate in physical units; 1: percentage from 0 to 100
along the axis in direction of increasing axis values). Access to the currently selected user tick

"userticks.shiftx" : User ticks; shift of the reference point for drawing text, in the x-direction, in mm; positive in rightward direction,
negative leftward. Access to the currently selected user tick

"userticks.shifty" : User ticks; shift of the reference point for drawing text, in the y-direction, in mm; positive in upward direction,
negative downward. Access to the currently selected user tick

"userticks.text.angle" : User ticks; Angle of the text in degrees (-90 .. +90). What is the text's angle from horizontal? Access to the
currently selected user tick

"userticks.text.color" : User ticks; text color; for the format, see rgb(); -1: automatic. Access to the currently selected user tick

"userticks.text.size" : User ticks; Font size, in pt, e.g. 8 (0: auto). Access to the currently selected user tick

"userticks.text.style" : User tick font style (0: auto, 1: default, 2: bold, 3: italic, 4: bold and italic; 5: underlined; 6: bold and
underlined; 7: italic and underlined; 8: bold and italic and underlined). Access to the currently selected user tick

"userticks.tick" : User ticks; tick type (0: auto; 1: large tick; 2 small tick; 3: no large tick; 4: no small tick). Access to the currently
selected user tick

"visible" : Visibility of the axis. Only in special situations, e.g. polar plot or z-axis with color palette: 0 auto, 1 visible, 2 invisible

"width" : Axis width in mm (0: auto)

Value

Value The property's value

Description:

Examples:
Get the x-axis value range

CwSelectByIndex("x-axis", 1)

imc FAMOS Func on Reference - 186 -

(c) 2024 imc Test & Measurement GmbH

xmin = CwAxisGet("min")
xmax = CwAxisGet("max")

See also:
CwAxisSet, CwAxisGetText

imc FAMOS Func on Reference - 187 -

(c) 2024 imc Test & Measurement GmbH

CwAxisGetText

Scope: Curve Windows

Get axis text property

Declaration:
CwAxisGetText (Property) -> Value

Parameter:

Property Get which property?

"description.text" : The text to be displayed; optionally with placeholders

"format.text" : Format of tick labeling, e.g. for absolute or relative time: <hh:mm:ss.s> Valid with associated option

"format.text2" : Format of the labeling of the second row in the time format, e.g. for absolute time: <DD.MM.YYYY>

"userticks.text" : User ticks; displayed text. Access to the currently selected user tick

Value

Value The property's value

Description:

Examples:
Gets the supplemental text of the x-axis

CwSelectByIndex("x-axis", 1)
txt = CwAxisGetTxt("description.text")

See also:
CwAxisSet, CwAxisGet

imc FAMOS Func on Reference - 188 -

(c) 2024 imc Test & Measurement GmbH

CwAxisSet

Scope: Curve Windows

Set axis properties

Declaration:
CwAxisSet (Property, Value)

Parameter:

Property Which property is to be set?

"range" : Range (1 auto, 2 auto with zero, 3 rounding, 4 fixed, 5 like previous)

"scale" : Scale. (1 default linear, 2 dB, 3 logarithmic, 4 absolute time, 5 relative time, 6 1/3-octaves)

"max" : Target value for the Maximum. Only applies if the range is also fixed; see "Range"

"min" : Target value for the Minimum. Only applies if the range is also fixed; see "Range"

"count.userticks" : Sets the number of user ticks; this many should be present on this axis.

"description.color" : Color of the description; for format, see rgb(), (-1 automatic)

"description.distance" : How far from the axis the description should be placed; in mm, also < 0.

"description.font.size" : Font size for description, in pt, e.g. 8, (0: auto)

"description.option" : Display description at the axis? (0: no, 1: fixed text, 2: unit, 3: [Unit], 4: unit name, 5: definable with
placeholders)

"description.orientation" : In which direction should the description extend? (0: auto, 1: parallel to axis, 2: perpendicular to axis)

"description.pos" : Exactly where should the description be placed? (0: auto, 1: centered, 2: flush with axis beginning, 3: flush with
axis end)

"description.symbol" : Display the line's symbol as displayed in a legend? (0: no, 1: yes; in front)

"description.text" : The text to be displayed; optionally with placeholders

"direction" : Should the numerical values along the axis increase in reverse direction? Only in special display styles. (0: auto, 1:
reverse)

"exponent" : Power of 10 for scale labeling (-12, -9, ...12), 1000 for auto

"font.color" : Font color (numerical value at the ticks); for format, see rgb(), (-1: automatic, -3: color of 1st line from axis)

"font.size" : Font size, in pt, e.g. 8 (0 auto)

"format.option" : Is the format valid? (0: Auto with three-row time format; 1: Auto, one-row time format; 2: Auto, two-row time
format; 3: freely defined format, one row; 4: freely defined format, two rows)

"format.text" : Format of tick labeling, e.g. for absolute or relative time: <hh:mm:ss.s> Valid with associated option

"format.text2" : Format of the labeling of the second row in the time format, e.g. for absolute time: <DD.MM.YYYY>

"labels.end" : Should the labels at the two axis ends be moved so that they do not extend past the end of the axis? (0: auto, 1:
always unmoved, 2: move if necessary)

"line.color" : Color of the axis line; for format see rgb(), (-1: automatic)

"line.show" : Should the axis line be displayed? (0: auto, 1: yes, 2: no)

"line.width" : Thickness of axis lines; in mm (0: auto)

"places.right" : Decimal places: 0..14; -1: automatic

"position.bot" : Relative position of the axis' bottom end. 0% means all the way down; 50% in the middle.

"position.place" : Should the axis be positioned to the left or the right of the coordinate system? (0: auto, 1: left, 2: right)

"position.top" : Relative position of the axis' top end. 100% means all the way up; 50% in the middle.

"resolution" : Resolution of an axis; generally for y-axis (0: auto; 1: same resolution as x-axis)

"small ticks.count" : Amount of small ticks, >= 0; -2 auto

"ticks.count" : Large tick count, > 1. Only valid if the tick option is set to "At axis end with fixed count".

"ticks.large.length" : Entire length of the large ticks; in mm (-1: auto)

imc FAMOS Func on Reference - 189 -

(c) 2024 imc Test & Measurement GmbH

"ticks.large.width" : Line thickness of the large ticks (0: auto, 1: like axis line, 2: 75% of axis line, 3: 50% of axis line, 4: 25% of axis
line)

"ticks.option" : Tick option (1 count auto at axis end, 2 count fixed at axis end, 3 distance auto, 4 distance fixed)

"ticks.orientation" : In what direction should the ticks be drawn? Outwards in the direction of the labeling, or inwards toward the
coordinate system? (0: auto, 1: outward, 2 inward, 3: out- and inward)

"ticks.small.length" : Entire length of small ticks in mm (-1: auto)

"ticks.small.width" : Line thickness of the small ticks (0: auto, 1: like axis line, 2: 75% of axis line, 3: 50% of axis line, 4: 25% of axis
line)

"ticks.spacing" : The fixed distance between ticks. Only valid if the tick option is set to fixed distance.

"unit.visible" : Units visibility (0: no, 1: auto=yes)

"userticks" : User ticks; desired? (0: no, 1: additionally; 2: exclusively)

"userticks.alignX" : User ticks; horiztontal alignment of text at reference point (0: auto; 1: left-aliged; 2: centered; 3: right-aligned; 4
left-aligned extended; 5: centered extended; 6: right-aligned extended; 7: other side). Access to the currently selected user tick

"userticks.alignY" : User ticks; vertical alignment of text reference point (0: auto; 1: bottom-aligned; 2: centered; 3: top-aligned; 4
bottom-aligned extended; 5: centered extended; 6: top-aligned extended; 7: other side). Access to the currently selected user tick

"userticks.clip" : User ticks; text clipping. Is labeling omitted when a tick lying outside is not itself drawn? (0: auto; 1: no). Access to
the currently selected user tick

"userticks.exclusive" : User ticks; exclusive. Draw exclusively user-defined tick at pixel position along axis? (0: no, a regular tick
could also be drawn; 1: yes, do not draw regular tick there). Access to the currently selected user tick

"userticks.grid" : User ticks; Gridlines visible? (0: auto; 1: when grid along window; 2: yes; 3: no). Access to the currently selected
user tick

"userticks.Label for raw data" : User ticks; derived from channel's user-defined property "Label for raw data". (0: No; 1: Yes; 2:
template). Access to the currently selected user tick

"userticks.position" : User ticks; Position. At which position (coordinate) is the tick to be attached? Stated as numerical value. Access
to the currently selected user tick

"userticks.position.type" : User ticks; how is the position defined? (0: auto = coordinate in physical units; 1: percentage from 0 to 100
along the axis in direction of increasing axis values). Access to the currently selected user tick

"userticks.shiftx" : User ticks; shift of the reference point for drawing text, in the x-direction, in mm; positive in rightward direction,
negative leftward. Access to the currently selected user tick

"userticks.shifty" : User ticks; shift of the reference point for drawing text, in the y-direction, in mm; positive in upward direction,
negative downward. Access to the currently selected user tick

"userticks.text" : User ticks; displayed text. Access to the currently selected user tick

"userticks.text.angle" : User ticks; Angle of the text in degrees (-90 .. +90). What is the text's angle from horizontal? Access to the
currently selected user tick

"userticks.text.color" : User ticks; text color; for the format, see rgb(); -1: automatic. Access to the currently selected user tick

"userticks.text.size" : User ticks; Font size, in pt, e.g. 8 (0: auto). Access to the currently selected user tick

"userticks.text.style" : User tick font style (0: auto, 1: default, 2: bold, 3: italic, 4: bold and italic; 5: underlined; 6: bold and
underlined; 7: italic and underlined; 8: bold and italic and underlined). Access to the currently selected user tick

"userticks.tick" : User ticks; tick type (0: auto; 1: large tick; 2 small tick; 3: no large tick; 4: no small tick). Access to the currently
selected user tick

"visible" : Visibility of the axis. Only in special situations, e.g. polar plot or z-axis with color palette: 0 auto, 1 visible, 2 invisible

"width" : Axis width in mm (0: auto)

Value In which way should this property be set?

Description:

Examples:
Select and parameterize an axis

CwSelectWindow("curve1")
CwSelectByIndex("y-axis", 1)
CwAxisSet("range", 4)
CwAxisSet("min", -10)
CwAxisSet("max", 10)

imc FAMOS Func on Reference - 190 -

(c) 2024 imc Test & Measurement GmbH

Select and parameterize the x-axis

CwSelectByIndex("x-axis", 1)
CwAxisSet("scale", 4)
CwAxisSet("range", 1)

User ticks at x-axis: The mode is defined first. Next the number of user ticks is defined. Then a user tick is selected and its properties are set.

CwSelectByIndex("x-axis", 1)
CwAxisSet("userticks", 1)
CwAxisSet("count.userticks", 2)
CwSelectByIndex("usertick", 1)
CwAxisSet("userticks.position", 3.0)
CwAxisSet("userticks.text", "!")
CwSelectByIndex("usertick", 2)
CwAxisSet("userticks.position", 4.0)
CwAxisSet("userticks.text", "?")

See also:
CwAxisGet, CwAxisGetText

imc FAMOS Func on Reference - 191 -

(c) 2024 imc Test & Measurement GmbH

CwColorGet

Scope: Curve Windows

Get curve window colors.

Declaration:
CwColorGet (Color, Individualized, Screen) -> Color

Parameter:

Color Which is the color to get?

"back" : Background. Color = -2 for transparent background for printer

"border.bot" : Coord. system (lower right)

"border.top" : Coord. system (upper left)

"cos.back" : Coord. system background

"grid.1" : Main grid

"grid.2" : Sec. grid

"leg.back" : Legend background

"leg.bot" : Legend border (lower right)

"leg.text" : Legend text

"leg.top" : Legend border (upper left)

"num" : Numbers: foreground

"num.back" : Numbers: background

"text" : General text

"trigger" : Trigger and auxiliary lines

1 .. 24 : Curve index

Individualized Set individualized color for only the selected curve window, or globally for all?

"global" : global

"individual" : Individualized

Screen Screen or Printer

"printer" : Printer

"screen" : Screen

Color

Color Color; format see rgb()

Description:
It is only possible to get individualized colors if the curve window is set for individualized colors.

To get individualized colors, the applicable curve window must be selected.

To get a global color, no curve window needs to be selected.

Examples:

rgb = CwColorGet("back", "individual", "screen")

See also:
CwColorSet

imc FAMOS Func on Reference - 192 -

(c) 2024 imc Test & Measurement GmbH

CwColorSet

Scope: Curve Windows

Set curve window colors

Declaration:
CwColorSet (Color, Individualized, Screen, Color)

Parameter:

Color Which color is to be set?

"back" : Background. Color = -2 for transparent background for printer

"border.bot" : Coord. system (lower right)

"border.top" : Coord. system (upper left)

"cos.back" : Coord. system background

"grid.1" : Main grid

"grid.2" : Sec. grid

"leg.back" : Legend background

"leg.bot" : Legend border (lower right)

"leg.text" : Legend text

"leg.top" : Legend border (upper left)

"num" : Numbers: foreground

"num.back" : Numbers: background

"text" : General text

"trigger" : Trigger and auxiliary lines

1 .. 24 : Curve index

Individualized Set individualized color for only the selected curve window, or globally for all?

"global" : global

"individual" : Individualized

Screen Screen or Printer

"printer" : Printer

"screen" : Screen

"screen+printer" : Screen and Printer

Color Set this color to which value? For the format, see rgb()

Description:
Individualized colors only take effect once the curve window is set for individualized colors. This can be done, for example, with CwDisplaySet()
and "colors.screen.indiv" or "colors.printer.indiv".

If individualized colors are set, the affected curve window must be selected.

Global colors affect all curve windows. To set these, no curve window needs to be selected.

Examples:
Set individualized colors

CwDisplaySet("colors.screen.indiv", 1)
CwColorSet("back", "individual", "screen", rgb(255,0,0))

Set global colors for printout

CwColorSet(1, "global", "printer", rgb(0,0,0))
CwColorSet(2, "global", "printer", rgb(0,0,0))

See also:
CwColorGet

imc FAMOS Func on Reference - 193 -

(c) 2024 imc Test & Measurement GmbH

CwCosysGet

Scope: Curve Windows

Get property of a coordinate system

Declaration:
CwCosysGet (Property) -> Value

Parameter:

Property Get which property?

"count.axis" : Amount of axes contained in this coordinate system

"count.data" : Amount of data elements contained in this coordinate system

"count.line" : Amount of lines contained in this coordinate system

"height.relative" : The configured relative height of the individual coordinate system, in proportion to the total height of all
coordinate systems. Between 0 and 1. For Automatic height: -1.

"pos.dx" : Width of the coordinate system on the screen, stated in pixels

"pos.dy" : Height of the coordinate system on the screen, stated in pixels

"pos.x" : Distance between left edge of the coordinate system to the left edge of the client area of the curve window on the screen,
stated in pixels

"pos.y" : Distance between top edge of the coordinate system to the top edge of the client area of the curve window on the screen,
stated in pixels

Value

Value The property's value

Description:

Examples:
Get count of axes in the coordinate system

CwSelectByIndex("cosys", 1)
count = CwCosysGet("count.axis")

See also:
CwCosysSet

imc FAMOS Func on Reference - 194 -

(c) 2024 imc Test & Measurement GmbH

CwCosysSet

Scope: Curve Windows

Sets a coordinate system's property

Declaration:
CwCosysSet (Property, Value)

Parameter:

Property Which property is to be set?

"height.relative" : The configured relative height of the individual coordinate system, in proportion to the total height of all
coordinate systems. >= 0.001 and <= 1.0. Due to constraints regarding the display options, not any and all specifications can be
implemented. In general, only whatever can be set by means of dragging the mouse. If no coordinate system has its individual
height, all heights are determined automatically.

Value In which way should this property be set?

Description:

Examples:

CwSelectByIndex("cosys", 1)
CwCosysSet("height.relative", 0.1)

See also:
CwCosysGet

imc FAMOS Func on Reference - 195 -

(c) 2024 imc Test & Measurement GmbH

CwDataGet

Scope: Curve Windows

Get data element property

Declaration:
CwDataGet (Property) -> Value

Parameter:

Property Get which property?

"component" : Channel component: 0 entire channel, 1 first component (.Y, .R, .B), 2 second component (.X, .I, .P)

"event.add" : Events every N-th, >= 1 (in Selection mode N)

"event.align" : Events' temporal arrangement (0 auto, 1 each in correct time, 2 trigger time first, 3 trigger time last, 4 trigger time of
first displayed, 5 trigger time of last displayed, 6 trigger time difference to the first, 7 trigger time difference to last, 8 trigger time
difference to first displayed, 9 trigger time difference to last displayed)

"event.count" : Events count (in Selection mode N or N last)

"event.index" : Events start index, >= 1 (in Selection mode 1, N, N-th from back)

"event.select" : Events Selection mode (0 auto, 1 all, 2 last, 3 N last, 4 one, 5 N, 6 N-th from back). Upon activating Selection mode,
the other properties for the event selection are reset. The Selection mode must be activated before other properties define the
event selection in more detail.

"function" : Purpose of the data element: 0 Standard, 1 color information for preceding line (color palette), 2 Boxplot Quartile, 3
Boxplot Whisker

"instrument.fill" : Instrument: Fill (0: auto, 1: from below, 2: from above, 3: from the middle, 4: from y=0, 5 min/max span,
percentage)

"instrument.color.base" : Instrument: Main bar color; for format see rgb(); -1: auto

"instrument.color.scheme" : Instrument: Color scheme (0: auto, 1: one color, 2: three colors, 3: three colors together, 4: two colors,
keep overrun)

"instrument.color.lower" : Instrument: Color below lower limit; for format, see rgb()

"instrument.color.number" : Instrument: Color of the numerical value; for format, see rgb(); -1: auto

"instrument.color.text" : Instrument: Color of text; for format see rgb(); -1: auto

"instrument.color.upper" : Instrument: Color above upper limit; for format, see rgb()

"instrument.limit.lower" : Instrument: Lower limit, minimum

"instrument.limit.upper" : Instrument: Upper limit, maximum

"instrument.slavepointer.color" : Instrument: Slave pointer color; for format, see rgb()

"instrument.slavepointer.show" : Instrument: Display slave pointer? (0: no, 1: yes)

"instrument.title.auto" : Instrument: Automatic title? (0: no, 1: yes)

"instrument.unit.show" : Instrument: Show unit? (0: no, 1: yes)

"instrument.width" : Instrument: Width in percent (0 to 100)

"instrument.100.color" : Instrument: 100% values, line color; for format, see rgb()

"instrument.100.line" : Instrument: 100% values, line? (0: no, 1: yes)

"instrument.100.+" : Instrument: 100% values, physical value at +100%

"instrument.100.-" : Instrument: 100% values, physical value at -100%

"numerical.format" : Numerical representation: Format Option (1: fixed point; 2: floating point; 3: 1-Byte hex; 4: 2-Byte hex; 5: 4-Byte
hex; 6: absolute time Auto; 7: absolute time with freely defined format; 8: relative time Auto; 9: rel. time with freely defined
format). With Instruments 1 and 2.

"numerical.places.left" : Numerical representation: Places left of decimal point 1 through 15

"numerical.places.right" : Numerical representation: Decimal places: 0 through 15. Also with instruments

"numerical.prefix" : Numerical representation: Unit prefix (100: auto, -12, -9, -6, -3, 0, 3, 6, 9). Also with instruments. auto not always
available

"period.add" : Periods every N-th, >= 1 (with Selection mode, N)

imc FAMOS Func on Reference - 196 -

(c) 2024 imc Test & Measurement GmbH

"period.align" : Periods temporal arrangement (0 auto, 1 x0 to zero, 2 x0 the first period, 3 x0 the last period, 4 each period retains
individual x0)

"period.count" : Periods count (with Selection mode N or N last)

"period.index" : Periods start index, >= 1 (with Selection mode 1, N, N-th from back)

"period.length" : Length of one period, >= 1. Only effective if a valid Selection mode for comparison of periods is selected.

"period.select" : Period Selection mode (7 no comparison of periods, 0 auto, 1 all, 2 last, 3 N last, 4 one, 5 N, 6 N-th from back). Upon
activation of Selection mode the start index, count and N-th period are reset. Thus, the Selection mode must be set before further
properties define the period selection in greater detail.

"segment.add" : Segments every N-th, >= 1 (with Selection mode N)

"segment.align" : Segments temporal arrangement (0 auto, 1 x-coordinate retained, 2 add z to x-coordinate)

"segment.count" : Segments count (with Selection mode N or N last)

"segment.index" : Segments start index, >= 1 (with Selection mode 1, N, N-th from back)

"segment.select" : Segments Selection mode (0 auto, 1 all, 2 last, 3 N last, 4 one, 5 N, 6 N-th from back). Upon activating Selection
mode, the properties start index, count and N-th segment are reset. Thus, Selection mode must be reset before further properties
define the segment selection in more detail.

Value

Value The property's value

Description:

Examples:
Get the component displayed

CwSelectByIndex("data", 1)
cmp = CwDataGet("component")

See also:
CwDataSet, CwDataGetText

imc FAMOS Func on Reference - 197 -

(c) 2024 imc Test & Measurement GmbH

CwDataGetText

Scope: Curve Windows

Get text property of a data element

Declaration:
CwDataGetText (Property) -> Value

Parameter:

Property Get which property?

"channelname" : Channel name, e.g. "channel" or for a channel in a group, "group:channel"

"instrument.title" : Instrument: Title

"numerical.format.text" : Numerical representation: Format text for associated format option, e.g. <hh:mm:ss.s> for absoluter time

Value

Value The property's value

Description:

Examples:
Get the name of the channel displayed

CwSelectByIndex("data", 1)
name = CwDataGetText("channelname")

See also:
CwDataSet, CwDataGet

imc FAMOS Func on Reference - 198 -

(c) 2024 imc Test & Measurement GmbH

CwDataSet

Scope: Curve Windows

Set property of a data element

Declaration:
CwDataSet (Property, Value)

Parameter:

Property Which property is to be set?

"component" : Channel component: 0 entire channel, 1 first component (.Y, .R, .B), 2 second component (.X, .I, .P)

"event.add" : Events every N-th, >= 1 (in Selection mode N)

"event.align" : Events' temporal arrangement (0 auto, 1 each in correct time, 2 trigger time first, 3 trigger time last, 4 trigger time of
first displayed, 5 trigger time of last displayed, 6 trigger time difference to the first, 7 trigger time difference to last, 8 trigger time
difference to first displayed, 9 trigger time difference to last displayed)

"event.count" : Events count (in Selection mode N or N last)

"event.index" : Events start index, >= 1 (in Selection mode 1, N, N-th from back)

"event.select" : Events Selection mode (0 auto, 1 all, 2 last, 3 N last, 4 one, 5 N, 6 N-th from back). Upon activating Selection mode,
the start index, count and N-th event are reset. The Selection mode must also be activated before further properties define the
event selection in more detail.

"function" : Bedeutung des Datenelementes (0 Standard, 1 Farbinformation zum Vorgänger (Farbpalette), 2 Boxplot Quartil, 3
Boxplot Whisker, 4 Bubbles)

"instrument.fill" : Instrument: Fill (0: auto, 1: from below, 2: from above, 3: from the middle, 4: from y=0, 5 min/max span,
percentage)

"instrument.color.base" : Instrument: Main bar color; for format see rgb(); -1: auto

"instrument.color.scheme" : Instrument: Color scheme (0: auto, 1: one color, 2: three colors, 3: three colors together, 4: two colors,
keep overrun)

"instrument.color.lower" : Instrument: Color below lower limit; for format, see rgb()

"instrument.color.number" : Instrument: Color of the numerical value; for format, see rgb(); -1: auto

"instrument.color.text" : Instrument: Color of text; for format see rgb(); -1: auto

"instrument.color.upper" : Instrument: Color above upper limit; for format, see rgb()

"instrument.limit.lower" : Instrument: Lower limit, minimum

"instrument.limit.upper" : Instrument: Upper limit, maximum

"instrument.slavepointer.color" : Instrument: Slave pointer color; for format, see rgb()

"instrument.slavepointer.show" : Instrument: Display slave pointer? (0: no, 1: yes)

"instrument.title" : Instrument: Title

"instrument.title.auto" : Instrument: Automatic title? (0: no, 1: yes)

"instrument.unit.show" : Instrument: Show unit? (0: no, 1: yes)

"instrument.width" : Instrument: Width in percent (0 to 100)

"instrument.100.color" : Instrument: 100% values, line color; for format, see rgb()

"instrument.100.line" : Instrument: 100% values, line? (0: no, 1: yes)

"instrument.100.+" : Instrument: 100% values, physical value at +100%

"instrument.100.-" : Instrument: 100% values, physical value at -100%

"numerical.calc.type" : Numerical representation: Calculation (1: max, 2: min, 3: mean). Also with instruments

"numerical.calc.samples" : Numerical representation: Calculation with this many values. Also with instruments

"numerical.format" : Numerical representation: Format Option (1: fixed point; 2: floating point; 3: 1-Byte hex; 4: 2-Byte hex; 5: 4-Byte
hex; 6: absolute time Auto; 7: absolute time with freely defined format; 8: relative time Auto; 9: rel. time with freely defined
format). With Instruments 1 and 2.

"numerical.format.text" : Numerical representation: Format text for associated format option, e.g. <hh:mm:ss.s> for absoluter time

imc FAMOS Func on Reference - 199 -

(c) 2024 imc Test & Measurement GmbH

"numerical.places.left" : Numerical representation: Places left of decimal point 1 through 15

"numerical.places.right" : Numerical representation: Decimal places: 0 through 15. Also with instruments

"numerical.prefix" : Numerical representation: Unit prefix (100: auto, -12, -9, -6, -3, 0, 3, 6, 9). Also with instruments. auto not always
available

"period.add" : Periods every N-th, >= 1 (with Selection mode, N)

"period.align" : Periods temporal arrangement (0 auto, 1 x0 to zero, 2 x0 the first period, 3 x0 the last period, 4 each period retains
individual x0)

"period.count" : Periods count (with Selection mode N or N last)

"period.index" : Periods start index, >= 1 (with Selection mode 1, N, N-th from back)

"period.length" : Length of one period, >= 1. Only effective if a valid Selection mode for comparison of periods is selected.

"period.select" : Period Selection mode (7 no comparison of periods, 0 auto, 1 all, 2 last, 3 N last, 4 one, 5 N, 6 N-th from back). Upon
activation of Selection mode the start index, count and N-th period are reset. Thus, the Selection mode must be set before further
properties define the period selection in greater detail.

"segment.add" : Segments every N-th, >= 1 (with Selection mode N)

"segment.align" : Segments temporal arrangement (0 auto, 1 x-coordinate retained, 2 add z to x-coordinate)

"segment.count" : Segments count (with Selection mode N or N last)

"segment.index" : Segments start index, >= 1 (with Selection mode 1, N, N-th from back)

"segment.select" : Segments Selection mode (0 auto, 1 all, 2 last, 3 N last, 4 one, 5 N, 6 N-th from back). Upon activating Selection
mode, the properties start index, count and N-th segment are reset. Thus, Selection mode must be reset before further properties
define the segment selection in more detail.

Value In which way should this property be set?

Description:

Examples:
Change the component of the channel displayed

CwSelectByIndex("data", 1)
CwDataSet("component", 1)

See also:
CwDataGet, CwDataGetText

imc FAMOS Func on Reference - 200 -

(c) 2024 imc Test & Measurement GmbH

CwDeleteElement

Scope: Curve Windows

Deletes the selected element

Declaration:
CwDeleteElement (Element sort)

Parameter:

Element sort What sort of element is to be deleted?

"axis" : y-axis

"cosys" : Coordinate system

"line" : Line

"marker" : Marker

Description:
If other elements are also included, they are also deleted. Thus for example, when deleting an axis, all the lines it contains and all the data
elements they include are also deleted.

The channels (or variables or data) are not deleted.

Some elements such as a last coordinate system or also the x-axis can not be deleted.

Examples:
Select and delete an axis

CwSelectByIndex("y-axis", 2)
CwDeleteElement("axis")

See also:
CwSelectByIndex, CwNewElement

imc FAMOS Func on Reference - 201 -

(c) 2024 imc Test & Measurement GmbH

CwDisplayGet

Scope: Curve Windows

Get curve window property

Declaration:
CwDisplayGet (Property) -> Value

Parameter:

Property Get which property?

"displaymode" : Display type: 1 default, 2 Stacked, 3 Waterfall, 4 Color map, 5 Last value as number, 6 Bar meter, 7 Table, 8 3D, 9 Polar
diagram

"child" : Is the curve window an embedded window? (0 no, free-floating; 1 yes, embedded in the dialog or Panel)

"color palette" : Color palette with default display: 0 no, 1 yes

"colors.printer.indiv" : Individualized colors for this window, for printer (0 no, use global colors, 1 yes)

"colors.printer.pattern" : Other line types (0 no, 1 yes). Only valid with individualized colors for this window for the printer and if the
line type is set to "auto".

"colors.screen.indiv" : Individualized colors for this window, on screen (0 no, use global colors, 1 yes)

"colors.screen.pattern" : Other line types (0 no, 1 yes). Only valid with individualized colors for this window for the screen and if the
line type is set to "auto".

"cosys.count" : Amount of coordinate systems

"cosys.max" : Coordinate system maximized (0 no, 1 yes)

"data.count" : Total number of data elements

"db.reference" : Reference value for dB calculations

"grid" : Grid (0 no, 1 yes)

"header.coordinate.system" : Header or footer; number of the coordinate system starting at 1 (0: auto). Access to the currently
selected header.

"header.count" : Number of texts which are to be displayed as the header, footer or title.

"header.position" : Header or footer, title; position (0: auto; 1: top left; 2: top center; 3: top right; 4: bottom left; 5: bottom center; 6:
bottom right; 7: left center; 8: center; 9: right center; 10: top left of coordinate system; 11: top center of coordinate system; 12: top
right of coordinate system; 13: bottom left of coordinate system; 14: bottom center of coordinate system; 15: bottom right of
coordinate system; 16: left center of coordinate system; 17: center of coordinate system; 18: right center of coordinate system).
Access to currenty selected header

"header.shiftx" : Header or footer, title; x-offset of text reference point, in mm, positive rightwards, negative leftwards. Access to
the currently selected header

"header.shifty" : Header or footer, title; y-offset of text reference point, in mm, positive upward, negative downward. Access to the
currently selected header

"header.text.angle" : Header or footer, title; text incline in degrees (-90 .. +90). How strongly is the text inclined from horizontal?
Access to the currently selected header

"header.text.color" : Header or footer, title; Text color; for format see rgb(), -1: automatic. Access to the currently selected header

"header.text.size" : Header or footer, title; size of font in pt, e.g. 8 (0: auto). Access to the currently selected header

"header.text.style" : Header or footer or title; font style (0: auto; 1: default; 2: bold; 3: cursive; 4: bold and cursive; 5: underlined; 6:
bold and underlined; 7: cursive and underlined; 8: bold and cursive and underlined). Access to currently selected header

"instrument.numval.show" : Instrument: Display numerical value (0: no, 1: left aligned, 2: centered, 3: right aligned)

"instrument.title.show" : Instrument: Display title? (0: no, 1: left aligned, 2: centered, 3: right aligned)

"instrument.axis.show" : Instrument: Display axis: (0: no, 1: yes)

"instrument.tooltip" : Instrument: Display tooltip? (0: no, 1: name)

"instrument.slavepointer" : Instrument: Slave pointer (1: auto, 2: line)

"instrument.frame" : Instrument: Frame (1: auto, 2: together)

"labels" : Labeling (0 no, 1 yes)

imc FAMOS Func on Reference - 202 -

(c) 2024 imc Test & Measurement GmbH

"lastvalue.columns" : Last value as number: Columns (0: no, 1: yes)

"lastvalue.font.size" : Last value as number: Font size, in pt, e.g. 8 (0: auto)

"lastvalue.names" : Last value as number: Names? (0: no, 1: yes, 2: comment, 3: name and comment)

"lastvalue.right" : Last value as number: Rightaligned? (0: no, 1: yes)

"lastvalue.=" : Last value as number: Equals sign? (0: no, 1: yes)

"legend.border" : Legend border (0 no, 1 yes)

"legend.content" : Legend Text (0 channel name, 1 channel name (without group name), 2 channel comment, 3 channel name and
comment, 4 channel name (without group name) and comment, 5 channel name without measurement, 6 channel name with index
of selected measurement)

"legend.curvecol" : Legend text in curve color (0 no, 1 yes)

"legend.display" : Show Legends (0 auto, 1 always, 2 never, 3 if more than 1 curve is present)

"legend.distx" : Legend horizontal distance from edge [mm] for movable legends

"legend.disty" : Legend vertical distance from corner [mm] for movable legends

"legend.font.size" : Legend font size, in pt, e.g. 8 (0: auto)

"legend.font.style" : Legend font style (0: auto, 1: default, 2: bold, 3: italic, 4: bold and italic; 5: underlined; 6: bold and underlined; 7:
italic and underlined; 8: bold and italic and underlined)

"legend.lines" : Legend line probe (0 no, 1 yes)

"legend.location" : Legend location (0 top, 1 top of each coord. system; 2 left, 3 left of each coord. system; 4 relative to top left
corner; 5 relative to top right corner; 6 relative to bottom left corner; 7 relative to bottom right corner; 8 relative to right edge; 9
relative to left edge; 10 relative to top edge; 11 relative to bottom edge; 12 relative to center; 13 relative to top left corner, multiple;
14 relative to top right corner, multiple; 15 relative to bottom left corner, multiple; 16 relative to bottom right corner, multiple; 17
relative to right edge; 18 relative to left edge, multiple; 19 relative to top edge, multiple; 20 relative to bottom edge, multiple; 21
relative to center, multiple)

"legend.numerical.display" : Legend with numerical value (0 no, 1 last value as number)

"legend.numerical.maxdigits" : Legend numerical value max. digits (0..15)

"legend.numerical.sep" : Legend numerical value with separator (0 no, 1 :, 2 =)

"legend.numerical.unit" : Legend numerical value with unit (0 no, 1 yes)

"legend.rowcol" : Legend rows/columns (0 rows, columns automatic; 1 fixed row count; 2 fixed column count)

"legend.rows" : Legend rows/column count, if fixed number of rows/columns

"legend.space.bottom" : Legend: Additional space at bottom margin [mm]

"legend.space.left" : Legend: Additional space at left margin [mm]

"legend.space.right" : Legend: Additional space at right margin [mm]

"legend.space.top" : Legend: Additional space at top margin [mm]

"legend.transparent" : Legend transparent (0 no, 1 yes)

"line.count" : Total number of lines

"link.color" : Link: Color of the marking line; for the format, see rgb(), -1 for automatic

"link.coordinate" : Link: Control via other coordinate (0: auto, 1: x and y interchanged, 2: keep original)

"link.edge.mouse" : Link: Adjustment of the axes upon moving the mouse to the window edge (0: auto, 1: no, 2: magnify, 3: move)

"link.edge.position" : Link: Adjustment of the axes when the marking reaches the edge (0: auto, 1: no, 2: magnify, 3: move)

"link.follow" : Link: This window follows (0: auto, 1: axis follows, 2: line follows)

"link.influence" : Link: What does the link affect? (0: auto, 1: X-axis, 2: parameters of an XY-display, 3: X-, Y-axes (color map), 4: Y-
axis, 5: cross-section)

"link.linestyle" : Link: Marker line type (0: auto, 1: solid, 2: dotted, 3: dashed, 4..13 other combinations)

"link.scale" : Link: Upon changing the scaling (0: auto, 1: line follows, 2: line stays at screen position)

"link.shape" : Link: Graphical shape of the marking (0: auto, 1: line)

"link.t" : XY-plot's t-parameter at link position; curve window must be linked accordingly

"link.width" : Link: Thickness of line marking in mm (0: auto)

imc FAMOS Func on Reference - 203 -

(c) 2024 imc Test & Measurement GmbH

"link.x" : X-coordinate at link position; window must be linked accordingly

"link.y" : Y-coordinate at link position; window must be linked accordingly

"map.backgnd" : Map display: Background (0 Auto, 1 Map, 2 Background picture , 3 Map from Internet).

"map.draw" : Map display: Draw background picture (0 only on screen, 1 on printer also)

"map.filled" : Map display: Which part of the window is to be covered by the picture? (0 only coordinate system, 1 entire window)

"map.fit" : Map display: Fit background picture (0 auto, 1 fit horizontally, 2 fit vertically, 3 keep size)

"map.lat1" : Map display: Latitude point 1 in degrees

"map.lat2" : Map display: Latitude point 2 in degrees

"map.lon1" : Map display: Longitude point 1 in degrees

"map.lon2" : Map display: Longitude of point 2 in degrees

"map.scale.adjust" : Map: Adapt scale. (0 no, 1 x-, y-axes are scaled in accordance with Internet maps)

"map.x1" : Map display: Relative x-coordinate of point 1 (0.0 left border, 1.0 right border of picture)

"map.x2" : Map display: Relative x-coordinate of point 2 (0.0 left border, 1.0 right border of picture)

"map.y1" : Map display: Relative y-coordinate of point 2 (0.0 bottom border, 1.0 top border of picture)

"map.y2" : Map display: Relative y-coordinate of point 1 (0.0 bottom border, 1.0 top border of picture)

"marker.count" : Marker count

"measure.free" : While the measurement window is open, measurement cursors can be moved freely. (0: No; 1: Yes)

"measure.exist" : Does the measurement value window with measurement cursors exist (2 yes, 1 yes but hidden, 0 no)?

"measure.p.left" : With the measurement value window open, the cursor parameter (in XY-representation) linked with the left
mouse button

"measure.p.right" : With the measurement value window open, the cursor parameter (in XY-representation) linked with the right
mouse button

"measure.x.left" : With the measurement value window open, the cursor's x-position linked with the left mouse button

"measure.x.max" : With the measurement value window open, the x-position of the current right cursor (higher x, higher
parameter)

"measure.x.min" : With the measurement value window open, the x-position of the current left cursor (lower x, lower parameter)

"measure.x.right" : With the measurement value window open, the cursor's x-position linked with the right mouse button

"measure.y.left" : With the measurement value window open, the y-value of the cursor linked with the left mouse button

"measure.y.right" : With the measurement value window open, the y-value of the cursor linked with the right mouse button

"measure.z.left" : With the measurement value window open, the z-value of the cursor linked with the left mouse button

"measure.z.right" : With the measurement value window open, the z-value of the cursor linked with the right mouse button

"number.trimm" : Truncated numbers (0 no, 1 yes)

"opt.on.delete" : Optimize upon deleting data sets (0 no, 1 yes)

"overview.exist" : Does the overview window exist (1 yes, 0 no)?

"scroll" : Scroll mode (0 no, 1 scroll, 2 stretch, 3 oscilloscope, 4 fill)

"showtrigger" : Show trigger line (0 no, 1 yes)

"splitmode.active" : Active view in Split mode (1 to number of views). 0, if no split mode. E.g. changes of the x-axis value range
affect the active view.

"splitmode.count" : Number of views in split mode. 1 for one single view without split mode

"splitmode.width" : Split mode width of the active view in percent (0 to 100) of total width

"suppress.lines.opt" : Optimization in conjunction with hidden lines (0: No, axes and coordinate systems remain visible; 1: Yes, axes
and coordinate systems are made as small as possible or even invisible when all associated lines are hidden.)

"win.client.dx" : With free-floating curve windows, width on the screen of the curve window's client area, stated in pixels

"win.client.dy" : With free-floating curve windows, height on the screen of the curve window's client area, stated in pixels

"win.client.x" : Distance between left edge of the client area to the left edge of the curve window on the screen with free-floating
curve windows, stated in pixels

imc FAMOS Func on Reference - 204 -

(c) 2024 imc Test & Measurement GmbH

"win.client.y" : Distance between top edge of the client area to the top edge of the curve window on the screen with free-floating
curve windows, stated in pixels

"win.dx" : Width of the curve window on the screen for floating curve windows, stated in pixels

"win.dy" : Height of the curve window on the screen for floating curve windows, stated in pixels

"win.x" : Position of the left edge of the curve window on the screen for floating curve windows, stated in pixels

"win.y" : Position of the top edge of the curve window on the screen for floating curve windows, stated in pixels

"y-axis.count" : Total number of y-axes

"3D.angle1" : 3D: first specified angle for defining the perspective, in degrees (length or angle of z-axis)

"3D.angle2" : 3D: second specified angle for defining the perspective, in degrees (width)

"3D.angle3" : 3D: third specified angle for defining the perspective, in degrees (rotation)

"3D.color.fillsymbol" : Color map: color of symbol filling; format see rgb()

"3D.color.fix1" : Color palette: 1st fixed color; for format see rgb()

"3D.color.fix2" : Color palette: 2nd fixed color; fof format see rgb()

"3D.color.fix3" : Color palette: 3rd fixed color; for format see rgb()

"3D.color.fix4" : Color palette: 4th fixed color; for format see rgb()

"3D.color.isoback" : Color map: color of ISO line background; for format, see rgb(); -1 for automatic, -2 for transparent

"3D.color.isoborder" : Color map: color of ISO line edge; for format see rgb(); -1 for automatic, -2 for transparent

"3D.color.isolines" : Color map and 3D: color of ISO lines; for format see rgb()

"3D.color.isotext" : Color map: color of ISO line text; for format, see rgb()

"3D.color.symbolborder" : Color map: ColorSymbolEdge; for format, see rgb(); -1 for automatic, -2 for transparent

"3D.color bar.width" : Color palette: Color probe width in mm; 0 for automatic

"3D.color legend" : 3D: color legend shown (0: auto, 1: no, 2: color legend along vertical y-axis, 3: separate color legend at right, 4:
separate color legend at left)

"3D.color pattern" : Color palette: color scheme (0 auto, 1 two fixed colors, 2 three fixed colors, 3 four fixed colors, 4 spectral, 5 b/w
compatible, 6 b/w, 7 black blue green yellow red, 8 blue cyan green yellow red, 9 blue green yellow red, 10 black blue pink red
yellow white, 11 green cyan blue pink red, 12 black blue cyan green yellow red, 13 black blue red yellow white, 14 black blue cyan
white, 15 white yellow red pink blue black, 16 white cyan blue black, 17 white yellow red blue black, 18 four fixed colors + first white,
19 four fixed colors + white in the middle, 20 four fixed colors + last white, 21 four fixed colors + white in front, black behind, 22 four
fixed colors + black front, white behind)

"3D.colors.number" : Color palette: number of colors for gradiated colors (2..1000)

"3D.font.iso.size" : Color map: font size for labeling of ISO lines, in pts, e.g. 8.

"3D.grid" : 3D: grid options (0 auto; 1 volume and edge surfaces; 2 volume; 3 volume and edge surfaces, only main grid; 4 volume,
only main grid; 5 also at measurement points; 6 only at measurement points; 7 also at measurement points, behind; 8 dotted behind;
9 dotted behind, with edge surfaces; 10 edge surfaces)

"3D.interpolation" : Color map: interpolation (0 auto, 1 linear, 2 constant)

"3D.iso.exponent" : Color map: exponent for the labeling of ISO lines (-12, -9, ...9)

"3D.iso.format" : Color map: ISO text format (0 auto, 1 fixed point, 2 floating point)

"3D.iso.text" : Color map: labeling of the ISO lines (0 auto, 1 no, 2 yes, 3 as horizontal as possible, 4 as horizontal as possible and
unobstructed, 5 as unobstructed as possible, 6 at discrete x-positions, 7 at discrete x-positions and close, 8 at discrete y-positions, 9
at discrete y-positions and close, 10 multiple along long lines , 11 frequent)

"3D.isolines" : Color map and 3D: ISO lines desired (0 no, 1 yes)

"3D.lowerlimit" : Color map: Lower limit. Only values above are taken into account.

"3D.lowerlimit.use" : Color map: observe lower limit (0 no, 1 yes)

"3D.perspective" : 3D: how the perspective is defined (0 auto, 1 shear with z-axis angle, 2 longhitude and latitude, 3 with rotation)

"3D.places.right" : Color map: decimal places: 0..15

"3D.represent" : Color map and 3D: Representation (0 auto, 1 color map with continuous color transitions, 2 color map with gradated
colors, 3 symbols with size according to amplitude, 4 symbols with filling like amplitude)

"3D.sym.mult" : Color map: multiplier for maximum symbol size. Factor by which the symbol size may be larger than the font size

imc FAMOS Func on Reference - 205 -

(c) 2024 imc Test & Measurement GmbH

"3D.symbol.fixed" : Color map: fixed symbol (0 square from middle, 1 square from bottom, 2 square from lower left, 3 square from
outside, 4 circle)

"3D.symbol.var" : Color map: variable symbol (0 circle, 1 square, 2 diamond, 3 filled circle, 4 filled square, 5 filled diamond)

"3D.z.coordinate.dz" : Color map, 3D: dz with data's range of z-coordinates fixed

"3D.z.coordinate.mode" : Color map, 3D: Definition of data's z-coordinate range. Segmented data come with their own z-
coordinates. With other data formats, z-coordinates may have to be added. (1: Fixed values 0, 1, 2, 3, ..; 2: Fixed values of z0, dz and z-
unit, 3: auto, z-coordinates of data are used)

"3D.z.coordinate.unit" : Color map, 3D: Unit with data's range of z-coordinates fixed

"3D.z.coordinate.z0" : Color map, 3D: z0 with data's range of z-coordinates fixed

"polar.skydirection" : Polardiagramm, Anzeige der Himmelsrichtungen festlegen. 0 keine, 4, 8, 16 Himmelsrichtungen

"polar.displayangles" : Polardiagramm, Anzeige von Winkeln am Kreis, 0 keine, 1: Winkel in Grad [°]

"polar.spin" : Polardiagramm, Drehrichtung des Winkels, 0 links drehend (mathematisch positiv, 1 rechts drehend (mathematisch
negativ)

"polar.anglezeropos" : Polardiagramm, 0°-Winkelposition, 0 rechts (0°), 1 oben (90°), 2 links (180°), 3 unten (270°), 4 frei definiert

"polar.angleoffset" : Polardiagramm, Winkeloffset der 0° Position, nur wenn 0°-Winkelposition frei definiert (4) wurde

"polar.axispos" : Polardiagramm, Position der Y-Achse, 0 innen oben, 1 links oben, 2 rechts oben, 3 innen, 4 links, 5 rechts

"polar.xasangle" : Polardiagramm, Interpretation der X-Daten als Winkel, 0 kein Winkel, 1 Winkel in °, 2 Winkel in Radiant

Value

Value The property's value

Description:

Examples:
Get measurement cursor's x-coordinate

x = CwDisplayGet("measure.x.max")

See also:
CwDisplaySet, CwDisplayGetText

imc FAMOS Func on Reference - 206 -

(c) 2024 imc Test & Measurement GmbH

CwDisplayGetText

Scope: Curve Windows

Get general curve window text property

Declaration:
CwDisplayGetText (Property) -> Value

Parameter:

Property Get which property?

"header.text" : Header or footer, title; displayed text. Access to the currently selected header

"title" : Title bar for free-floating curve window, "<auto>" for automatic determination

Value

Value The property's value

Description:

Examples:
Get the curve window's title bar

caption = CwDisplayGetText("title")

See also:
CwDisplaySet, CwDisplayGet

imc FAMOS Func on Reference - 207 -

(c) 2024 imc Test & Measurement GmbH

CwDisplaySet

Scope: Curve Windows

Set general curve window properties

Declaration:
CwDisplaySet (Property, Value)

Parameter:

Property Which property is to be set?

"displaymode" : Display type: 1 default, 2 Stacked, 3 Waterfall, 4 Color map, 5 Last value as number, 6 Bar meter, 7 Table, 8 3D, 9 Polar
diagram

"color palette" : Color palette with default display: 0 no, 1 yes

"colors.printer.indiv" : Individualized colors for this window, for printer (0 no, use global colors, 1 yes)

"colors.printer.pattern" : Other line types (0 no, 1 yes). Only valid with individualized colors for this window for the printer and if the
line type is set to "auto".

"colors.screen.indiv" : Individualized colors for this window, on screen (0 no, use global colors, 1 yes)

"colors.screen.pattern" : Other line types (0 no, 1 yes). Only valid with individualized colors for this window for the screen and if the
line type is set to "auto".

"cosys.max" : Coordinate system maximized (0 no, 1 yes)

"db.reference" : Reference value for dB calculations

"grid" : Grid (0 no, 1 yes)

"header.coordinate.system" : Header or footer; number of the coordinate system starting at 1 (0: auto). Access to the currently
selected header.

"header.count" : Number of texts which are to be displayed as the header, footer or title.

"header.position" : Header or footer, title; position (0: auto; 1: top left; 2: top center; 3: top right; 4: bottom left; 5: bottom center; 6:
bottom right; 7: left center; 8: center; 9: right center; 10: top left of coordinate system; 11: top center of coordinate system; 12: top
right of coordinate system; 13: bottom left of coordinate system; 14: bottom center of coordinate system; 15: bottom right of
coordinate system; 16: left center of coordinate system; 17: center of coordinate system; 18: right center of coordinate system).
Access to currenty selected header

"header.shiftx" : Header or footer, title; x-offset of text reference point, in mm, positive rightwards, negative leftwards. Access to
the currently selected header

"header.shifty" : Header or footer, title; y-offset of text reference point, in mm, positive upward, negative downward. Access to the
currently selected header

"header.text" : Header or footer, title; displayed text. Access to the currently selected header

"header.text.angle" : Header or footer, title; text incline in degrees (-90 .. +90). How strongly is the text inclined from horizontal?
Access to the currently selected header

"header.text.color" : Header or footer, title; Text color; for format see rgb(), -1: automatic. Access to the currently selected header

"header.text.size" : Header or footer, title; size of font in pt, e.g. 8 (0: auto). Access to the currently selected header

"header.text.style" : Header or footer or title; font style (0: auto; 1: default; 2: bold; 3: cursive; 4: bold and cursive; 5: underlined; 6:
bold and underlined; 7: cursive and underlined; 8: bold and cursive and underlined). Access to currently selected header

"history.size" : Maximum history memory in MBytes. -1 for automatic

"instrument.numval.show" : Instrument: Display numerical value (0: no, 1: left aligned, 2: centered, 3: right aligned)

"instrument.title.show" : Instrument: Display title? (0: no, 1: left aligned, 2: centered, 3: right aligned)

"instrument.axis.show" : Instrument: Display axis: (0: no, 1: yes)

"instrument.tooltip" : Instrument: Display tooltip? (0: no, 1: name)

"instrument.slavepointer" : Instrument: Slave pointer (1: auto, 2: line)

"instrument.frame" : Instrument: Frame (1: auto, 2: together)

"labels" : Labeling (0 no, 1 yes)

"lastvalue.columns" : Last value as number: Columns (0: no, 1: yes)

imc FAMOS Func on Reference - 208 -

(c) 2024 imc Test & Measurement GmbH

"lastvalue.font.size" : Last value as number: Font size, in pt, e.g. 8 (0: auto)

"lastvalue.names" : Last value as number: Names? (0: no, 1: yes, 2: comment, 3: name and comment)

"lastvalue.right" : Last value as number: Rightaligned? (0: no, 1: yes)

"lastvalue.=" : Last value as number: Equals sign? (0: no, 1: yes)

"legend.border" : Legend border (0 no, 1 yes)

"legend.content" : Legende Textinhalt (0 Kanalname, 1 Kanalname (ohne Gruppenname), 2 Kommentar des Kanals, 3 Kanalname
und Kommentar, 4 Kanalname ohne Gruppenname und Kommentar, 5 Kanalname ohne Messung, 6 Kanalname mit Nummer der
selekt. Messung, 7 Kanalname ohne Gruppe und Messung, 8 Kanalanme mit Kommentar ohne Gruppe und Messung)

"legend.curvecol" : Legend text in curve color (0 no, 1 yes)

"legend.display" : Show Legends (0 auto, 1 always, 2 never, 3 if more than 1 curve is present)

"legend.distx" : Legend horizontal distance from edge [mm] for movable legends

"legend.disty" : Legend vertical distance from corner [mm] for movable legends

"legend.font.size" : Legend font size, in pt, e.g. 8 (0: auto)

"legend.font.style" : Legend font style (0: auto, 1: default, 2: bold, 3: italic, 4: bold and italic; 5: underlined; 6: bold and underlined; 7:
italic and underlined; 8: bold and italic and underlined)

"legend.lines" : Legend line probe (0 no, 1 yes)

"legend.location" : Legend location (0 top, 1 top of each coord. system; 2 left, 3 left of each coord. system; 4 relative to top left
corner; 5 relative to top right corner; 6 relative to bottom left corner; 7 relative to bottom right corner; 8 relative to right edge; 9
relative to left edge; 10 relative to top edge; 11 relative to bottom edge; 12 relative to center; 13 relative to top left corner, multiple;
14 relative to top right corner, multiple; 15 relative to bottom left corner, multiple; 16 relative to bottom right corner, multiple; 17
relative to right edge; 18 relative to left edge, multiple; 19 relative to top edge, multiple; 20 relative to bottom edge, multiple; 21
relative to center, multiple)

"legend.numerical.display" : Legend with numerical value (0 no, 1 last value as number)

"legend.numerical.maxdigits" : Legend numerical value max. digits (0..15)

"legend.numerical.sep" : Legend numerical value with separator (0 no, 1 :, 2 =)

"legend.numerical.unit" : Legend numerical value with unit (0 no, 1 yes)

"legend.rowcol" : Legend rows/columns (0 rows, columns automatic; 1 fixed row count; 2 fixed column count)

"legend.rows" : Legend rows/column count, if fixed number of rows/columns

"legend.space.bottom" : Legend: Additional space at bottom margin [mm]

"legend.space.left" : Legend: Additional space at left margin [mm]

"legend.space.right" : Legend: Additional space at right margin [mm]

"legend.space.top" : Legend: Additional space at top margin [mm]

"legend.transparent" : Legend transparent (0 no, 1 yes)

"link.color" : Link: Color of the marking line; for the format, see rgb(), -1 for automatic

"link.coordinate" : Link: Control via other coordinate (0: auto, 1: x and y interchanged, 2: keep original)

"link.edge.mouse" : Link: Adjustment of the axes upon moving the mouse to the window edge (0: auto, 1: no, 2: magnify, 3: move)

"link.edge.position" : Link: Adjustment of the axes when the marking reaches the edge (0: auto, 1: no, 2: magnify, 3: move)

"link.follow" : Link: This window follows (0: auto, 1: axis follows, 2: line follows)

"link.influence" : Link: What does the link affect? (0: auto, 1: X-axis, 2: parameters of an XY-display, 3: X-, Y-axes (color map), 4: Y-
axis, 5: cross-section)

"link.linestyle" : Link: Marker line type (0: auto, 1: solid, 2: dotted, 3: dashed, 4..13 other combinations)

"link.scale" : Link: Upon changing the scaling (0: auto, 1: line follows, 2: line stays at screen position)

"link.shape" : Link: Graphical shape of the marking (0: auto, 1: line)

"link.width" : Link: Thickness of line marking in mm (0: auto)

"map.backgnd" : Map display: Background (0 Auto, 1 Map, 2 Background picture, 3 Map from Internet). When "auto" is used, all
"Map" display settings are discarded.

"map.draw" : Map display: Draw background picture (0 only on screen, 1 on printer also)

imc FAMOS Func on Reference - 209 -

(c) 2024 imc Test & Measurement GmbH

"map.filename" : Obsolete, please use CwActoinP! Map display: Name (including path and extension) of the file from which the
picture is imported. The filename will only be used in an immediately subsequent call of CwAction ("map.load").

"map.filled" : Map display: Which part of the window is to be covered by the picture? (0 only coordinate system, 1 entire window)

"map.fit" : Map display: Fit background picture (0 auto, 1 fit horizontally, 2 fit vertically, 3 keep size)

"map.lat1" : Map display: Latitude point 1 in degrees

"map.lat2" : Map display: Latitude point 2 in degrees

"map.lon1" : Map display: Longitude point 1 in degrees

"map.lon2" : Map display: Longitude of point 2 in degrees

"map.scale.adjust" : Map: Adapt scale. (0 no, 1 x-, y-axes are scaled in accordance with Internet maps)

"map.x1" : Map display: Relative x-coordinate of point 1 (0.0 left border, 1.0 right border of picture)

"map.x2" : Map display: Relative x-coordinate of point 2 (0.0 left border, 1.0 right border of picture)

"map.y1" : Map display: Relative y-coordinate of point 2 (0.0 bottom border, 1.0 top border of picture)

"map.y2" : Map display: Relative y-coordinate of point 1 (0.0 bottom border, 1.0 top border of picture)

"measure.free" : While the measurement window is open, measurement cursors can be moved freely. (0: No; 1: Yes)

"measure.p.left" : With the measurement value window open, the cursor parameter (in XY-representation) linked with the left
mouse button

"measure.p.right" : With the measurement value window open, the cursor parameter (in XY-representation) linked with the right
mouse button

"measure.x.left" : When the measurement value window is open, the x-position of the left mouse button's cursor. Not for XY-
displays.

"measure.x.right" : When the measurement value window is open, the x-position of the right mouse button's cursor. Not for XY-
displays.

"measure.y.left" : When the measurement value window is open, the y-value of the left mouse button's cursor. Only for display
modes in which the cursor's y-coordinate can be freely moved, e.g. Color Map.

"measure.y.right" : When the measurement value window is open, the y-value of the right mouse button's cursor. Only for display
modes in which the cursor's y-coordinate can be freely moved, e.g. Color Map.

"name" : Title of the curve window. Only for special applications in which a free-floating curve window needs a title for identifcation
purposes, for instance for RgCurveSet().

"number.trimm" : Truncated numbers (0 no, 1 yes)

"opt.on.delete" : Optimize upon deleting data sets (0 no, 1 yes)

"scroll" : Scroll mode (0 no, 1 scroll, 2 stretch, 3 oscilloscope, 4 fill)

"shift.in.cfg" : Save the values for time shift and amplitde shift in the configuration (ccv) ? (0 no, 1 yes)

"showtrigger" : Show trigger line (0 no, 1 yes)

"splitmode.active" : Active view in Split mode (1 to number of views). 0, if no split mode. E.g. changes of the x-axis value range
affect the active view.

"splitmode.count" : Number of views in split mode. 1 for one single view without split mode

"splitmode.width" : Split mode width of the active view in percent (0 to 100) of total width

"suppress.lines.opt" : Optimization in conjunction with hidden lines (0: No, axes and coordinate systems remain visible; 1: Yes, axes
and coordinate systems are made as small as possible or even invisible when all associated lines are hidden.)

"title" : Title bar for free-floating curve window, "<auto>" for automatic determination

"toolbar.on" : The toolbar with free-floating curve windows for special applications (0 turned off completely, context menu like with
embedded windows. 1: on, default)

"win.dx" : Width of the curve window on the screen for floating curve windows, stated in pixels

"win.dy" : Height of the curve window on the screen for floating curve windows, stated in pixels

"win.enable.cursors" : Determines whether the user can drag the cursors to relocate them: measurement cursors, link lines, etc. (0:
No; 1: Yes). Has no effect on embedded curve windows in the Design mode.

"win.x" : Position of the left edge of the curve window on the screen for floating curve windows, stated in pixels

"win.y" : Position of the top edge of the curve window on the screen for floating curve windows, stated in pixels

"3D.angle1" : 3D: first specified angle for defining the perspective, in degrees (length or angle of z-axis)

imc FAMOS Func on Reference - 210 -

(c) 2024 imc Test & Measurement GmbH

"3D.angle2" : 3D: second specified angle for defining the perspective, in degrees (width)

"3D.angle3" : 3D: third specified angle for defining the perspective, in degrees (rotation)

"3D.color.fillsymbol" : Color map: color of symbol filling; format see rgb()

"3D.color.fix1" : Color palette: 1st fixed color; for format see rgb()

"3D.color.fix2" : Color palette: 2nd fixed color; fof format see rgb()

"3D.color.fix3" : Color palette: 3rd fixed color; for format see rgb()

"3D.color.fix4" : Color palette: 4th fixed color; for format see rgb()

"3D.color.isoback" : Color map: color of ISO line background; for format, see rgb(); -1 for automatic, -2 for transparent

"3D.color.isoborder" : Color map: color of ISO line edge; for format see rgb(); -1 for automatic, -2 for transparent

"3D.color.isolines" : Color map and 3D: color of ISO lines; for format see rgb()

"3D.color.isotext" : Color map: color of ISO line text; for format, see rgb()

"3D.color.symbolborder" : Color map: ColorSymbolEdge; for format, see rgb(); -1 for automatic, -2 for transparent

"3D.color bar.width" : Color palette: Color probe width in mm; 0 for automatic

"3D.color legend" : 3D: color legend shown (0: auto, 1: no, 2: color legend along vertical y-axis, 3: separate color legend at right, 4:
separate color legend at left)

"3D.color pattern" : Color palette: color scheme (0: auto; 1: two fixed colors; 2: three fixed colors, 3: four fixed colors; 4: spectral; 5:
b/w compatible; 6: b/w; 7: black blue green yellow red; 8: blue cyan green yellow red; 9: blue green yellow red; 10: black blue pink
red yellow white; 11: green cyan blue pink red; 12: black blue cyan green yellow red; 13: black blue red yellow white; 14: black blue
cyan white; 15: white yellow red pink blue black; 16: white cyan blue black; 17: white yellow red blue black; 18: four fixed colors +
first white; 19: four fixed colors + white in the middle; 20: four fixed colors + last white; 21: four fixed colors + white in front, black
behind; 22: four fixed colors + black front, white behind). Only in effect if 3D.represent is set to 1 or 2.

"3D.colors.number" : Color palette: number of colors for gradiated colors (2..1000)

"3D.font.iso.size" : Color map: font size for labeling of ISO lines, in pts, e.g. 8.

"3D.grid" : 3D: grid options (0 auto; 1 volume and edge surfaces; 2 volume; 3 volume and edge surfaces, only main grid; 4 volume,
only main grid; 5 also at measurement points; 6 only at measurement points; 7 also at measurement points, behind; 8 dotted behind;
9 dotted behind, with edge surfaces; 10 edge surfaces)

"3D.interpolation" : Color map: interpolation (0 auto, 1 linear, 2 constant)

"3D.iso.exponent" : Color map: exponent for the labeling of ISO lines (-12, -9, ...9)

"3D.iso.format" : Color map: ISO text format (0 auto, 1 fixed point, 2 floating point)

"3D.iso.text" : Color map: labeling of the ISO lines (0 auto, 1 no, 2 yes, 3 as horizontal as possible, 4 as horizontal as possible and
unobstructed, 5 as unobstructed as possible, 6 at discrete x-positions, 7 at discrete x-positions and close, 8 at discrete y-positions, 9
at discrete y-positions and close, 10 multiple along long lines , 11 frequent)

"3D.isolines" : Color map and 3D: ISO lines desired (0 no, 1 yes)

"3D.lowerlimit" : Color map: Lower limit. Only values above are taken into account.

"3D.lowerlimit.use" : Color map: observe lower limit (0 no, 1 yes)

"3D.perspective" : 3D: how the perspective is defined (0 auto, 1 shear with z-axis angle, 2 longhitude and latitude, 3 with rotation)

"3D.places.right" : Color map: decimal places: 0..15

"3D.represent" : Color map and 3D: Representation (0 auto, 1 color map with continuous color transitions, 2 color map with gradated
colors, 3 symbols with size according to amplitude, 4 symbols with filling like amplitude)

"3D.sym.mult" : Color map: multiplier for maximum symbol size. Factor by which the symbol size may be larger than the font size

"3D.symbol.fixed" : Color map: fixed symbol (0 square from middle, 1 square from bottom, 2 square from lower left, 3 square from
outside, 4 circle)

"3D.symbol.var" : Color map: variable symbol (0 circle, 1 square, 2 diamond, 3 filled circle, 4 filled square, 5 filled diamond)

"3D.z.coordinate.dz" : Color map, 3D: dz with fixed range of z-coordinates of data. Only applies if "3D.z.coordinate.mode" has been
set to 2.

"3D.z.coordinate.mode" : Color map, 3D: Definition of data's z-coordinate range. Segmented data come with their own z-
coordinates. With other data formats, z-coordinates may have to be added. (1: Fixed values 0, 1, 2, 3, ..; 2: Fixed values of z0, dz and z-
unit, 3: auto, z-coordinates of data are used)

"3D.z.coordinate.unit" : Color map, 3D: Unit with data's range of z-coordinates fixed. Only applies if "3D.z.coordinate.mode" has
been set to 2.

imc FAMOS Func on Reference - 211 -

(c) 2024 imc Test & Measurement GmbH

"3D.z.coordinate.z0" : Color map, 3D: z0 with data's range of z-coordinates fixed. Only applies if "3D.z.coordinate.mode" has been set
to 2.

"polar.skydirection" : Polardiagramm, Anzeige der Himmelsrichtungen festlegen. 0 keine, 4, 8, 16 Himmelsrichtungen

"polar.displayangles" : Polardiagramm, Anzeige von Winkeln am Kreis, 0 keine, 1: Winkel in Grad [°]

"polar.spin" : Polardiagramm, Drehrichtung des Winkels, 0 links drehend (mathematisch positiv, 1 rechts drehend (mathematisch
negativ)

"polar.anglezeropos" : Polardiagramm, Winkeloffset, 0 rechts (0°) , 1 oben (90°), 2 links (180°), 3 unten (270°), 4 frei definiert

"polar.angleoffset" : Polardiagramm, 0° Winkeloffset

"polar.axispos" : Polardiagramm, Position der Y-Achse, 0 innen oben, 1 links oben, 2 rechts oben, 3 innen, 4 links, 5 rechts

"polar.xasangle" : Polardiagramm, Interpretation der X-Daten , 0 kein Winkel, 1 Winkel in °, 2 Winkel als Radiant

Value In which way should this property be set?

Description:

Examples:
Set the display style to Standard

CwSelectWindow("curve1")
CwDisplaySet("displaymode", 1)

3D color palette

CwSelectWindow("curve1")
CwDisplaySet("displaymode", 8)
CwDisplaySet("3D.color pattern", 1)
CwDisplaySet("3D.color.fix1", rgb(0,255,0))
CwDisplaySet("3D.color.fix1", rgb(0,0,255))

Color palette in default display mode

CwNewWindow("1", "show")
CwDisplaySet("displaymode", 1)
CwDisplaySet("color palette", 1)
CwDisplaySet("3D.color pattern",4)
CwDisplaySet("3D.colors.number",10)
CwNewChannel("append last axis", sintest1)
CwNewChannel("append last axis", sintest2)
CwSelectByChannel("data", sintest2)
CwDataSet("function", 1)
CwSelectByIndex("z-axis", 1)
CwAxisSet("visible", 0)

Header or footer or title: First, set the count. Then select and modify the haader.

CwDisplaySet("header.count", 1)
CwSelectByIndex("header", 1)
CwDisplaySet("header.text", "Title")
CwDisplaySet("header.text.size", 12)
CwDisplaySet("legend.space.top", 10)

See also:
CwDisplayGet, CwDisplayGetText

imc FAMOS Func on Reference - 212 -

(c) 2024 imc Test & Measurement GmbH

CwGlobalGet

Scope: Curve Windows

Get global property

Declaration:
CwGlobalGet (Property, Parameter) -> Value

Parameter:

Property Get which property?

"caption.option" : Caption of a free-floating curve window. (0 auto, 1 filename of the loaded ccv file)

"colors.printer.pattern" : Other line types (0 no, 1 yes). Applies to all curve windows for the printer, unless set for individualized
colors.

"colors.screen.pattern" : Other line types (0 no, 1 yes). Applies to all curve windows for the screen, unless set for individualized
colors.

"double click.empty" : Response to double-clicking on empty areas (0: no action, 1: switch selection mode On/Off)

"export.dpi" : Graphics export resolution in dpi (150, 300, 600, 1200)

"export.orientation" : PDF export, orientation (0: auto, 1: portrait, 2: landscape)

"export.pdf.append" : PDF export, attaching pages to existing PDF file (0: no, 1: yes). Only takes effect with manual export.

"export.pdf.method" : For exporting the curve window's graph to a PDF file, use one of the following methods (0: auto, 1 Bitmap, 2
Vector graphic preferred, best quality, by means of XPS Document Writer)

"graphics.type" : Graphics type for copying to the clipboard, plus printout and export (0: auto, vector graphic, 1: bitmap pixel
graphic, 2: exact screen display)

"measure.cursor.change" : How the measurement cursor responds to axis change (0: measurement cursor remains at its pixel
position, 1: measurement cursor remains at its coordinate)

"measure.cursor.hori" : Enable horizontal measurement cursor? (0: No; 1: Yes)

"sample.index" : Index of selected sample. Beginning with 1 for first sample. If data have segments or events, then counting starts
at the very first sample.

"sample.x" : X-component (2nd component/phase, or real part) of selected sample

"sample.y" : Y-component (1st component/magnitude, or imaginary part) of selected sample

"sample.z" : Z-coordinate of selected sample. E.g. coordinate of color-determining channel

"y-axis.navi.x" : How the y-axis changes when navigating in x-direction (0: fix y-axes, 1 y-axes stay automatic)

Parameter Parameter, depending on property; otherwise 0

Value

Value The property's value

Description:

Examples:
A sample is selected in a curve window and afterwards its y value is retrieved via a kit function.

y = CwGlobalGet("sample.y", 0)

See also:
CwGlobalSet, CwGlobalGetText

imc FAMOS Func on Reference - 213 -

(c) 2024 imc Test & Measurement GmbH

CwGlobalGetText

Scope: Curve Windows

Get global text property

Declaration:
CwGlobalGetText (Property, Parameter) -> Value

Parameter:

Property Get which property?

"sample.x.name" : For xy plot, the channel name of the x component

"sample.y.name" : Channel name of selected sample; with xy plots, channel name of the y component

"sample.z.name" : Name of the channel which determines the color of the selected sample. For a xyz plot, the channel name of z
component

Parameter Parameter, depending on property; otherwise 0

Value

Value The property's value

Description:

Examples:
A sample is selected in a curve window and subsequently, a kit function gets the channel name.

name = CwGlobalGetText("sample.y.name", 0)

See also:
CwGlobalSet, CwGlobalGet

imc FAMOS Func on Reference - 214 -

(c) 2024 imc Test & Measurement GmbH

CwGlobalSet

Scope: Curve Windows

Set general global property for all curve windows

Declaration:
CwGlobalSet (Property, Value)

Parameter:

Property Which property is to be set?

"caption.option" : Caption of a free-floating curve window. (0 auto, 1 filename of the loaded ccv file)

"close all" : Closes al free-floating curve windows (sets value = 0)

"colors.printer.pattern" : Other line types (0 no, 1 yes). Applies to all curve windows for the printer, unless set for individualized
colors.

"colors.screen.pattern" : Other line types (0 no, 1 yes). Applies to all curve windows for the screen, unless set for individualized
colors.

"dir.ccv" : Sets the default directory for ccv files. It is valid during the current session. The directory can only be set when working
with projects.

"double click.empty" : Response to double-clicking on empty areas (0: no action, 1: switch selection mode On/Off)

"export.dpi" : Graphics export resolution in dpi (150, 300, 600, 1200)

"export.orientation" : PDF export, orientation (0: auto, 1: portrait, 2: landscape)

"export.pdf.append" : PDF export, attaching pages to existing PDF file (0: no, 1: yes). Only takes effect with manual export.

"export.pdf.method" : For exporting the curve window's graph to a PDF file, use one of the following methods (0: auto, 1 Bitmap, 2
Vector graphic preferred, best quality, by means of XPS Document Writer)

"font.name" : Name of the default font for captions in curve windows, e.g. "Arial".

"font.size" : Size of default font for captions in curve windows, in pts, e.g. 8.

"graphics.type" : Graphics type for copying to the clipboard, plus printout and export (0: auto, vector graphic, 1: bitmap pixel graphic,
2: exact screen display)

"infront.of.main" : Works like the FAMOS option "Never hidden by main window": 0: Main window can also hide the curve window;
1: The curve window is never hidden by the main window. Applies to free-floating curve windows created using this Kit. Unless the
funciton is called, the value 0 applies.

"load.show" : How is a curve window to be displayed after a configuration is loaded (0: always hidden, 1: automatic as recorded in
the CCV file). Applies to free-floating curve window loaded using this Kit. Unless the function is called, the value 1 applies.

"measure.cursor.change" : How the measurement cursor responds to axis change (0: measurement cursor remains at its pixel
position, 1: measurement cursor remains at its coordinate)

"measure.cursor.hori" : Enable horizontal measurement cursor? (0: No; 1: Yes)

"y-axis.navi.x" : How the y-axis changes when navigating in x-direction (0: fix y-axes, 1 y-axes stay automatic)

Value In which way should this property be set?

Description:

Examples:
Set font size for curve window

CwGlobalSet("font.size", 10) ; font size to 12 pt

Settings for pdf export

CwGlobalSet("graphics.type", 0)
CwGlobalSet("export.dpi", 300)
CwGlobalSet("export.pdf.append", 0)
CwGlobalSet("export.orientation", 1)
CwGlobalSet("export.pdf.method", 2)
CwPrintSet("layout", 0)
CwPrintSet("width", 180)
CwPrintSet("height", 260)

imc FAMOS Func on Reference - 215 -

(c) 2024 imc Test & Measurement GmbH

See also:
CwGlobalGet, CwGlobalGetText, CwPrintSet

imc FAMOS Func on Reference - 216 -

(c) 2024 imc Test & Measurement GmbH

CwIsWindow

Scope: Curve Windows

Determines whether the specified curve window exists.

Declaration:
CwIsWindow (Identification) -> Exist

Parameter:

Identification This data set identifies the curve window. With CwSelectMode, the system determined previously how identification is
performed.

Exist

Exist Exist (=0, if not present; <> 0, if present)

Description:

Examples:

data=ramp(0,1,10)
if CwIsWindow(data) <> 0
 ; e.g select the curve window and work with it
end

See also:
CwSelectMode

imc FAMOS Func on Reference - 217 -

(c) 2024 imc Test & Measurement GmbH

CwLineGet

Scope: Curve Windows

Get line property

Declaration:
CwLineGet (Property) -> Value

Parameter:

Property Get which property?

"type" : Line type: 0 none, 1 lines, 2 steps, 3 dots, 4 vert. line, 5 bars, 7 3D bars, 8 interpolation

"color.printer" : Line color on the printer; for format see rgb() and -1 for automatic

"color.screen" : Color of the line on the screen; for format, see rgb().

"area.border" : Boundary for display of area below curves which are not stair steps or straight lines (0: auto; 1: steps; 2: linear)

"area.color" : This color is used for displaying areas below curves. For the format, see rgb() and -1 for automatic

"area.color2" : This is the 2nd color in a color gradient display. For the format, see rgb() and -1 for automatic

"area.fill" : Color fill for area below the curve (0: none; 1: up to y= zero; 2: to bottom; 3: inside)

"area.gradient" : Color gradients for the display of surfaces below curves (0: none; 1: from top to bottom; 2: from bottom to top; 3:
from left to right; 4: from right to left)

"auxiliary" : Line is an auxiliary line (0: No; 1: Yes)

"bar.begin.y" : Bar beginning in y-direction (0: auto, 1: begin at 0, 2: begin at bottom surface, 3: begin below bottom surface)

"bar.color.type" : Bar color scheme (0: auto, 1: with color gradient, 2: single-color)

"bar.place.x" : Placement of bar in x-direction (0: auto, 1: between one measurement value and the next, 2: centered around
measurement value, 3: aligned to measurement value)

"bar.place.z" : Placement of bar in z-direction (0: auto, 1: between one measurement value and the next, 2: centered around
measurement value, 3: aligned to measurement value)

"bar.width.x" : Bar width in x-direction, stated in percent: 1 to 100, 0: auto

"bar.width.z" : Bar width in z-direction, stated in percent: 1 to 100, 0: auto

"color2" : Color 2, e.g. with 3D the color of the surface. For the format, see rgb() and -1 for automatic.

"count.data" : Amount of data elements contained in this line

"cross section.option" : Calculate a cross section of the data? (0: no, 1: x = constant, 2: y = constant)

"cross section.value" : The value at which the cross section is to be taken

"effect" : Display the data (in a color map) as a real line, for instance (0: auto; 1: overlapping; 2: upper limit; 3: lower limit; 4: left
limit; 5: right limit; 6: outer limit; 7: inner limit; 8: RGB)

"label.color" : Color of the labeling; for format, see rgb(), (-1: auto)

"label.font.size" : Font of the line labeling, in pt, e.g. 8

"label.format" : Numerical format of the labeling (0: auto, 1: fixed point, 2: floating point)

"label.option" : Should the measurement points be labeled with their numerical values. (0: no, 1: yes)

"label.placement" : Position of the labeling (0: auto, 1: right, 2: top right, 3: bottom right, 4: left, 5: top left, 6: bottom left, 7: middle,
8: top middle, 9: bottom middle)

"label.precision" : Precision of the numerical values of the labeling. For fixed-point and floating point, the decimal places 0..14; else
number of valid digits: 1..14

"label.selection" : Value selection for the labeling (0: auto, 1: y, 2: x, 3: parameter, 4: magnitude, 5: phase)

"legend.append" : Show name extension in legend for line (0 auto, 1 yes, 2 no)

"legend.channel" : Show channel name in legend for the line (0 auto, 1 yes, 2 no)

"legend.comment" : Show comment in legend for lines (0 auto, 1 yes, 2 no)

"legend.group" : Show group names in legend for line (0 auto, 1 yes, 2 no)

"legend.measurement" : Show measurement in legend for line (0 auto, 1 yes, 2 no, 3 number of selected measurement)

imc FAMOS Func on Reference - 218 -

(c) 2024 imc Test & Measurement GmbH

"legend.numerical.format" : Format of the numerical values in the line legend (0: auto, 1: fixed point, 2: floating point)

"legend.numerical.precision" : Precision of the numerical values in the line's legend. For fixed- and floating point, the decimal
places 0..14; else number of valid digits 1..14

"legend.numerical.option" : Allow numerical values in line legend (0: auto, 1: no)

"legend.sample" : Show line probe in legend for lines (0 auto, 1 yes, 2 no)

"legend.show" : Show legend for line (0: auto, 1: yes, 2: no, 3: text with placeholders)

"linestyle.printer" : Line type on the printer (0 auto, 1 solid, 2 dotted, 3 dashed, 4..13 other combinations)

"linestyle.screen" : Line type on the monitor (0 auto, 1 solid, 2 dotted, 3 dashed, 4..13 other combinations)

"scale.type" : Scaling of line (0: auto; 1: from 0 to 1 relative; 2: from 0 to 1 with offset; 3: mm relative; 4: mm with offset; 5: stretch
image; 6: adjust image horizontally; 7: adjust image vertically; 8: show complete image; 9: keep image size)

"shift.x" : Time shift in physical units. For linear, an offset; for logarithmic, a factor.

"shift.y" : Amplitude shift in physical units. For linear, an offset; for logarithmic, a factor.

"suppress" : Hide line (0: No = default; 1: Yes)

"symbol" : Symbol: 0 none, 1 square, 2 circle, 3-4 triangles, 5 diamond, 6 pulse, 7 X, 8 fat dots, 9 horz. line, 10-11 triangles, 12-13 X, 14
filled diamond, 15 square, 16-19 triangles, 20-21 squares, 22-23 X, 24 minus, 25 empty

"symbol.count" : Number of symbols, interpreted according to symbol count option

"symbol.count.opt" : symbol count option: 1: at every sample (symbol count=0); 2: fixed number of symbols to be drawn across the
width of the coordinate system (symbol count>0).

"symbolsize.printer" : Symbol size on printer in mm (-1 auto)

"symbolsize.screen" : Symbol size on monitor in mm (-1 auto)

"uncertainty.show" : Display uncertainty (0 no, 1 colored area, 2 line). Please refer to property: Uncertainty.

"uncertainty.color" : This color used for uncertainty display; for format see rgb() and -1 for automatic

"uncertainty.selection" : Selection for the measurement uncertainty (0: auto, 1: standard measurement uncertainty, 2: expanded
measurement uncertainty). See the properties for Uncertainty and Expanded uncertainty. With "auto", the standard measurement
uncertainty is given preference.

"width.printer" : Line thickness on the printer in mm (-1 auto)

"width.screen" : Line thickness on the monitor in mm (-1 auto)

"3D.surface" : 3D: selection of the surface (0 auto, 1 filled wire grid, 2 filled, 3 wire grid, 4 points, 5 wire grid in color palette, 6 Space
curve, 7 Space curve with color tones)

Value

Value The property's value

Description:

Examples:
Query of which symbol is currently used to represent the line

CwSelectByIndex("line", 1)
symbol = CwLineGet("symbol")

See also:
CwAxisLineSet

imc FAMOS Func on Reference - 219 -

(c) 2024 imc Test & Measurement GmbH

CwLineSet

Scope: Curve Windows

Set line property

Declaration:
CwLineSet (Property, Value)

Parameter:

Property Which property is to be set?

"type" : Line type: 0 none, 1 lines, 2 steps, 3 dots, 4 vert. line, 5 bars, 7 3D bars, 8 interpolation

"color.printer" : Line color on the printer; for format see rgb() and -1 for automatic

"color.screen" : Line color on the monitor; for format see rgb() and -1 for automatic

"area.border" : Boundary for display of area below curves which are not stair steps or straight lines (0: auto; 1: steps; 2: linear)

"area.color" : This color is used for displaying areas below curves. For the format, see rgb() and -1 for automatic

"area.color2" : This is the 2nd color in a color gradient display. For the format, see rgb() and -1 for automatic

"area.fill" : Color fill for area below the curve (0: none; 1: up to y= zero; 2: to bottom; 3: inside)

"area.gradient" : Color gradients for the display of surfaces below curves (0: none; 1: from top to bottom; 2: from bottom to top; 3:
from left to right; 4: from right to left)

"auxiliary" : Line is an auxiliary line (0: No; 1: Yes)

"bar.begin.y" : Bar beginning in y-direction (0: auto, 1: begin at 0, 2: begin at bottom surface, 3: begin below bottom surface)

"bar.color.type" : Bar color scheme (0: auto, 1: with color gradient, 2: single-color)

"bar.place.x" : Placement of bar in x-direction (0: auto, 1: between one measurement value and the next, 2: centered around
measurement value, 3: aligned to measurement value)

"bar.place.z" : Placement of bar in z-direction (0: auto, 1: between one measurement value and the next, 2: centered around
measurement value, 3: aligned to measurement value)

"bar.width.x" : Bar width in x-direction, stated in percent: 1 to 100, 0: auto

"bar.width.z" : Bar width in z-direction, stated in percent: 1 to 100, 0: auto

"color2" : Color 2, e.g. with 3D the color of the surface. For the format, see rgb() and -1 for automatic.

"cross section.option" : Calculate a cross section of the data? (0: no, 1: x = constant, 2: y = constant)

"cross section.value" : The value at which the cross section is to be taken

"effect" : Display the data (in a color map) as a real line, for instance (0: auto; 1: overlapping; 2: upper limit; 3: lower limit; 4: left
limit; 5: right limit; 6: outer limit; 7: inner limit; 8: RGB)

"label.color" : Color of the labeling; for format, see rgb(), (-1: auto)

"label.font.size" : Font of the line labeling, in pt, e.g. 8

"label.format" : Numerical format of the labeling (0: auto, 1: fixed point, 2: floating point)

"label.option" : Should the measurement points be labeled with their numerical values. (0: no, 1: yes)

"label.placement" : Position of the labeling (0: auto, 1: right, 2: top right, 3: bottom right, 4: left, 5: top left, 6: bottom left, 7: middle,
8: top middle, 9: bottom middle)

"label.precision" : Precision of the numerical values of the labeling. For fixed-point and floating point, the decimal places 0..14; else
number of valid digits: 1..14

"label.selection" : Value selection for the labeling (0: auto, 1: y, 2: x, 3: parameter, 4: magnitude, 5: phase)

"legend.append" : Show name extension in legend for line (0 auto, 1 yes, 2 no)

"legend.channel" : Show channel name in legend for the line (0 auto, 1 yes, 2 no)

"legend.comment" : Show comment in legend for lines (0 auto, 1 yes, 2 no)

"legend.group" : Show group names in legend for line (0 auto, 1 yes, 2 no)

"legend.measurement" : Show measurement in legend for line (0 auto, 1 yes, 2 no, 3 number of selected measurement)

"legend.numerical.format" : Format of the numerical values in the line legend (0: auto, 1: fixed point, 2: floating point)

imc FAMOS Func on Reference - 220 -

(c) 2024 imc Test & Measurement GmbH

"legend.numerical.precision" : Precision of the numerical values in the line's legend. For fixed- and floating point, the decimal
places 0..14; else number of valid digits 1..14

"legend.numerical.option" : Allow numerical values in line legend (0: auto, 1: no)

"legend.sample" : Show line probe in legend for lines (0 auto, 1 yes, 2 no)

"legend.show" : Show legend for line (0: auto, 1: yes, 2: no, 3: text with placeholders)

"legend.text" : Text displayed as the legend. The text may contain placeholders.

"linestyle.printer" : Line type on the printer (0 auto, 1 solid, 2 dotted, 3 dashed, 4..13 other combinations)

"linestyle.screen" : Line type on the monitor (0 auto, 1 solid, 2 dotted, 3 dashed, 4..13 other combinations)

"measure.cursor.set" : The measurement cursor is set to this line (1 linked with the left mouse button, 2 linked with the right mouse
button).

"scale.type" : Scaling of line (0: auto; 1: from 0 to 1 relative; 2: from 0 to 1 with offset; 3: mm relative; 4: mm with offset; 5: stretch
image; 6: adjust image horizontally; 7: adjust image vertically; 8: show complete image; 9: keep image size)

"shift.x" : Time shift in physical units. For linear, an offset; for logarithmic, a factor.

"shift.y" : Amplitude shift in physical units. For linear, an offset; for logarithmic, a factor.

"suppress" : Hide line (0: No = default; 1: Yes)

"symbol" : Symbol: 0 none, 1 square, 2 circle, 3-4 triangles, 5 diamond, 6 pulse, 7 X, 8 fat dots, 9 horz. line, 10-11 triangles, 12-13 X, 14
filled diamond, 15 square, 16-19 triangles, 20-21 squares, 22-23 X, 24 minus, 25 empty

"symbol.count" : Number of symbols, interpreted according to symbol count option

"symbol.count.opt" : symbol count option: 1: at every sample (symbol count=0); 2: fixed number of symbols to be drawn across the
width of the coordinate system (symbol count>0).

"symbolsize.printer" : Symbol size on printer in mm (-1 auto)

"symbolsize.screen" : Symbol size on monitor in mm (-1 auto)

"uncertainty.color" : This color used for uncertainty display; for format see rgb() and -1 for automatic

"uncertainty.show" : Display uncertainty (0 no, 1 colored area, 2 line). Please refer to property: Uncertainty.

"uncertainty.selection" : Selection for the measurement uncertainty (0: auto, 1: standard measurement uncertainty, 2: expanded
measurement uncertainty). See the properties for Uncertainty and Expanded uncertainty. With "auto", the standard measurement
uncertainty is given preference.

"width.printer" : Line thickness on the printer in mm (-1 auto)

"width.printer.pt" : Line thickness on the printer in pt (-1: auto)

"width.screen" : Line thickness on the monitor in mm (-1 auto)

"width.screen.pt" : Line thickness on the monitor, in pt (-1: auto)

"3D.surface" : 3D: selection of the surface (0 auto, 1 filled wire grid, 2 filled, 3 wire grid, 4 points, 5 wire grid in color palette, 6 Space
curve, 7 Space curve with color tones)

Value In which way should this property be set?

Description:

Examples:
Adjust stair steps

CwSelectByIndex("line", 1)
CwLineSet("style", 2)

See also:
CwAxisLineGet

imc FAMOS Func on Reference - 221 -

(c) 2024 imc Test & Measurement GmbH

CwLoadCCV

Scope: Curve Windows

Opens the curve configuration from a *.ccv-file.

Declaration:
CwLoadCCV (Identification, Filename) -> Error text

Parameter:

Identification This data set identifies the curve window. With CwSelectMode, the system determined previously how identification is
performed.

Filename From which file should the configuration be opened?

Error text

Error text Error text at fault condition; or if operation successful, an empty string. (optional)

Description:
The function regenerates the curve window, unless a curve window with the specified identity is already present.

The function also immediately selects the curve window.

CwSelectWindow() need not be called afterwards. That will be necessary for later selection of this curve window once other curve windows have
been selected.

If the identification is a text, this applies: If a curve window's title is present in the opened Panel or dialog, it will be addressed. If it is not
present, but a free-floating curve window with that identification exists, that one will be addressed. Otherwise a new free-floating curve
window will be created.

If the identification is a data set, a free-floating curve window will be addressed or created.

The configuration of the curve window contains all attributes of the display, but not the displayed measured data themselves.

The behavior of the function can be influenced by a previous call to the function CwGlobalSet.

Examples:
Loads a CCV file

data = ramp(0,1,10)
CwLoadCCV(data, "c:\imc\ccv\1.ccv")

Loading the CCV file for a curve window embedded in the Panel. The CCV file is located in the project directory.

CwLoadCCV("curve1", "1.ccv")

If multiple curve windows in the Panel have the same title, then the page name ("page1" in this case) separated with a dot must be prefixed.

CwLoadCCV("page1.curve1", "1.ccv")

Loading the CCV file for a curve window embedded in the dialog or Panel

CwLoadCCV("curve1", "c:\imc\ccv\1.ccv")

Open from the CCV folder or from the project folder

CwLoadCCV(data, "1.ccv")

Loads an error query

errortext = CwLoadCCV(data, "1.ccv")
if errortext <> ""
 ; ...
end

Loading of a CCV file; identification by means of a variable

CwLoadCCV(data, "1.ccv")
...
CwSelectWindow(data)

Loading of a CCV file; identification using text

CwLoadCCV("t", "c:\imc\ccv\1.ccv")
...
CwSelectWindow("t")

imc FAMOS Func on Reference - 222 -

(c) 2024 imc Test & Measurement GmbH

Loading of a CCV file; creating a free-floating curve window without identification

Afterwards the curve window is selected. However, it will generally not be possible to select it again after a different curve window has been
selected.

CwLoadCCV(0, "1.ccv")

See also:
CwSaveCCV

imc FAMOS Func on Reference - 223 -

(c) 2024 imc Test & Measurement GmbH

CwLoadSettings

Scope: Curve Windows

This function loads a global setting from the file specified in TxFileName into the Curve Manager.

Declaration:
CwLoadSettings (TxFileName, SvSetting, SvParameter)

Parameter:

TxFileName TxFileName

SvSetting SvSetting

1 : All curve windows are immediately displayed using the new color scheme. This includes all of the settings in the color dialog.

2 : For all subsequent printing procedures, for transfer to the Report Generator, copying to the Clipboard, and graphics export,
the new colors will be applied.

3 : All settings belonging to the dialog <Clipboard settings> are applicable effective immediately. For all subsequent printing
procedures, and transfer to the Report Generator, copying to the Clipboard and graphics export, these settings will be applied.
However, any reports for which the current settings are not to be applied upon transferring are unaffected.

4 : Some Settings made in the dialog <curve window presettings...> are loaded. These settings will be used for all curve windows.
The font used for screen display is one of these settings.

SvParameter SvParameter

Description:
The file is usually expected in the CCV-directory (imc FAMOS). Some of the options affect all open windows. When not otherwise specified, set
SvParameter = 0.

The function does not produce an error message when the file is incomplete or does not even exist.

Examples:
The file c:\imc\set\colors.set was previously saved.

CwLoadSettings ("..\set\colors.set", 1, 0)

See also:
CwGlobalSet

imc FAMOS Func on Reference - 224 -

(c) 2024 imc Test & Measurement GmbH

CwMarkerGet

Scope: Curve Windows

Get marker property

Declaration:
CwMarkerGet (Property) -> Value

Parameter:

Property Get which property?

"x.type" : Type of x-coordinate (1 physical unit, 2 percent of axis length)

"x" : x-coordinate whose meaning is determined by "Type of x-coordinate"

"y.type" : Type of y-coordinate (1 physical unit, 2 percent of axis length)

"y" : y-coordinate whose meaning is determined by "Type of x-coordinate"

"angle" : Angle of conneting line in degrees (-360 .. +360). Not valid for "Type of line length" = "XY percentual".

"arrow" : Arrow type (0 none, 1 broad, 2 narrow, 3 broad filled, 4 narrow filled, 5 large, 6 large filled, 7 circle, 8 star, 9 line, 10 point)

"arrow.size" : Size of arrow in mm (0.5 .. 10.0), 0 for auto

"border" : Frame for the text (0 none, 1 simple, 2 with tip, 3 double)

"calculation" : For an order line, the calculation (0: order line in the RPM-spectrum; 1: RPM over frequency; 2: frequency over RPM; 3:
rotational frequency over frequency; 4: frequency over rotational frequency; 5: hyperbola in the order spectrum; 6: RPM and order;
7: rotation frequency and order)

"color.background" : Background color; for format, see rgb(); -1 for automatic, -2 for transparent

"color.text" : Color of text, format see rgb() and -1 for automatic

"dimline.arrow.position" : Dimension line: Arrow position (0 auto, 1 outer)

"dimline.dimension line.extend" : Dimension line: Extend dimension line in mm, >=0

"dimline.distance" : Dimension line: Distance of the dimension line from the marker: In mm from one of the two reference markers.
Or in relative terms as als fraction of the axis length, e.g. 0.1 for 10% of the axis length either to the right edge or the bottom. Or
fixed: 0..1 for the region either left of or above the coordinate system, 1..2 within, 2..3 right of or below the coordinate system.

"dimline.distance type" : Dimension line: How is the distance specified? (0: fixed, 1: relative from 1st reference marker, 2: in mm
from 1st reference marker, 3: relative to 2nd reference marker, 4: in mm from 2nd reference marker)

"dimline.projection line.distance" : Dimension line: Distance of projection line in mm, >= 0

"dimline.projection line.extend" : Dimension line: Extend projection line in mm, >=0

"extension" : For horizontal/vertical line, the extension (0 all coordinate systems, 1 from the marker to left/bottom, 2 from the
marker until free position, 3 between 2 free positions, 4 across one coordinate system)

"font.size" : Font size for marker text, in pts, e.g. 8.

"harmonic.type" : If the marker is a harmonics cursor, the type (0: not a harmonics cursor, 1: harmonics of a fundamental oscillation,
2: Offset first oscillation, subsequent are periodic, 3: one or multiple harmonics with side bands, 4 two lines whose distance is a
factor)

"harmonic.index" : If the marker is a harmonics cursor, an index for distinguishing the individual cursors

"index" : Index of the marker. The index to the list of markers starts with 1.

"line.end" : For order lines, the end of the line in percent (0 .. 100)

"line.index" : Index of the assigned line (line element, not connecting line!), >= 1 for valid line, else 0

"line.start" : For order lines, the start of the line in percent (0 .. 100)

"line.text.pos" : For order lines, the position of the labeling along the line in percent

"linelength" : Length of line between marker point and marker text. The meaning of the length is determined by "Type of x-line
length". For "Type of line length" = "XY percentual", the length of the line in the x-direction is given here.

"linelength.type" : Type of line length (1 x-units, 2 % of x-axis, 3 y-units, 4 % of y-axis, 5 % of text height, 6 XY percentual: % x-axis
and LineLength2 % of y-axis)

"linelength2" : Length of line in y-direction, only for "Type of line length" = "XY percentual".

"linestyle" : Line type (0 auto, 1 solid, 2 dotted, 3 dashed, 4..13 other combinations)

imc FAMOS Func on Reference - 225 -

(c) 2024 imc Test & Measurement GmbH

"linewidth" : Line thickness in mm (0 auto)

"multiple" : For order lines, the parameter specified can only be a multiple of this value. If it is zero, there is no restriction.

"parameter" : The parameter for order lines; the type depends on the calculation. For an order line, the order; the frequency for a
hyperbola.

"pinnedtext" : Pinned text. In what direction should the text box extend. Typically 0. (0=auto, 1 top right, 2 top left, 3 bottom right, 4
bottom left)

"ref.1" : Index of the 1st reference marker of a dimension line. The index to the list of markers starts with 1 and selects a standard
marker.

"ref.2" : Index of the 2nd reference marker of a dimension line. The index to the list of markers starts with 1 and selects a standard
marker.

"text.orientation" : Orientation of the text in degrees (-90 .. +90). What is the angle of the text from horizontal?

"type" : Marker type (0 standard, 1 vertical line, 2 horizontal line, 3 text, 4 vertical dimension line, 5 horizontal dimension line)

"value.abs" : Dimension line: Use absolute value of the difference for labeling (0: no, 1: yes)

"within.cosys" : Is the marker only drawn inside of the coordindate system (0 no, 1 yes)

Value

Value The property's value

Description:

Examples:

mini = CwMarkerGet("min")

See also:
CwMarkerSet, CwMarkerGetText

imc FAMOS Func on Reference - 226 -

(c) 2024 imc Test & Measurement GmbH

CwMarkerGetText

Scope: Curve Windows

Get text property of a marker

Declaration:
CwMarkerGetText (Property) -> Value

Parameter:

Property Get which property?

"text" : Text

"text.placeholders" : Text with placeholders

Value

Value The property's value

Description:

Examples:
Get a marker's text

CwSelectByIndex("marker", 1)
text = CwMarkerGet("text")

See also:
CwMarkerSet, CwMarkerGet

imc FAMOS Func on Reference - 227 -

(c) 2024 imc Test & Measurement GmbH

CwMarkerSet

Scope: Curve Windows

Set marker property

Declaration:
CwMarkerSet (Property, Value)

Parameter:

Property Which property is to be set?

"text" : Text

"x.type" : Type of x-coordinate (1 physical unit, 2 percent of axis length)

"x" : x-coordinate whose meaning is determined by "Type of x-coordinate"

"y.type" : Type of y-coordinate (1 physical unit, 2 percent of axis length)

"y" : y-coordinate whose meaning is determined by "Type of x-coordinate"

"angle" : Angle of conneting line in degrees (-360 .. +360). Not valid for "Type of line length" = "XY percentual".

"arrow" : Arrow type (0 none, 1 broad, 2 narrow, 3 broad filled, 4 narrow filled, 5 large, 6 large filled, 7 circle, 8 star, 9 line, 10 point)

"arrow.size" : Size of arrow in mm (0.5 .. 10.0), 0 for auto

"border" : Frame for the text (0 none, 1 simple, 2 with tip, 3 double)

"calculation" : For an order line, the calculation (0: order line in the RPM-spectrum; 1: RPM over frequency; 2: frequency over RPM; 3:
rotational frequency over frequency; 4: frequency over rotational frequency; 5: hyperbola in the order spectrum; 6: RPM and order;
7: rotation frequency and order)

"color.background" : Background color; for format, see rgb(); -1 for automatic, -2 for transparent

"color.text" : Color of text, format see rgb() and -1 for automatic

"dimline.arrow.position" : Dimension line: Arrow position (0 auto, 1 outer)

"dimline.dimension line.extend" : Dimension line: Extend dimension line in mm, >=0

"dimline.distance" : Dimension line: Distance of the dimension line from the marker: In mm from one of the two reference markers.
Or in relative terms as als fraction of the axis length, e.g. 0.1 for 10% of the axis length either to the right edge or the bottom. Or
fixed: 0..1 for the region either left of or above the coordinate system, 1..2 within, 2..3 right of or below the coordinate system.

"dimline.distance type" : Dimension line: How is the distance specified? (0: fixed, 1: relative from 1st reference marker, 2: in mm
from 1st reference marker, 3: relative to 2nd reference marker, 4: in mm from 2nd reference marker)

"dimline.projection line.distance" : Dimension line: Distance of projection line in mm, >= 0

"dimline.projection line.extend" : Dimension line: Extend projection line in mm, >=0

"extension" : For horizontal/vertical line, the extension (0 all coordinate systems, 1 from the marker to left/bottom, 2 from the
marker until free position, 3 between 2 free positions, 4 across one coordinate system)

"font.size" : Font size for marker text, in pts, e.g. 8.

"line.end" : For order lines, the end of the line in percent (0 .. 100)

"line.selected" : The marker is assigned to the selected line (line element, not connecting line!). Value = 1.

"line.start" : For order lines, the start of the line in percent (0 .. 100)

"line.text.pos" : For order lines, the position of the labeling along the line in percent

"linelength" : Length of line between marker point and marker text. The meaning of the length is determined by "Type of x-line
length". For "Type of line length" = "XY percentual", the length of the line in the x-direction is given here.

"linelength.type" : Type of line length (1 x-units, 2 % of x-axis, 3 y-units, 4 % of y-axis, 5 % of text height, 6 XY percentual: % x-axis
and LineLength2 % of y-axis)

"linelength2" : Length of line in y-direction, only for "Type of line length" = "XY percentual".

"linestyle" : Line type (0 auto, 1 solid, 2 dotted, 3 dashed, 4..13 other combinations)

"linewidth" : Line thickness in mm (0 auto)

"multiple" : For order lines, the parameter specified can only be a multiple of this value. If it is zero, there is no restriction.

imc FAMOS Func on Reference - 228 -

(c) 2024 imc Test & Measurement GmbH

"parameter" : The parameter for order lines; the type depends on the calculation. For an order line, the order; the frequency for a
hyperbola.

"pinnedtext" : Pinned text. In what direction should the text box extend. Typically 0. (0=auto, 1 top right, 2 top left, 3 bottom right, 4
bottom left)

"ref.1" : Index of the 1st reference marker of a dimension line. The index to the list of markers starts with 1 and selects a standard
marker.

"ref.2" : Index of the 2nd reference marker of a dimension line. The index to the list of markers starts with 1 and selects a standard
marker.

"text.orientation" : Orientation of the text in degrees (-90 .. +90). What is the angle of the text from horizontal?

"within.cosys" : Is the marker only drawn inside of the coordindate system (0 no, 1 yes)

"value.abs" : Dimension line: Use absolute value of the difference for labeling (0: no, 1: yes)

Value In which way should this property be set?

Description:

Examples:
Set a marker's text

CwSelectByIndex("marker", 1)
CwMarkerSet("text", "Max!")

Set a marker's text with placeholders

CwSelectByIndex("marker", 1)
CwMarkerSet("<auto> Left!", "Max!")

See also:
CwMarkerGet, CwMarkerGetText, CwNewElement

imc FAMOS Func on Reference - 229 -

(c) 2024 imc Test & Measurement GmbH

CwNewChannel

Scope: Curve Windows

Displays a channel in the curve window

Declaration:
CwNewChannel (Position, Channel)

Parameter:

Position At which location should the new data be inserted?

"append last axis" : The new data are appended at the last y-axis present with a new line. The new line is selected.

"append line" : A new line, to which the new data are assigned, is appended behind the selected line. The new line is selected.

"append new axis" : The new data are appended to the last coordinate system with a new line and a new y-axis. The new line and
new axis are selected.

"append new cosys" : The new data are inserted into a newly appended coordinate system with a new line and a new y-axis. The
new coordinate system, new line and new axis are selected.

"append to cosys" : The new data are inserted as a new line in a new y-axis. The new y-axis will be inserted as the last y-axis of the
previously selected coordinate system. The new line and new axis are selected.

"first axis" : The new data are inserted as a new line with its own axis. The new line, along with its axis and coordinate system, is
selected.

"first line" : The new data are inserted as a new line in the first position. The new line, along with its axis and coordinate system, is
selected.

"insert axis" : The new data are inserted as a new line in a new y-axis. The new y-axis will be inserted behind the previously selected
y-axis. The new line and new axis are selected.

"insert cosys" : The new data are inserted as a new line in a new y-axis and a new coordinate system. The new coordinate system will
be inserted behind the previously selected coordinate system. The new coordinate system, new line and new axis are selected.

"insert first axis" : The new data are inserted as a new line with a new y-axis. The new y-axis is inserted as the first y-axis in the
previously selected coordinate system. The new line and new axis are selected.

"insert first cosys" : The new data are inserted into a newly added coordinate system with a new line and a new y-axis. The new
coordinate system will be the first coordinate system. The new coordinate system, new line and new axis are selected.

"insert first line" : The new data are inserted as a new line, which will be the first for the previously selected axis. The new line will
be selected.

"insert line" : A new line, to which the new data are assigned, is inserted before the line selected. The new line will be selected.

"replace data" : The selected data element receives the new channel.

"replace line" : The data on the selected line are replaced with the new data.

Channel Data set to be displayed in the curve window

Description:
Depending on the display type, no new axes or coordinate systems may be created.

Examples:
Add channels to a curve window

CwSelectWindow("curve1")
CwNewChannel("append last axis", channel1)
CwNewChannel("append last axis", channel2)

Add a channel's magnitude

CwSelectWindow("curve1")
CwNewChannel("append new axis", Spectrum.m)

Replace one displayed channel with another

CwSelectWindow("curve1")
CwSelectByIndex("line", 1)
CwNewChannel("replace line", channel2)

See also:

imc FAMOS Func on Reference - 230 -

(c) 2024 imc Test & Measurement GmbH

CwNewChannel_xy, CwNewChannel_xyz

imc FAMOS Func on Reference - 231 -

(c) 2024 imc Test & Measurement GmbH

CwNewChannel_xy

Scope: Curve Windows

Two channels are displayed as an xy-display in the curve window.

Declaration:
CwNewChannel_xy (Position, Channel 1, Channel 2, Option)

Parameter:

Position At which location should the new data be inserted?

"append last axis" : The new data are appended at the last y-axis present with a new line. The new line is selected.

"append line" : A new line, to which the new data are assigned, is appended behind the selected line. The new line is selected.

"append new axis" : The new data are appended to the last coordinate system with a new line and a new y-axis. The new line and
new axis are selected.

"append new cosys" : The new data are inserted into a newly appended coordinate system with a new line and a new y-axis. The
new coordinate system, new line and new axis are selected.

"append to cosys" : The new data are inserted as a new line in a new y-axis. The new y-axis will be inserted as the last y-axis of the
previously selected coordinate system. The new line and new axis are selected.

"first axis" : The new data are inserted as a new line with its own axis. The new line, along with its axis and coordinate system, is
selected.

"first line" : The new data are inserted as a new line in the first position. The new line, along with its axis and coordinate system, is
selected.

"insert axis" : The new data are inserted as a new line in a new y-axis. The new y-axis will be inserted behind the previously selected
y-axis. The new line and new axis are selected.

"insert cosys" : The new data are inserted as a new line in a new y-axis and a new coordinate system. The new coordinate system will
be inserted behind the previously selected coordinate system. The new coordinate system, new line and new axis are selected.

"insert first axis" : The new data are inserted as a new line with a new y-axis. The new y-axis is inserted as the first y-axis in the
previously selected coordinate system. The new line and new axis are selected.

"insert first cosys" : The new data are inserted into a newly added coordinate system with a new line and a new y-axis. The new
coordinate system will be the first coordinate system. The new coordinate system, new line and new axis are selected.

"insert first line" : The new data are inserted as a new line, which will be the first for the previously selected axis. The new line will
be selected.

"insert line" : A new line, to which the new data are assigned, is inserted before the line selected. The new line will be selected.

"replace line" : The data on the selected line are replaced with the new data.

Channel
1 1st channel to be displayed in the curve window

Channel
2 2nd channel to be displayed in the curve window

Option Option

"yx" : 1st channel becomes y-component, 2nd channel x-component.

"xy" : 1st channel becomes the x-component, 2nd channel the y-component.

Description:
Depending on the display type, no new axes or coordinate systems may be created.

Examples:
Add channels to a curve window

CwSelectWindow("curve1")
CwNewChannel_xy("append last axis", level, speed, "yx")
CwNewChannel_xy("append last axis", temperature, speed, "yx")

Replace a displayed channel with a new xy representation

CwSelectWindow("curve1")
CwSelectByIndex("line", 1)
CwNewChannel_xy("replace line", level, speed, "yx")

imc FAMOS Func on Reference - 232 -

(c) 2024 imc Test & Measurement GmbH

See also:
CwNewChannel, CwNewChannel_xyz

imc FAMOS Func on Reference - 233 -

(c) 2024 imc Test & Measurement GmbH

CwNewChannel_xyz

Scope: Curve Windows

Three channels are displayed in xyz-representation in the curve window.

Declaration:
CwNewChannel_xyz (Position, Channel 1, Channel 2, Channel 3, Option)

Parameter:

Position At which location should the new data be inserted?

"append last axis" : The new data are appended at the last y-axis present with a new line. The new line is selected.

"append line" : A new line, to which the new data are assigned, is appended behind the selected line. The new line is selected.

"append new axis" : The new data are appended to the last coordinate system with a new line and a new y-axis. The new line and
new axis are selected.

"append new cosys" : The new data are inserted into a newly appended coordinate system with a new line and a new y-axis. The
new coordinate system, new line and new axis are selected.

"append to cosys" : The new data are inserted as a new line in a new y-axis. The new y-axis will be inserted as the last y-axis of the
previously selected coordinate system. The new line and new axis are selected.

"first axis" : The new data are inserted as a new line with its own axis. The new line, along with its axis and coordinate system, is
selected.

"first line" : The new data are inserted as a new line in the first position. The new line, along with its axis and coordinate system, is
selected.

"insert axis" : The new data are inserted as a new line in a new y-axis. The new y-axis will be inserted behind the previously selected
y-axis. The new line and new axis are selected.

"insert cosys" : The new data are inserted as a new line in a new y-axis and a new coordinate system. The new coordinate system will
be inserted behind the previously selected coordinate system. The new coordinate system, new line and new axis are selected.

"insert first axis" : The new data are inserted as a new line with a new y-axis. The new y-axis is inserted as the first y-axis in the
previously selected coordinate system. The new line and new axis are selected.

"insert first cosys" : The new data are inserted into a newly added coordinate system with a new line and a new y-axis. The new
coordinate system will be the first coordinate system. The new coordinate system, new line and new axis are selected.

"insert first line" : The new data are inserted as a new line, which will be the first for the previously selected axis. The new line will
be selected.

"insert line" : A new line, to which the new data are assigned, is inserted before the line selected. The new line will be selected.

"replace line" : The data on the selected line are replaced with the new data.

Channel
1 1st channel to be displayed in the curve window

Channel
2 2nd channel to be displayed in the curve window

Channel
3 3rd channel, to be displayed in the curve window

Option

"yxz" : 1st channel becomes the y-component, 2nd channel the x-component, 3rd channel the z-component.

"xyz" : 1st channel becomes the x-component, 2nd channel the y-component, 3rd channel the z-component.

Description:
Depending on the display type, no new axes or coordinate systems may be created.

Not all display styles support this kind of superposition

Examples:
Add channels to a curve window

CwSelectWindow("curve1")
CwNewChannel_xyz("append last axis", level, speed, torque, "yxz")

Replace a displayed channel with a new superposition of 3 channels

imc FAMOS Func on Reference - 234 -

(c) 2024 imc Test & Measurement GmbH

CwSelectWindow("curve1")
CwSelectByIndex("line", 1)
CwNewChannel_xyz("append last axis", level, speed, torque, "yxz")

See also:
CwNewChannel, CwNewChannel_xy

imc FAMOS Func on Reference - 235 -

(c) 2024 imc Test & Measurement GmbH

CwNewElement

Scope: Curve Windows

A new element is created in the curve window.

Declaration:
CwNewElement (Element sort)

Parameter:

Element
sort Which sort of element is to be created at what position?

"marker" : A new marker is appended to the marker list at the end.

"marker.abs" : A new marker is added to the back of the list of markers. Its position is determined by x- and y-coordinates.

"marker.user" : A new marker is added to the back of the list of markers. The current curve window pre-settings are applied.

"marker.harmonic.harmonic" : Generates all markers belonging to a harmonics cursor for a fundamental oscillation with harmonics.

"marker.harmonic.harmonic.user" : Generates all markers belonging to a harmonics cursor for a fundamental oscillation with
harmonics. The curve window's current pre-settings are applied.

"marker.harmonic.offset" : Generates all markers belonging to a harmonics cursor for periodic processes with arbitrary start.

"marker.harmonic.offset.user" : Generates all markers belonging to a harmonics cursor for periodic processes with arbitrary start.
The curve window's current presettings are applied.

"marker.harmonic.ratio" : Generates all markers belonging to a harmonic cursor for 2 oscillations in a fixed ratio.

"marker.harmonic.ratio.user" : Generates all markers belonging to a harmonic cursor for 2 oscillations in a fixed ratio. The curve
window's current presettings are applied.

"marker.harmonic.sideband" : Generates all markers belonging to a harmonics cursor for fundamental oscillation with side bands.

"marker.harmonic.sideband.user" : Generates all markers belonging to a harmonics cursor for fundamental oscillation with side
bands. The curve window's current presettings are applied.

"marker.hori.dimline" : A new marker in the form of a horizontal dimension line is added to the back of the list of markers.

"marker.hori.dimline.user" : A new marker in the form of a horizontal dimension line is added to the back of the list of markers. The
current curve window pre-settings are applied.

"marker.hori.line" : A new marker in the form of a horizontal line is added to the back of the list of markers.

"marker.hori.line.user" : A new marker in the form of a horizontal line is added to the back of the list of markers. The current curve
window pre-settings are applied.

"marker.text" : A new marker in the form of a text is added to the back of the list of markers.

"marker.text.user" : A new marker in the form of a text is added to the back of the list of markers. The current curve window pre-
settings are applied.

"marker.vert.dimline" : A new marker in the form of a vertical dimension line is added to the back of the list of markers..

"marker.vert.dimline.user" : A new marker in the form of a vertical dimension line is added to the back of the list of markers. The
current curve window pre-settings are applied.

"marker.vert.line" : A new marker in the form of a vertical line is added to the back of the list of markers.

"marker.vert.line.user" : A new marker in the form of a vertical line is added to the back of the list of markers. The current curve
window pre-settings are applied.

"marker.order" : A new marker in the form of an order line is added to the end of the list of markers.

"marker.order.user" : A new marker in the form of an order line is added to the end of the list of markers. The current curve window
pre-settings are applied.

Description:
The newly created element is also selected right away.

Examples:
Add a new marker to the curve window and parameterize it

CwNewElement("marker")
CwMarkerSet("text", "Max!")

imc FAMOS Func on Reference - 236 -

(c) 2024 imc Test & Measurement GmbH

See also:
CwSelectByIndex, CwMarkerSet

imc FAMOS Func on Reference - 237 -

(c) 2024 imc Test & Measurement GmbH

CwNewWindow

Scope: Curve Windows

Generates an empty curve window

Declaration:
CwNewWindow (Identification, ShowOption)

Parameter:

Identification This data set identifies the curve window. This means that the curve window will be identifiable later.

ShowOption Show the curve window immediately?

"show" : Show

"hide" : Don't show

Description:
A free-floating empty curve window is created. Only if no curve window with the specified identification already exists.

The function also immediately selects the curve window.

If the window is hidden when created, it must be made visible for the purpose of certain operations.

If a curve window having the specified identification already exists, the parameter ShowOption will not be applied: The window will remain
unchanged.

Examples:
Display an empty curve window, then a channel in it

data=ramp(0,1,10)
CwNewWindow(data, "show")
CwNewChannel("append new axis",data)

See also:
CwLoadCCV

imc FAMOS Func on Reference - 238 -

(c) 2024 imc Test & Measurement GmbH

CwPosition

Scope: Curve Windows

Adjustment of the position and size of the selected curve window

Declaration:
CwPosition (X, Y, dX, dY)

Parameter:

X X

Y Y

dX dX

dY dY

Description:
SvX, SvY: upper left corner of the window

SvdX, SvWdY: size of the window

Examples:

CwSelectWindow("curve1")
CwPosition (0, 0, 640, 480)

See also:
CwLoadCCV

imc FAMOS Func on Reference - 239 -

(c) 2024 imc Test & Measurement GmbH

CwPrintSet

Scope: Curve Windows

Sets properties for printing a curve window

Declaration:
CwPrintSet (Property, Value)

Parameter:

Property Which property is to be set?

"individual" : Individualized settings: (0 no, 1 yes)

"layout" : Layout: (0: coordinate system size; 1: proportions as on screen; 2: total size)

"cosys.open" : Coordinate system open: (0: no; 1: yes)

"signature.show" : Show caption (0: no; 1: yes)

"signature" : Caption

"measure.show" : Show measurement crosshairs and measurement values (0: no; 1: yes)

"width" : Width in mm. Depending on the layout, either for the coordinate system, or the total

"height" : Height in mm. Depending on the layout, either for the coordinate system, or the total

"zlength" : Length of 3D z-axis; stated in mm

"symbol.size" : Symbol diameter; stated in mm

"ticks.in" : Main inner tick size; stated in mm

"ticks.out" : Main outer tick size; stated in mm

"small ticks.in" : Small inner tick size; stated in mm

"small ticks.out" : Small outer tick size; stated in mm

"xscale" : Height of x-scale stated in mm; 0 auto

"yscale" : Width of y-scale, stated in mm; 0 auto

"linewidth.cosys" : Line width of coordinate system. <0 for width stated in pixels. For example -3 for 3 pixels.

"linewidth.grid" : Line width of main grid. <0 for width stated in pixels. For example -3 for 3 pixels.

"linewidth.sec grid" : Line width of secondary grid. <0 for width stated in pixels. For example -3 for 3 pixels.

"linewidth.cursor" : Cursor line width. <0 for width stated in pixels. For example -3 for 3 pixels.

"linewidth.curve" : Line width of curves. <0 for width stated in pixels. For example -3 for 3 pixels.

"linestyle.cosys" : Line style of coordinate system (0: solid; 1: dotted; 2: fewer dots; 3: dashed; 4: fewer dashes; 5: dash-dot)

"linestyle.grid" : Line style of main grid (0: solid; 1: dotted; 2: fewer dots; 3: dashed; 4: fewer dashes; 5: dash-dot)

"linestyle.sec grid" : Line style of secondary grid (0: solid; 1: dotted; 2: fewer dots; 3: dashed; 4: fewer dashes; 5: dash-dot)

"linestyle.cursor" : Cursor ine style (0: solid; 1: dotted; 2: fewer dots; 3: dashed; 4: fewer dashes; 5: dash-dot)

"angle 3D" : Angle of 3D z-axis; stated in degrees

"font.name" : Font name, for example "Arial".

"font.size" : Font size, stated in pt, e.g. 8

"font.style" : Font style (0: auto; 1: default; 2: bold; 3: italic; 4: bold and italic; 5: underlined; 6: bold and underlined; 7: italic and
underlined; 8: bold and italic and underlined)

"small font.name" : Small font name, for example "Arial".

"small font.size" : Small font size, stated in pt, e.g. 8

"small font.style" : Small font style (0: auto; 1: default; 2: bold; 3: italic; 4: bold and italic; 5: underlined; 6: bold and underlined; 7:
italic and underlined; 8: bold and italic and underlined)

Value In which way should this property be set?

Description:
If settings are indiviudalized (see "individualized") to a curve window, then only that curve window will be modified. Otherwise global change.

imc FAMOS Func on Reference - 240 -

(c) 2024 imc Test & Measurement GmbH

These settings are used for printing, exporting graphics, and when copying to the Clipboard and to the Report Generator.

Examples:
Sets the total size for the protrait format. Only for the current curve window

CwPrintSet("individual", 1)
CwPrintSet("layout", 2)
CwPrintSet("width", 180)
CwPrintSet("height", 260)

Preparation for pdf export

CwGlobalSet("graphics.type", 0)
CwGlobalSet("export.dpi", 300)
CwGlobalSet("export.pdf.append", 0)
CwGlobalSet("export.orientation", 1)
CwGlobalSet("export.pdf.method", 2)
CwPrintSet("layout", 2)
CwPrintSet("font.size", 10)
CwPrintSet("font.style", 0)
CwPrintSet("font.name", "Arial")

See also:
CwDisplaySet, CwGlobalSet

imc FAMOS Func on Reference - 241 -

(c) 2024 imc Test & Measurement GmbH

CwReplace

Scope: Curve Windows

In a curve window, a channel designated "OldDesignation" is displayed. This channel is now to be replaced with ChannelReplacement in this
curve window. Next, ChannelReplacement is to be displayed instead of the channel with the name OldDesignation.

Declaration:
CwReplace (ChannelReplacement, OldDesignation) -> NumberReplaced

Parameter:

ChannelReplacement Data set to be displayed in the curve window

OldDesignation Designation of the channel displayed

NumberReplaced

NumberReplaced Returns the number of channels replaced. (optional)

Description:
If the same channel occurs repeatedly, it is also replaced repeatedly. If the channel isn't present at all, the function has no effect.

Channel names which are allowed take the form "channel", or "group:channel" for channels in groups.

The function is used when after loading a curve window configuration, other chanels are to be displayed in this configuration than the ones for
which the configuration was saved.

Upon first replacement, the data element, the associated line, axis and the coordinate system are selected.

The parameter OldDesignation is specified without .X or .Y

The parameter ChannelReplacement can contain .X or .Y, if from this moment forward only exactly that component is selected for display.

Examples:
Loads a configuration which was saved when the channels had different names (then: CH1 and CH2). The channels, which are now called
temperature and pressure, are to be displayed.

CwLoadCCV("curve1", "1.ccv")
CwReplace(temperature, "CH1")
CwReplace(pressure, "CH2")

Channel S ist replaced by the magnitude of a dataset. The component .M will be selected for display.

CwReplace(Spectrum.M, "S")

See also:
CwNewChannel

imc FAMOS Func on Reference - 242 -

(c) 2024 imc Test & Measurement GmbH

CwSaveCCV

Scope: Curve Windows

Saves the configuration of the selected curve window in a *.ccv-file.

Declaration:
CwSaveCCV (Filename) -> Error text

Parameter:

Filename To which file should the configuration be saved?

Error text

Error text Error text at fault condition; or if operation successful, an empty string. (optional)

Description:
The configuration of the curve window contains all attributes of the display, but not the displayed measured data themselves.

Examples:
Saves to a CCV file

CwLoadCCV(data, "1.ccv")
CwDisplaySet("displaymode", 2)
CwSaveCCV("2.ccv")

Saves to a CCV file

CwSelectWindow(data)
CwSaveCCV("2.ccv")

See also:
CwLoadCCV

imc FAMOS Func on Reference - 243 -

(c) 2024 imc Test & Measurement GmbH

CwSelectByChannel

Scope: Curve Windows

Selects an element (e.g. axis) of the selected curve window by means of a channel.

Declaration:
CwSelectByChannel (Element sort, Channel)

Parameter:

Element sort What sort of element is to be selected?

"axis" : y-axis to the channel

"cosys" : Coordinate system for the channel

"data" : Data element to the channel

"line" : Line to the channel

Channel Data set displayed in the curve window. The variable itself or its name.

Description:
If the data set is displayed multiple times, the first element found is determined.

If the element does not exist, no more of this sort is selected.

If the channel is specified by its name, then these are allowed: "channel" or "group:channel"

This technique also works if the channel does not even exist at the moment, but its name appears in the curve window.

Examples:
Select the axis which represents the variable data

CwSelectWindow("curve1")
CwSelectByChannel("axis", data)
CwAxisSet("min", -10)
CwAxisSet("max", 10)

Selects the line representing the channel having the name "ch1".

CwSelectWindow("curve1")
CwSelectByChannel("line", "ch1")
CwLineSet("symbol", 2)

See also:
CwSelectByIndex

imc FAMOS Func on Reference - 244 -

(c) 2024 imc Test & Measurement GmbH

CwSelectByIndex

Scope: Curve Windows

Selects an element (e.g. axis) within a selected curve window

Declaration:
CwSelectByIndex (Element sort, Index)

Parameter:

Element sort What sort of element is to be selected?

"axis from data" : y-axis for the selected data element (Index = 1)

"axis from line" : y-axis for the selected line (index = 1)

"x-axis" : x-axis (Index = 1)

"y-axis" : y-axis

"y-axis in cosys" : y-axis in the selected coordinate system

"z-axis" : z-axis or angle-axis (index = 1)

"3D color-axis" : Axis with 3D color legend (Index = 1)

"cosys" : Coordinate system

"cosys from axis" : Coordinate system for the selected y-axis (Index = 1)

"cosys from data" : Coordinate system for the selecte data element (Index = 1)

"cosys from line" : Coordinate system for the selected line (Index = 1)

"data" : Data element

"data in axis" : Data element in the selected y-axis

"data in cosys" : Data element in the selected coordinate system

"data in line" : Data element in the selected line

"line" : Line

"line from data" : Line to the selected data element (Index = 1)

"line from marker" : Line to the selected marker (index = 1)

"line in axis" : Line in the selected y-axis

"line in cosys" : Line in the selected coordinate system

"line.measure" : Line to the measurement cursor (1 left, 2 right)

"marker" : Marker

"usertick" : User ticks, Axis

"header" : Header or footer or title

Index Index; the "this-many-th" element of this sort. Beginning with 1.

Description:
If the element does not exist, no more of this sort is selected.

A coordinate system, an axis, a line, a data element and a marker can all be selected simultaneously. Only one element of a sort can be selected.

If the user alters the curve window by means of a menu and dialogs, it can affect the selection. In particular, the selection can disappear.

Examples:
Select and parameterize the 1st y-axis

CwSelectWindow("curve1")
CwSelectByIndex("y-axis", 1)
CwAxisSet("min", -10)
CwAxisSet("max", 10)

See also:
CwSelectByChannel

imc FAMOS Func on Reference - 245 -

(c) 2024 imc Test & Measurement GmbH

CwSelectMode

Scope: Curve Windows

Determines how the curve window is later identified

Declaration:
CwSelectMode (Identification type)

Parameter:

Identification type How is the curve window to be identified?

"auto" : Automatic identification

"caption" : The caption of the window is used for its identification. Only for floating curve windows.

"newest" : Last curve window created

"title" : The curve window's title should identify the curve window. For curve windows in dialogs and in the Panel.

"variable" : One variable is the reference data set

Description:
If the function has not been called yet, the system chooses "auto".

With automatic identification, the reference data set is first verified. If no curve window is found in the process, the title is verified.

With automatic identification, when a curve window is created, if a string variable is the identification, then the content of this string variable is
interpreted as the title.

The function CwSelectMode itself does not determine the identification. It only determines how other functions will perform identification
later, e.g. CwSelectWindow or CwNewWindow.

The identification type "newest" is only useful for applications in which no identification is known, for example for selecting a duplicate window
which has just been created, or a manually opened window. Then, as the parameter for the subsequent function CwSelectWindow(), an empty
text would be adequate: CwSelectWindow("")

The identification method "caption" is only suitable for special applications, because the caption is changed by many operations.

When restarting imc FAMOS or restarting a sequence which does not belong to a dialog or panel, the selection mode will be set to automatic.

If a sequence sets the selection mode explicitly, it is recommended to set it back to automatic before exiting the sequence.

Examples:
For identifying curve windows, only the technique with the reference data set should be used.

CwSelectMode("variable")
CwSelectWindow(data)

For identifying curve windows, only the technique with the title should be used.

CwSelectMode("title")
CwSelectWindow("curve1")

Produces the automatic mode

CwSelectMode("auto")
CwSelectWindow("curve1")
; ... Working with the curve window
CwSelectWindow(data)
; ... Working with the curve window

Identifies a duplicate window which had just been created:

CwAction("win.twin")
CwSelectMode("newest")
CwSelectWindow("")

See also:
CwSelectWindow

imc FAMOS Func on Reference - 246 -

(c) 2024 imc Test & Measurement GmbH

CwSelectWindow

Scope: Curve Windows

Selects a curve window on the basis of a variable used as reference, or on the basis of its title.

Declaration:
CwSelectWindow (Identification) -> Exist

Parameter:

Identification This data set identifies the curve window. With CwSelectMode, the system determined previously how identification is
performed.

Exist

Exist Returns 1 if the curve window exists; else 0 (optional)

Description:
If the window does not exist, none is created or selected. If creation of one is desired, use the function CwNewWindow.

If the curve window could have been closed in the meantime, the return value should be queried.

If the curve window does not exist, an error message is displayed, but the sequence is not cancelled.

Examples:
The variable data is displayed as a curve window

CwSelectWindow(data)
CwDisplaySet("displaymode", 1)
CwAction("unzoom")

In a dialog or Panel there is a curve window with the title "curve1"

CwSelectWindow("curve1")
CwAction("unzoom")

Next, an additional curve window with the title "curve2" is to be edited:

CwSelectWindow("curve2")
CwDisplaySet("displaymode", 2)

Selection of a curve window "curve1" in the Panel.

CwSelectWindow("curve1")

If multiple curve windows in the Panel have the same title, then the page name ("page1" in this case) separated with a dot must be prefixed.

CwSelectWindow("page1.curve1")

Transfer to the Report Generator

CwSelectWindow(data)
CwDisplaySet("name", "nn")
CvPosi("nn", 0, 0, 600, 400)
RgCurveSet("r1", "nn", 0)

Alternatively for free-floating curve windows:

CwSelectWindow(data)
CwDisplaySet("displaymode", 2)
CvPosi(data, 0, 0, 600, 400)
RgCurveSet("r1", data, 0)

Alternatively for embedded curve windows:

CwSelectWindow("curve2")
CwDisplaySet("displaymode", 2)
RgCurveSet("r1", "curve2", 0)

The success of the function can be verified (alternatively: CwIsWindow):

if CwSelectWindow("curve1") = 0
 error handling...
end

Before selecting a curve window, the selection mode is set to a well defined value.

imc FAMOS Func on Reference - 247 -

(c) 2024 imc Test & Measurement GmbH

CwSelectMode("auto")
CwSelectWindow("curve1")

See also:
CwSelectMode

imc FAMOS Func on Reference - 248 -

(c) 2024 imc Test & Measurement GmbH

CwSequenceEnable

Scope: Curve Windows

Specifies the situations in which FAMOS calls an event sequence for a curve window. The situation consists of a specified location (e.g. over the
coordinate system) and a mouse operation (e.g. left mouse button clicked).

Declaration:
CwSequenceEnable (Location, MouseLeft [, MouseRight] [, MouseMove])

Parameter:

Location Location specification. Where is the mouse?

"cosys" : Within the coordinate system; MouseLeft=("no", "click", "drag", "2"); MouseRight=("no", "click"); MouseMove=("no",
"move")

"area" : Area outside of the coordinate system; MouseLeft=("no", "click", "drag", "2"); MouseRight=("no", "click"); MouseMove=
("no", "move")

"measure" : Measurement cursor; MouseLeft=("no", "click", "drag"); MouseRight=("no", "click"); MouseMove=("no").

"link" : Link line; MouseLeft=("no", "click", "drag"); MouseRight=("no"); MouseMove=("no")

"all" : Reset all: the entries for all locations are deleted. MouseLeft=("no"); MouseRight=("no"); MouseMove=("no")

MouseLeft Operation of left mouse button. For which kind of user operation of the left mouse button at the specified location is a sequence
to run.

"no" : No; don't use. Do not run any sequence.

"click" : Click on left mouse button. The sequence starts when the mouse button is released.

"drag" : Drag. The dragging motion performed with the left mouse button. Press the left mouse button down and move the
mouse simultaneously, then release the button. The sequence starts when the button is pressed down. Typically, it runs until
the button is released.

"2" : Left button double-clicked (clicked twice)

MouseRight Operation of right mouse button. For which kind of user operation of the right mouse button at the specified location is a
sequence to run. (optional , Default value: "no")

"no" : No; don't use. Do not run any sequence.

"click" : Click of right mouse button. The sequence is started when the mouse button is released.

MouseMove A sequence runs when the mouse is moved at the specified location. (optional , Default value: "no")

"no" : No; don't use. Do not run any sequence.

"move" : The user moves (slides) the mouse. No mouse button is pressed.

Description:
In the FAMOS Panel, it is possible to save event sequences for a curve window: Thus for instance, it is possible to configure such an event
sequence to run in response to clicking the mouse over the curve window. In the event sequence, it is possible to evaluate the mouse pointer's
position and to respond accordingly.

The function CwSequenceEnable() is called before the potential initiation of event sequences for the curve window. This thus governs/specifies,
in what kind of situations an event sequence can even be triggered.

The curve window must be selected.

The function can be repeatedly called for a variety of situations. For each situation it can be specified for what action by the user a sequence is
called.

If the right mouse button is designated for triggering a sequence, then right-clicking the mouse over the curve window does not open a context
menu.

If the left mouse button is designated for triggering a sequence, then left-clicking the mouse over the curve window does not perform the action
which it normally would perform.

During measurement, the combination of "drag" plus right-clicking starts the sequence upon first pressing one of the two buttons. Typically, the
sequence runs as long as at least one of the two buttons is pressed down.

The function should not be called within an event sequence pertaining to the curve window. Exception: At the very end, with the parameters
("all", "no").

Examples:
Specifies that when initializing a Panel, double-clicking over the area of a coordinate system starts a sequence.

imc FAMOS Func on Reference - 249 -

(c) 2024 imc Test & Measurement GmbH

CwSequenceEnable("all", "no")
CwSequenceEnable("cosys", "2", "no", "no")

Specifies that when initializing a Panel, a single click over the area of a coordinate system starts a sequence.

Furthermore, it is expressly specified that no sequence is to start in response to clicking on any other loactions.

CwSequenceEnable("cosys", "click", "no", "no")
CwSequenceEnable("area", "no", "no", "no")
CwSequenceEnable("measure", "no", "no", "no")
CwSequenceEnable("link", "no", "no", "no")

The curve window's default operation style is restored. No sequence is to run.

CwSequenceEnable("all", "no")

Specifies that when initializing a Panel, any click anywhere or right-clicking within the coordinate system starts a sequence.

In all these situations, the same event sequence is started. Within the sequence, you can query the current situation using CwSequenceState().

CwSequenceEnable("all", "no")
CwSequenceEnable("cosys", "click", "click", "no")
CwSequenceEnable("area", "click", "no", "no")

Specifies that when initializing a Panel, a sequence starts after moving the measurement cursor.

The sequence runs upon releasing the mouse button, not already during the cursor motion.

CwSequenceEnable("all", "no")
CwSequenceEnable("measure", "click", "no", "no")

Specifies that when initializing a Panel, a sequence runs after the link line is moved.

The sequence runs upon releasing the mouse button, not already during the cursor motion.

CwSequenceEnable("all", "no")
CwSequenceEnable("link", "click", "no", "no")

See also:
CwSequenceState

imc FAMOS Func on Reference - 250 -

(c) 2024 imc Test & Measurement GmbH

CwSequenceState

Scope: Curve Windows

Queries the status and mouse position within a FAMOS event sequence pertaining to the curve window.

Declaration:
CwSequenceState (Property) -> State

Parameter:

Property Get which property?

"dragging" : drag still running (0: No; 1: Yes). Used for constructing loops.

"cancel" : Drag operation cancelled (0: No; 1: Yes). A drag-motion may be interrupted by the ESC key or a Timeout, as examples.

"val.x" : x-coordinate in units of the x-axis

"val.y" : y-coordinate in units of the y-axis

"operation" : The action performed (0: none; 1: left click; 2: right click; 3: drag; 4: move; 5: double-left click)

"location" : The location at which the operation began; see CwSequenceEnable()'s parameter: Location. (1: coordinate system; 2:
area; 3: measurement cursor; 4: link line)

"key.shift" : Shift-key pressed (0: No; 1: Yes)

"key.ctrl" : Ctrl-key pressed (0: No; 1: Yes)

"mouse.left" : Left mouse button pressed (0: No; 1: Yes)

"mouse.right" : Right mouse button pressed (0: No; 1: Yes)

"outside" : Mouse position outside (0: No; 1: Yes). In cases of drag operations which make the mouse exit the actual object.

"over.cosys" : Is the mouse over this coordinate system? (0: No; else coordinate system index >= 1)

"over.line" : Has mouse passed over this line? (0: No; else Line index >= 1). This query can require considerable time. This query
returns the current value, not the saved value which corresponds to the status.

"over.marker" : Is the mouse over this marker (0: No; else Marker index >= 1)

"over.x-axis" : Is the mouse over the x-axis (0: No; else x-axis index >= 1)

"over.y-axis" : Is the mouse over the y-axis (0: No; else y-axis index >= 1)

"pix.x" : x-pixel position. Starting from zero at the left edge of the curve window. Only in conjunction with coordinate system and
area

"pix.y" : y-pixel position. Starting from zero at the top edge of the curve window. Only in conjunction with coordinate system and
area

"related.cosys" : Is the coordinate system involved (0: No; else coordinate system index >= 1)

"related.line" : Is the line involved? (0: No; else Line index >= 1). E.g. in case of measurement cursor travelling along line

"related.marker" : Is the marker involved? (0: No; else Marker index >= 1)

"related.x-axis" : Is the x-axis involved? (0: No; else x-axis index >= 1)

"related.y-axis" : Is the y-axis involved (0: No; else y-axis index >= 1)

State

State The state queried

Description:
In the FAMOS Panel, it is possible to save event sequences for a curve window: Thus for instance, it is possible to configure such an event
sequence to run in response to clicking the mouse over the curve window. In the event sequence, it is possible to evaluate the mouse pointer's
position and to respond accordingly.

The function CwSequenceState() is called within an event sequence pertaining to the curve window.

The curve window must be selected.

At the beginning of an event sequence, the curve window is already selected.

Returns 0 if the corresponding situation does not pertain.

When a dragging motion is performed, then a loop uses the property "dragging" to query whether the dragging procedure is still in progress.

Within the loop, it is possible to query the current status. In the first iteration, the coordinates at the beginning of the motion are returned. In the

imc FAMOS Func on Reference - 251 -

(c) 2024 imc Test & Measurement GmbH

last iteration, the coordinates at the end of the motion are returned. This can be applied in order to avoid needing to write multiple copies
(before, within and after the loop) of sequence command lines which depend on the coordinates.

Only after a repeat call of the property "dragging" is it possible to return new and different coordinates. This can be applied in order to query
consistent and matching values within the loop.

When a drag motion is performed, the property "dragging" returns 1 at least once, to that any pertinent loop will run at least once.

If a drag-motion is cancelled (e.g. ESC), the property "dragging" may return a 0 starting at the 2nd call.

While the event sequence is being performed, FAMOS assumes that no new mouse click occurs. For this reason, an event sequence needs to be
processed as quickly as possible. When operating the curve window, the user may need to briefly hold the mouse still before clicking in order to
delay until any still running event sequence is finished.

Within a loop having the condition "dragging", CwUpdateEnable(0) is not permitted to be constantly active. The reason is that any movements or
clicks of the mouse, which would change the status, would be ignored.

A query of "dragging" returns 0 after approx. 5s without any movement or clicks of the mouse. This is interpreted as a Cancel. A "cancel" query
will return 1 in this case.

Processing an event sequence can take much more time if information is written to the FAMOS output window. This would include such things as
warnings or other messages. See, for example, the material on calling SetOption("Func.NoInfoMessages", "Yes").

Examples:
Event sequence upon clicking on the coordinate system: The click's coordinates are queried.

x = CwSequenceState("val.x")
y = CwSequenceState("val.y")

This and other states can be queried and evaluated.

At an appropriate place in the process, e.g. upon initialization of the Panel, clicking on the curve window was allowed:

CwSequenceEnable("all", "no")
CwSequenceEnable("cosys", "click", "no", "no")

Event sequence upon drag-motion over the coordinate system: A query is run in a loop of whether the drag-motion is still in progress.

x = CwSequenceState("val.x")
; here you enter what is to happen when the mouse button is pressed down.
while CwSequenceState("dragging") <> 0
 x = CwSequenceState("val.x")
 y = CwSequenceState("val.y")
 ; here you enter what is to happen during the drag-motion.
end
x = CwSequenceState("val.x")
; here you enter what is to happen upon releasing the mouse button.

At an appropriate place in the process, e.g. upon initialization of the Panel, dragging in the curve window was allowed:

CwSequenceEnable("all", "no")
CwSequenceEnable("cosys", "drag", "no", "no")

Abbreviated event sequence upon drag-motion

This makes use of the fact that all coordinates are enumerated in the loop during the motion, particularly at the beginning and at the end.

Thus if no special treatment is needed at the beginning or end of the drag-motion, the entire processing can be performed within the loop.

while CwSequenceState("dragging") <> 0
 x = CwSequenceState("val.x")
 ; here you enter what is to happen during the drag-motion.
end

An event sequence is used for multiple situations, e.g. right-click and left-click.

The situation must be queried with either CwSequenceState("operation") or CwSequenceState("location") depending on the combinations
possible in CwSequenceEnable().

In more complex applications, Switch Case constructs are used.

x = CwSequenceState("val.x")
if CwSequenceState("operation") = 1
 y = CwSequenceState("val.y")
 ; here you enter what is to happen in response to left-clicking.
else
 ; here you enter what is to happen in response to right-clicking.
end

At an appropriate place in the process, e.g. upon initialization of the Panel, clicking on the curve window was allowed:

CwSequenceEnable("all", "no")
CwSequenceEnable("cosys", "click", "click", "no")

imc FAMOS Func on Reference - 252 -

(c) 2024 imc Test & Measurement GmbH

Event sequence upon releasing the left measurement cursor. A position is to be specified by using the measurement cursor.

x1 = CwSequenceState("val.x")
x2 = CwDisplayGet("measure.x.left")

x1 is the position exactly where the mouse button is released.

x2 is the position of the measurement cursor at the current point in time. Usually a (brief) time elapses between release of the button and when
the sequence starts and runs. During that time, the mouse position may already have changed.

At an appropriate place in the process, e.g. upon initialization of the Panel, the measurement cursor was allowed to trigger the event sequence:

CwSequenceEnable("all", "no")
CwSequenceEnable("measure", "click", "no", "no")

Drag the measurement cursors with either the left or right mouse button, or both.

while CwSequenceState("dragging") <> 0
 x = CwSequenceState("val.x")
 LeftMouseButtonDown = CwSequenceState("mouse.left")
 RightMouseButtonDown = CwSequenceState("mouse.right")
 xLeft = CwDisplayGet("measure.x.left")
 xRight = CwDisplayGet("measure.x.right")
 ; here you enter what is to happen during the drag-motion.
end

At an appropriate place in the process, e.g. upon initialization of the Panel, this support was activated:

CwSequenceEnable("all", "no")
CwSequenceEnable("measure", "drag", "click", "no")

Was a dragging operation successful? Another important operation is intended to be performed at the end of the dragging operation. But it must
not be performed if the user cancels the drag or it is cancelled for any other reason.

while CwSequenceState("dragging") <> 0
end
if CwSequenceState("cancel") = 0
 ; here, the end result was reached successfully. Not cancelled!
 ; here, run the important operation
end

See also:
CwSequenceEnable

imc FAMOS Func on Reference - 253 -

(c) 2024 imc Test & Measurement GmbH

CwUpdateEnable

Prevents refreshing of the curve window

Declaration:
CwUpdateEnable (SvUpdate)

Parameter:

SvUpdate Refresh on/off

0 : Disables refreshing of the curve window

1 : Allow refreshing of the curve window (again)

Description:
If [SVUpdate] is set to a nonzero value, then during running of a sequence, WM_PAINT- and other messages are allowed and imc FAMOS remains
operable.

Otherwise not! This makes it possible, for example to prevent repeated refreshing of a curve window when redesigning it.

Caution:
[SvUpdate] should only be set to 0 before a group of functions for the purpose of configuring a curve window, and should be reset to 1
immediately afterward. Severe malfunctioning can result from incorrect use of this function!!!

Examples:
A curve window's axes are parameterized. The curve window is redrawn only after the last instruction.

CwUpdateEnable(0)
CwSelectWindow("curve1")
CwSelectByIndex("y-axis", 1)
CwAxisSet("range", 4)
CwAxisSet("min", -10)
CwAxisSet("max", 10)
CwSelectByIndex("x-axis", 1)
CwAxisSet("scale", 4)
CwAxisSet("range", 1)
CwUpdateEnable(1)

imc FAMOS Func on Reference - 254 -

(c) 2024 imc Test & Measurement GmbH

DataFormat?

Determines the data format of a variable.

Declaration:
DataFormat? (Variable) -> SvFormatCode

Parameter:

Variable Variable whose data format is to be determined

SvFormatCode

SvFormatCode Format

0 : 4 Byte real (float)

1 : 8 Byte real (double)

2 : 1 Byte integer

3 : 2 Byte integer

4 : 4 Byte integer

5 : 1 Byte unsigned integer

6 : 2 Byte unsigned integer

7 : 4 Byte unsigned integer

8 : Digital

9 : 2 Byte integer differences

10 : 6 Byte unsigned integer

11 : Time-stamped ASCII

12 : 8 Byte integer

13 : 8 Byte unsigned integer

-1 : Unknown data format

-2 : Data group

-3 : Text

-4 : Text array

Description:
This function determines which data format is used for a variable.

The data format specifies how the individual values are saved in memory/the data carrier. The memory requirements for a data set, the value
range and the achievable precision are determined by the data format.

When an XY-data set is transferred to this function, the data format of the y-components is returned. If a complex data set is transferred, the data
format of the magnitude or real part is determined. Component characteristics can be used to make an inquiry of other components.

DFormPhase = DataFormat?(MagnitudePhase.P)
DFormImag = DataFormat?(RealImag.I)
DFormX = DataFormat?(XYdata.X)

For the purpose of verifing a variable's data type, the new funtion VerifyVar() is more appropriate in general.

Examples:

Format = DataFormat?(MyData)
IF Format <> 0
 SetDataFormat(MyData, 1, 0, 0)
END

If the data set is not already in the real, 4-bytes format, it will be converted to this format.

See also:
SetDataFormat, VerifyVar, GetScale

imc FAMOS Func on Reference - 255 -

(c) 2024 imc Test & Measurement GmbH

dB

Conversion to decibels; i.e. 20 * log...

Declaration:
dB (InputData) -> Transformed

Parameter:

InputData Data to be expressed in dB.

Transformed

Transformed Resulting data set

Description:
The data passed as the parameter are expressed in decibels. Complex parameters are transformed to type Dp, i.e. polar coordinate
representation with magnitude in dB. Decibel means twenty times the log (base ten) of the specified value and is usually abbreviated as dB.
Decibel (dB) is not a unit, but rather an indication of the way a value is to be calculated.

Calculation in dB is standard for transfer functions and sound measurements. A quantity should be calculated in dB when values of very large and
very small magnitudes are to be displayed with equal relative accuracy.

An absolute value calculation always precedes the actual conversion of real numbers into dB.
With normal or XY-data sets the x-coordinate(s) of the parameter and the result are the same.
Complex data sets of the type Dp cannot be processed using this function.
The parameter may be structured (events/segments).
The dB calculation sets the y-unit to dB, a common notation for axis labels in graphs. When combined with other units, dB is always
discarded, since it is not an actual unit.
When this function is used for complex data sets displayed as a polar plot, the polar plot display disappears.

Examples:

NDdecibel = dB(NDdata)
; This formula is equivalent to the formula:
NDdecibel = 20 * log(Abs(NDdata))
; only the unit is different.

Calculation of a spectrum in dB:

DPspectrum = dB(FFT(NDdata))

Calculations in dB can result in very large negative values, which are a hindrance for further processing. The Clip function should be used to limit
the dB number to reasonable minimum values, e.g. -100dB. The upper limit of 1000 should be set to a sufficiently large value:

NDdecibel = Clip(dB(NDdata), 1000, -100)

See also:
idB, log, Clip

imc FAMOS Func on Reference - 256 -

(c) 2024 imc Test & Measurement GmbH

DbBeginTransaction

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Beginning of a transaction

Declaration:
DbBeginTransaction (ConnectID) -> ErrorCode

Parameter:

ConnectID Connection identifier

ErrorCode

ErrorCode Result: Error number for error number, else zero.

= 0 : No error

< 0 : Error number

Description:
A transaction is begun with this function. The function can be used when multiple tasks in the sequence are to be combined with each other so
that they can be executed as a single processing unit.

This function is not to be used when only a single call of DbSql(), DbInsert(), DbUpdate() or DbUpdate1() occurs. These functions have an internal
transaction control.

If the function DbBeginTransaction() is called, the internal transaction control is rescinded. The internal transaction control only goes back into
effect again after calling DbEndTransaction().

This function must always be called as a pair along with the function DbEndTransaction().

Examples:
The group grpInsert1 is inserted into the table "User" and the FAMOS group grpInsert2 into the table "Group". Toward this end, a transaction is
started. If both functions were completed without any error, the transaction is concluded with a Commit. In case of an error, a rollback is
performed.

errorcode=DbBeginTransaction(ConnectID)
if errorcode < 0
 errortext=DbGetLastErrorText(ConnectID,1)
end
result1=DbInsert(ConnectID,"User",grpInsert1)
result2=DbInsert(ConnectID,"Group",grpInsert2)
commit=1
if result1 < 0 or result2 < 0
 errortext=DbGetLastErrorText(ConnectID,1)
 commit=0
end
errorcode = DbEndtransaction(ConnectID,commit)
if errorcode < 0
 errortext=DbGetLastErrorText(ConnectID,1)
end

See also:
Transaktionen, DbEndTransaction, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 257 -

(c) 2024 imc Test & Measurement GmbH

DbClosePanel

Closes the active Panel
This function is obsolete; instead the newer function PnClose() should be used (as of V2022).

Declaration:
DbClosePanel (SvOption)

Parameter:

SvOption Options parameter or return value of a Panel dialog

Description:
Closes the active Panel or all Panels.

The meaning of the Options parameter depends on the call's context:

Call within an event sequence of a Panel-dialog which had been started by the function Dialog():

The Panel-dialog is closed and the parameter passed is used as the return value of the Dialog()-command. The function thus behaves analogously
to the function DlgCloseDialog() for user-defined dialogs.

Else:

A value of 0 signifies that the active Panel is to be closed. A 1 closes all open panels.

The Panels will not be saved; any canges will be lost.

Examples:
A Panel file is opened. A variety of updates are performed, after which the Panel is printed and then closed again.

err = DbLoadPanel("d:\templates\result.panel", 0)
IF err <> 0
 BoxMessage("Error", GetLastError(), "!1")
ELSE
 ; various updates
 ; ...
 PnPrint(0)
 DbClosePanel(0)
END

A Panel 'InputValue.panel' consists of, among other things, an input box "input" for entering a positive numerical value, as well as 2 buttons 'OK'
and 'Cancel'. The Dialog()-command returns the entered value, or -1 to cancel.

Event-sequence 'Button pressed' for the 'OK'-button:

value = PnGetValue("input")
DbClosePanel(value)

Event-sequence 'Button pressed' for the 'Cancle'-button

DbClosePanel(-1)

Event-sequence 'Close' (user utilizes system menu to close):

; Same behavior as for the 'Cancel'-button
DbClosePanel(-1)

Calling the dialog:

value = Dialog("InputValue.panel", "", 0)
IF value < 0
 EXITSEQUENCE 0
END
;Continue with sequence...
...

See also:
PnClose, PnLoad, DbLoadPanel, DbShow, Dialog

imc FAMOS Func on Reference - 258 -

(c) 2024 imc Test & Measurement GmbH

DbConnect

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Sets up a connection to the specified database system.

Declaration:
DbConnect (ServerType, TxServerName, TxDatabaseName, TxUserName, TxPassword, TxExtConnectionString) ->
ConnectID

Parameter:

ServerType The database system's type

1 : Access to Microsoft SQL Server Compact Edition 4.0. by means of ADO.Net Provider

2 : Access to Microsoft SQL Server (2005, 2008) by means of ADO.Net Provider

3 : Access to an Oracle database system (10g, 11g, 12c) by means of Oracle Data Provider for .NET.

4 : Access to a MySQL Server (5.5, 5.6) by means of MySQL Connector/NET

5 : Access to a server via ODBC

6 : Access to an Oracle database system (10g, 11g, 12c) using the Oracle Data Provider for .NET, Managed Driver

TxServerName Name of the server

TxDatabaseName Name of the database

TxUserName The user name for logging on to the server

TxPassword The password for the specified user name

TxExtConnectionString Extension for the standard connection string

ConnectID

ConnectID Result: Connection identifier or error number

> 0 : Connection identificator

< 0 : Error number

Description:
A connection string is assembled from the parameters of the function. A connection object is created and a connection test is performed. After a
successful test, a valid connection identifier is returned. In order to determine an error, the functions DbGetLastErrorCode() and / or
DbGetLastErrorText() must then be used.

Multithreading: All functions of the Database kit may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e.
within sequence functions that are executed in a separate thread) is not permitted.

Examples:
A connection to an Oracle database server is established by using the file tnsnames.ora.

DbInitialize()
ConnectId = DbConnect(3,"ORCL","","MyUsername"," MyPassword","")
if ConnectId < 0
 errortext=DbGetLastErrorText(0,1)
 exitsequence 1
end

A connection to an MySQL server is established. It operates via the TCP-port 3307. The port-number is specified as the extension of the
connection string.

DbInitialize()
ConnectId=DbConnect(4,"localhost","Sample_DB","MyUsername","MyPassword ", "port=3307;")
if ConnectId < 0
 errortext=DbGetLastErrorText(0,1)
 exitsequence 1
end

A connection is established to an MS SQL server by means of Windows authentication.

DbInitialize()
ConnectId=DbConnect(2,"MyPC\SQL2008EXPRESS","SampleDB","","","")
if ConnectId < 0

imc FAMOS Func on Reference - 259 -

(c) 2024 imc Test & Measurement GmbH

 errortext=DbGetLastErrorText(0,1)
 exitsequence 1
end

Establish a connection to a MySQL server via ODBC. A system data source called "DSN_MySql" is set up for this in the ODBC manager.

DbInitialize()
ConnectId=DbConnect(5,"DSN_MySql","","MyUsername","MyPassword ","")
if ConnectId < 0
 errortext=DbGetLastErrorText(0,1)
 exitsequence 1
end

See the user's manual for more examples.

See also:
Datenbankverbindung, DbDisconnect, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 260 -

(c) 2024 imc Test & Measurement GmbH

DbDisconnect

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Disconnects a connection to a database.

Declaration:
DbDisconnect (ConnectID) -> ErrorCode

Parameter:

ConnectID Connection identifier

ErrorCode

ErrorCode Result: Error number for error number, else zero.

= 0 : No error

< 0 : Error number

Description:
Disconnections the connection to the database.

The functions DbConnect() and DbDisconnect() should always be called in pairs.

Examples:
A connection to an Oracle database server is established. Next, the database system is accessed. At the end, the connection is disconnected.

ConnectId = DbConnect(3,"ORCL","","MyUsername"," MyPassword","")
 :
 :
errorcode = DbDisconnect(ConnectId)

See also:
Datenbankverbindung, DbConnect, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 261 -

(c) 2024 imc Test & Measurement GmbH

DbEndTransaction

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

A transaction is codified, or reset.

Declaration:
DbEndTransaction (ConnectID, Commit) -> ErrorCode

Parameter:

ConnectID Connection identifier

Commit Saves or reverses the transaction steps.

0 : All steps of the transaction are reversed (Rollback).

<> 0 : Processing steps are permanently saved (Commit).

ErrorCode

ErrorCode Result: Error number for error number, else zero.

= 0 : No error

< 0 : Error number

Description:
This function must always be called in a pair along with the function DbBeginTransaction().

Examples:

See also:
Transaktionen, DbBeginTransaction, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 262 -

(c) 2024 imc Test & Measurement GmbH

DbGetLastErrorCode

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Determines the error number of the las Database Kit error to occur.

Declaration:
DbGetLastErrorCode (ConnectID, ClearError) -> ErrorCode

Parameter:

ConnectID Connection identifier

ClearError Specifies whether the last error is to be deleted.

1 : Delete error

0 : Don't delete error

ErrorCode

ErrorCode Result: The error number of the last Database Kit error to occur

Description:
With this function, the error number of the last error to occur can be read.

If a 1 is specified for the parameter "ClearError", then the error memory is subsequently cleared.

Each connection has its own error memory. For this reason, the parameter "ConnectId" must be specified.

In case of an error, most Kit-functions return the error number. Error numbers are always negative numbers.

In the user's manual, the errors are described in the section Error Codes.

Examples:

See also:
Verschiedenes, DbGetLastErrorText

imc FAMOS Func on Reference - 263 -

(c) 2024 imc Test & Measurement GmbH

DbGetLastErrorText

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Gets the error text of the last Database-Kit error to occur.

Declaration:
DbGetLastErrorText (ConnectID, ClearError) -> TxError

Parameter:

ConnectID Connection identifier

ClearError Specifies whether the last error is to be deleted.

1 : Delete error

0 : Don't delete error

TxError

TxError Error text

Description:
With this functon, it is possible to read the text of the last error to occur.

If a 1 is specified for the parameter "ClearError", then the error memory is subsequently cleared.

Each connection has its own error memory. For this reason, the parameter "ConnectId" must be specified.

If the function DbConnect() fails, then when calling DbGetLastError(), the parameter ConnectId =0 must be specified.

In the user's manual, the errors are described in the section Error Codes.

Examples:

See also:
Verschiedenes, DbGetLastErrorCode

imc FAMOS Func on Reference - 264 -

(c) 2024 imc Test & Measurement GmbH

DbInitialize

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Initialization of the settings in the Kit. Any existing database connections are disconnected.

Declaration:
DbInitialize () -> KitVersion

Parameter:

KitVersion

KitVersion Result: Number of the kit version

Description:
The function initializes the Database-Kit. A defined initial condition of the kit is established. Any transactions are concluded with a rollback. All
connection objects and the internal error memory will be deleted.

It is recommended to call this function at the start of every sequence.

Multithreading: All functions of the Database kit may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e.
within sequence functions that are executed in a separate thread) is not permitted.

imc FAMOS Func on Reference - 265 -

(c) 2024 imc Test & Measurement GmbH

DbInsert

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Execution of an INSERT-instruction over multiple database rows

Declaration:
DbInsert (ConnectID, TxTableName, GrpInsertValues) -> Result

Parameter:

ConnectID Connection identifier

TxTableName Name of the database table

GrpInsertValues The group contains text boxes and data sets to be inserted into the database table.

Result

Result Result: An error number in case of error, else the number of database rows inserted.

>= 0 : Number of database rows inserted

< 0 : Error number

Description:
Using this function, it is possible to insert data from FAMOS-objects into a database table. The names of the data sets and text boxes in the group
need to be present in the database table as columns. All elements contained in the group are inserted into the table. The group's data sets and
text boxes must be of the same size. The size determines the number of table rows inserted.

If a Blob-column is incuded, then the only permitted size of the group elements is 1. The name of the data set corresponding to the Blob-column
is inserted into the table's one box. If the group elements' size is > 1, then only the data having the first index are inserted.

In case an error occurs, the error text can be determined using the function DbGetLastErrorText().

Examples:
A new row with a Blob-column is created.

; --- Important! Only one row may be loaded ------------
grpResult = DbSelect(ConnectID,"Select * from Measurement WHERE Id = 1","")
errorcode = DbGetLastErrorCode(ConnectID,0)
if errorcode < 0
 errortext = DbGetLastErrorText(ConnectID,1)
end
; --- Determining new ID value for insertion ------------------
grpMax = DbSelect(ConnectID,"Select Max(Id) AS MaxID from Measurement ","")
maxid = grpMax:MaxID[1]
grpResult:ID[1]=maxid+1
; --- Loading channel Sintest1 --------------------------------------
FileLoad("Sintest1.dat","",0)
grpResult:CHANNEL=sintest1
; --- Saving triggering time as a date ---------------------------
grpResult:Date[1]=Time?(grpResult:CHANNEL)
grpResult:Name[1] ="Sintest1"
grpResult:Maximum[1]=Max(sintest1)
; --- Inserting a channel as a Blob into the table --------------
; --- Important! The group elements may only have the size 1 -
Result = DbInsert(ConnectID,"Measurement",grpResult)
if result < 0
 errortext = DbGetLastErrorText(ConnectID,1)
end

See also:
Datenzugriff, DbSelect, DbUpdate1, DbUpdate, DbBeginTransaction, DbEndTransaction, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 266 -

(c) 2024 imc Test & Measurement GmbH

DbLoadPanel

A Panel-file is loaded and displayed.
The function is obsolete; instead the newer function PnLoad() should be used (as of V2022).

Declaration:
DbLoadPanel (TxFilename, Zero) -> Success

Parameter:

TxFilename Name of the Panel file to be opened

Zero Reserved, always set to 0

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
Loads the Panel-file specified.

If the specified filename has no name extension, then the system assumes ".panel".

If no complete path is specified with the filename, the system searches for the file in this sequence of folders:

Project folder: When a project is active, the search is conducted initially in the current project's folder.
Default folder for Panel-files: FAMOS presettings for Panels/dialogs/sequences

To start a Panel in Dialog-mode, use the command Dialog().

Examples:
A Panel file is opened. A variety of updates are performed, after which the Panel is printed and then closed again.

err = DbLoadPanel("d:\templates\result.panel", 0)
IF err <> 0
 BoxMessage("Error", GetLastError(), "!1")
ELSE
 ; various updates
 ; ...
 PnPrint(0)
 PnClose(0)
END

See also:
PnLoad, PnClose, DbClosePanel

imc FAMOS Func on Reference - 267 -

(c) 2024 imc Test & Measurement GmbH

DbOption

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Setting of optional parameters

Declaration:
DbOption (ConnectID, TxParametername, TxParameterValue) -> ErrorCode

Parameter:

ConnectID Connection identifier

TxParametername Name of the stipulated optional parameter

TimeStampMap : If the parameter value is "yes", then Date/Time-columns are converted to a text-array; for "no", to a
normal data set. Default value = "no".

NumericAsDouble : If the parameter value is "yes", each numerical column in a data set is converted to a data set in the 8-
Byte Real data format; for "no", the data set as the appropriate data format (see user's manual setion Conversion of Data).
Default value = "no".

CommandTimeOut : By means of this parameter, the time to wait is specified, in seconds, until the attempt to execute a
command is concluded and an error generated. The default value is 30.

BlobAsChannel : If the parameter value is "yes", the content of the blob field is interpreted as a channel, if "no" is used as a
binary object (e.g. image). Default value = "yes".

TxParameterValue Parameter value

ErrorCode

ErrorCode Result: Error number for error number, else zero.

= 0 : No error

< 0 : Error number

Description:
With this function, optional parameters for each connection can be set.

The name of this optional parameter must match a stipulated name.

Examples:

See also:
Verschiedenes, DbSelect

imc FAMOS Func on Reference - 268 -

(c) 2024 imc Test & Measurement GmbH

DbSelect

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Execution of a SELECT instruction. The selected data are joined together and returned as a FAMOS group.

Declaration:
DbSelect (ConnectID, TxSqlStatement, TxTimeColumn) -> GrpResult

Parameter:

ConnectID Connection identifier

TxSqlStatement SQL SELECT instruction. This instruction is passed to the database unchanged.

TxTimeColumn If not "", the content of this column is used to assign a time track to the numerical group elements.

GrpResult

GrpResult Result: This group is filled with text boxes and data sets which correspond to the selected column names. In case of error, the
group is empty.

Description:
The function executes the SELECT instruction, converts the columns to data sets/text boxes.

These are joined together in and returned as a FAMOS group.

Each column results in a group element (data set or text box) of the same name.

The number of rows imported determines the size of the group elements.

The user's manual contains an overview of how the data types of the columns are converted to FAMOS objects.

If contains one or more Blob-columns, the result may only return one row.

The values of the Blob-column boxes result in one data set each. If the query returns multiple result rows, the Blob-columns are not converted.

If the parameter TxTimeColumn is set and it corresponds to a numerical column, then all other numerical columns are converted to XY-data sets,
with the time column as a X-component.

The optional parameter TimeStampMap = yes determines that all columns of the type Date/Time are converted to a text box. By default, these
columns are converted to a normal data set in the imc time format.

The optional parameter NumericAsDouble = yes determines that all numerical columns in data sets are converted with the format 8 Byte Real
(Double).

To determine any error occurring, the functions DbGetLastErrorCode() and/or DbGetLastErrorText() are to be used subsequently.

Examples:
With this query, all columns of the table measurement are to be imported.

grpResult = DbSelect(ConnectID,"Select * from Measurement WHERE Id > 0","")
errorcode=DbGetLastErrorCode(ConnectID,0)
if errorcode < 0
 errortext=DbGetLastErrorText(ConnectID,1)
end

See also:
Datenzugriff, DbOption, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 269 -

(c) 2024 imc Test & Measurement GmbH

DbSetActivePanel

Scope: Panels

Sets the active Panel

Declaration:
DbSetActivePanel (TxTitle)

Parameter:

TxTitle Title of the Panel to be activated

Description:
This function is only helpful if multiple Panels are displayed simultaneously. The kit's functions always apply to the currently active (i.e. visible)
Panel.

Examples:
While multiple Panels are open, the user is prompted whether to print the last Panel opened. Since the user may have manually activated a
different Panel in the meantime, the system must ensure that the subsequent print command is actuall applied to the desired Panel.

Multithreading: The functions for Panel remote control can be called anywhere and have a global effect. The Panel selected here is therefore
valid for all execution threads.

err = PnLoad("Dontcare.panel")
;...
err = PnLoad("Report.panel")
;...
IF err = 0
 ok = BoxMessage("Report","Print ?","?2")
 IF ok = 1
 DbSetActivePanel("Report")
 PnPrint(0)
 END
END

See also:
DbShow, PnLoad

imc FAMOS Func on Reference - 270 -

(c) 2024 imc Test & Measurement GmbH

DbSetPanelWindow

Scope: Panels

Sets the position of the active Panel on the screen.

Declaration:
DbSetPanelWindow (Status, left, top, wide, high)

Parameter:

Status Window status

0 : Minimized (as icon)

1 : Normal (floating)

2 : Maximized (full screen)

3 : Docked in main window

left X-coodinate of left upper corner

top Y-coodinate of left upper corner

wide Window width

high Window height

Description:
With this function it is possible to control the position and size of the active Panel window on the screen.

The specified window coordinates determine the window's default position in free-floating mode. The entry is in screen pixels.

If [wide] and [high] are both 0, thecurrent size remains intact; only the position is corrected accordingly. If additionally [left] and [top] are 0, the
default position remains intact.

Examples:
A Panel-file is loaded. The Panel is undocked from the main window and displayed as a free floating window of size 600x400 in the right upper
corner of the primary monitor.

err = PnLoad("d:\templates\result.panel")
IF err = 0
 right = GetSystemInfo("Screen.PrimaryWorkArea", "left") + GetSystemInfo("Screen.PrimaryWorkArea", "width")
 DbSetPanelWindow(1, right-600, 0, 600, 400)
END

See also:
DbShow, PnClose

imc FAMOS Func on Reference - 271 -

(c) 2024 imc Test & Measurement GmbH

DbShow

Scope: Panels

Controls the visibility of all open Panel-windows

Declaration:
DbShow (Task)

Parameter:

Task Command parameter

0 : Close all Panels

1 : Display as free window

2 : Display as icons

3 : Display in full screen

Description:
With this function, the display status of all open Panel-windows can be controlled.

Upon exiting (Task = 0), all changes to the Panels which were not yet saved are lost.

As of FAMOS 7.0, this function is retained for reasons of compatibility with older FAMOS-sequences; in newly created sequences, the function
DbSetPanelWindow() should be used, by means of which the visibility of each Panel can be controlled separately.

See also:
PnLoad, PnClose, DbSetPanelWindow

imc FAMOS Func on Reference - 272 -

(c) 2024 imc Test & Measurement GmbH

DbSql

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Execution of an SQL instruction without returning of data, i.e. INSERT, UPDATE or DELETE can be executed.

Declaration:
DbSql (ConnectID, TxSqlStatement) -> Result

Parameter:

ConnectID Connection identifier

TxSqlStatement SQL instruction. This instruction is passed to the database system unchanged.

Result

Result Result: An error number in case of error, else the number of data rows affected.

>= 0 : Number of data rows affected

< 0 : Error number

Description:
Mit dieser Funktion können SQL- Anweisungen ausgeführt werden, die keine Ergebnisse zurückliefern (UPDATE, INSERT, DELETE). Der
Rückgabewert entspricht der Anzahl der betroffenen Zeilen. Es lassen sich aber auch DDL Kommandos wie z.B. "ALTER TABLE Messung ADD MyCol
INTEGER" ausführen. Bei einem DDL- Kommando ist der Rückgabewert bei erfolgreicher Ausführung 0.
In case an error occurs, the error text can be determined using the function DbGetLastErrorText().

Examples:
All values in the column "Status" of the table "Measurement" are set to "Ready".

result =DbSql(ConnectId,"Update measurement to Status ='Ready'")
if result < 0
 errortext=DbGetLastErrorText(ConnectId,1)
end

The column "MyCol" having the Integer data type is added to the table "Measurement".

result =DbSql(ConnectId,"ALTER TABLE Messung ADD MyCol Integer")
if result < 0
 errortext=DbGetLastErrorText(ConnectId,1)
end

See also:
Datenzugriff, DbBeginTransaction, DbEndTransaction, DbInsert, DbUpdate1, DbUpdate, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 273 -

(c) 2024 imc Test & Measurement GmbH

DbUpdate

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Repeated execution of an UPDATE instruction

Declaration:
DbUpdate (ConnectID, TxSqlStatement, GrpUpdateValues) -> Result

Parameter:

ConnectID Connection identifier

TxSqlStatement SQL UPDATE instruction

GrpUpdateValues Contains data for updating and for the WHERE condition.

Result

Result Result: An error number in case of error; else the number of updated database rows

>= 0 : Number of updated database rows

< 0 : Error number

Description:
The function executes the UPDATE statement n times according to the size of the group elements transferred. An index loops from 1 to the size
of the group elements. The values of the group elements addressed by the index replace the placeholders in the UPDATE statement. The update
instruction is executed.

The UPDATE statement must be specified in full as a TxSqlStatement. The question mark ?+Group element name is to be used as a placeholder
for the values to be replaced from the group elements. The placeholders in the SET part and in the WHERE condition are replaced by the data
from the GrpUpdateValues group. If there is a blob column in the UPDATE statement, only the 1st row in the database table is updated.

In case an error occurs, the error text can be determined using the function DbGetLastErrorText().

Examples:
The columns ID, NAME and DATE are imported. The group elements have a size of 13. Now, the individual names will be changed. Subsequently,
the changed group updates the database table.

The UPDATE-instruction is executed 13 times. Upon each UPDATE, the placeholders are replaced with the corresponding data from the group
elements. The function's result is 13.

grpResult =DbSelect(ConnectID,"Select ID, Name,Date from Measurement","")
; --- Constructing new name for the updating ---------------
for i= 1 to leng?(grpResult:ID) Step 1
 measurement=grpResult:Name[i] +"_"+ TForm(grpResult:ID[i],"")
 grpResult:Name[i]=measurement
end
updatestatement="update Messung set Name=?Name where Id =?Id "
result=DbUpdate(ConnectId,updatestatement,grpResult)
if result < 0
 errortext=DbGetLastErrorText(ConnectID,1)
end

See also:
Datenzugriff, DbUpdate1, DbBeginTransaction, DbEndTransaction, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 274 -

(c) 2024 imc Test & Measurement GmbH

DbUpdate1

Scope: Database remote control

Required Extension-Kit: (imc Database Kit)

Execution of an UPDATE instruction

Declaration:
DbUpdate1 (ConnectID, TxSqlStatement, GrpUpdateValues, SampleIndex) -> Result

Parameter:

ConnectID Connection identifier

TxSqlStatement SQL UPDATE instruction

GrpUpdateValues Contains data for updating and for the WHERE condition

SampleIndex Updating of the database values (1...) only occurs with the values from group elements addressed via the SampleIndex.

Result

Result Result: An error number in case of error; else the number of updated database rows

>= 0 : Number of updated database rows

< 0 : Error number

Description:
Mit dieser Funktion wird eine UPDATE-Anweisung ausgeführt. Die UPDATE-Anweisung muss komplett als TxSqlStatement angegeben sein.
The question mark ?+Group element name is to be used as a placeholder for the values to be replaced from the group elements. The
placeholders in the SET part and in the WHERE condition are replaced by the data from the GrpUpdateValues group.

Only the data from the group elements that are addressed by the SampleIndex are used for the update instruction. There can be more group
elements in the group than are required for the update instruction. Only the group elements that are specified in the update instruction are
used.

In case an error occurs, the error text can be determined using the function DbGetLastErrorText().

Examples:
The values of the column MAXIMUM should be be set to 1000 where the value of the column NAME ends with 1x.

After reading in the columns, the value is set from the maximum with SampleIndex = 1 to 1000. There is a placeholder in the SET part of the
UPDATE statement. The WHERE condition "Name LIKE '% 1_'" filters 4 rows that are updated. The result of the function is 4.

grpResult =DbSelect(ConnectID,"Select Id,Name,Date,Maximum from Masurement", "")
grpResult:Maximum[1]=1000;
updatestatement="update Messung set Maximum=?Maximum where Name LIKE '%1_' "
result=DbUpdate1(ConnectId,updatestatement,grpResult,1)
if result < 0
 errortext=DbGetLastErrorText(ConnectID,1)
end

The value of the column MAXIMUM and of the row with the ID-value 11 is to be set to 0.

grpResult =DbSelect(ConnectID,"Select Id,Name,Date,Maximum from Measurement", "")
;The 11th value of the data set MAXIMUM will be set to 0.
grpResult:Maximum[11]=0;
updatestatement="update Messung set Maximum=?Maximum where Id =?Id"
;The UPDATE-instruction is executed with the data which are addressed by means of the SampleIndex 11.
result=DbUpdate1(ConnectId,updatestatement,grpResult,11)
if result < 0
 errortext=DbGetLastErrorText(ConnectID,1)
end

See also:
Datenzugriff, DbUpdate, DbBeginTransaction, DbEndTransaction, DbGetLastErrorText, DbGetLastErrorCode

imc FAMOS Func on Reference - 275 -

(c) 2024 imc Test & Measurement GmbH

DDEInq

Available in: Professional Edition and above

Requests a text string, single value or data set from another application via DDE.
DDE is an outdated technology and may not be supported by future versions of Windows and MS Office. For communication with EXCEL, the
functions from the EXCEL function group, such as XLWbOpen () and XLSetValues ??(), should be used instead.

Declaration:
DDEInq (TxApplication, TxTopic, TxElement, SvDataType) -> Data

Parameter:

TxApplication The name of the program from which data are to be requested

TxTopic The topic of the conversation

TxElement Element requested

SvDataType Data type

1 : Text

2 : Single value

3 : Data set

Data

Data Data read from application; type according to [SvDataType].

Description:
Requests a text string, single value or data set from another application via DDE.

DDE (Dynamic Data Exchange) is a communication mechanism under Windows for exchanging data or commands, which is supported bby many
Windows applications.

Please refer to documentation of the target applications for information about available topics and the designations of the elements.

Text strings are always requested in ASCII format
If text strings are requested, the maximum string length is 255 characters.
When a single value or a data set is requested, an inquiry for imc FAMOS-DDE format is performed first. If this format is not accepted, a
second request is made for data in ASCII format.
When data are read from another application in ASCII format, any separators may be located between the values. The numbers may be real
numbers, written with a decimal point if desired. Decimal commas are not allowed.
An error message is generated if the other application does not respond or provide any data.
A complete DDE conversation is carried out every time, including initialization, query and end.
When CwUpdateEnable(0) or CvUpdate(0) was called, no DDE-communication is possible!

Examples:
An existing Excel file with the table sheet "Table1" is opened.

The element in the 1st line, 2nd column is queried and returned as text.

Execute("Excel.exe","c:\temp\1.xlsx", "open", 0, 3)
TxCell = DDEInq("EXCEL","Table1","R1C2", 1)

Note: For the remote control of EXCEL, the functions of the Excel kit (XlWbOpen, XlSetValues, XlGetValues ...) are generally more suitable.

Dat1 = DDEInq("EXCEL","Tab1","R1C1:R100C1", 3)

Reads a maximum of 100 values from the first column of the Excel table "Sheet1".

See also:
DDESend, DDESet

imc FAMOS Func on Reference - 276 -

(c) 2024 imc Test & Measurement GmbH

DDESend

Available in: Professional Edition and above

A commando is sent to another application via DDE.
DDE is an outdated technology and may not be supported by future versions of Windows and MS Office. For communication with EXCEL, the
functions from the EXCEL function group, such as XLWbOpen () and XLSetValues ??(), should be used instead.

Declaration:
DDESend (TxApplication, TxTopic, TxCommand) -> SvStatus

Parameter:

TxApplication The name of the program to which the commands are to be sent

TxTopic The topic of the conversation

TxCommand The command itself which is to be sent

SvStatus

SvStatus 0, if the command was executed -1, if the other application does not respond Else: REturn value from the other application

Description:
A command is sent to another application by means of DDE.

DDE (Dynamic Data Exchange) is a communication mechanism under Windows for exchanging data or commands, which is supported bby many
Windows applications.

Please refer to documentation of the target application for information about available topics and the syntax of the command texts.

The syntax of the command is determined by the receiving application.
The return value indicates whether the other application received and executed the command.
A complete DDE conversation is carried out every time, including initialization, query and end.
If the other application is busy, the call repeats until the other application responds.
When CwUpdateEnable(0) or CvUpdate(0) was called, no DDE-communication is possible!

Examples:

error = DDESend("EXCEL","SYSTEM","[NEW]")
IF error
 PAUSE Command not executed
END

A command is sent to EXCEL. This command causes EXCEL to open a new spreadsheet.

TxCommand = "[Open(""Table1.xls"")]"
eror = DDESend("EXCEL", "SYSTEM", TxCommand)

Excel is instructed to open the file "Table1.xls".

Note: For the remote control of EXCEL, the functions of the Excel kit (XlWbOpen, XlSetValues, XlGetValues ...) are generally more suitable.

See also:
DDEInq, DDESet

imc FAMOS Func on Reference - 277 -

(c) 2024 imc Test & Measurement GmbH

DDESepar

Available in: Professional Edition and above

The separator for transmission of ASCII texts by means of the function DDESet() is defined.

Declaration:
DDESepar (TxChar)

Parameter:

TxChar A text containing the separator character(s)

Description:
The function DDESet can transfer data sets in ASCII format. The individual numerical values must be separated from each other by some easily
recognizable character or string. This character of string can be defined using either this function or SetOption().

The transmitted ASCII-text has this structure:

Number Separator Number Separator .. Number

You can also set the separator plus additional formatting options using the dialog "Options"/"DDE" or the function SetOption().
The separator string for numbers should normally not contain any numbers.
Thge string may have a maximum of 4 characters.
Multithreading: The function has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:

DDESepar(SvToChar(0x09))
; or better:
DDESepar("~009")

A TAB sign is specified as a separator (ASCII code: 9hex). This is appropriate for transferring a row to Excel.

DDESepar(TAdd(SvToChar(0x0d), SvToChar(0x0a)))
; or better
DDESepar("~013~010")

A combination of return/line feed is selected as the separator. This is appropriate for transferring a column to Excel.

See also:
DDESet, DDEInq, SetOption

imc FAMOS Func on Reference - 278 -

(c) 2024 imc Test & Measurement GmbH

DDESet

Available in: Professional Edition and above

Transfers the contents of a variable to another application via DDE.
DDE is an outdated technology and may not be supported by future versions of Windows and MS Office. For communication with EXCEL, the
functions from the EXCEL function group, such as XLWbOpen () and XLSetValues ??(), should be used instead.

Declaration:
DDESet (TxApplication, TxTopic, TxElement, Data, SvDataType) -> SvStatus

Parameter:

TxApplication Name of the program to which the data are to be transferred

TxTopic The topic of the conversation

TxElement Name of the element (variable) in the receiving program to which the data are sent

Data Data to be transferred: single value, equidistant data set or text string

SvDataType Data type

1 : Transfer data as text (ASCII-format)

2 : Transfer data in the imc FAMOS format (also for data type=3)

SvStatus

SvStatus 0, if data were transferred -1, if the other application does not respond Else: Value returned by the other application

Description:
Sets a text string, single value or data set from another application via DDE.

DDE (Dynamic Data Exchange) is a communication mechanism under Windows for exchanging data or commands, which is supported bby many
Windows applications.

Please refer to documentation of the target applications for information about available topics and the designations of the elements.

Use the DDESepar function 0r SetOption() to define a separator for transfer of normal data sets in ASCII format.
When transferring numerical values in the ASCII-format, you can provide detailed specifications of the format using the dialog
"Options"/"DDE".
The return value indicates whether the other application received the data.
A complete DDE conversation is carried out every time, including initialization, query and end.
When CwUpdateEnable(0) or CvUpdate(0) was called, no DDE-communication is possible!

Examples:
An existing Excel file with the table sheet "Table1" is opened.

The cell in the 1st line, 2nd column is set to "Hello Excel".

Execute("Excel.exe", "c:\temp\Workbook1.xlsx", "open",0,3)
ret = DDESet("EXCEL", "Table1", "R1C2", "Hello Excel", 1)

Note: For the remote control of EXCEL, the functions of the Excel kit (XlWbOpen, XlSetValues, XlGetValues ...) are generally more suitable.

Enters the values in data set "wave" in the first column of the Excel table "Tab1". Data are converted to the ASCII format before they are
transferred.

ret = DDESet("EXCEL", "Table1", "R2C1:R100C1", data, 1)

See also:
DDEInq, DDESepar, DDESend, SetOption

imc FAMOS Func on Reference - 279 -

(c) 2024 imc Test & Measurement GmbH

DEFAULT

Initializes the 'ELSE'-branch in a in a case differentiation (multiple branching) induced by the command SWITCH. The subsequent command block
is run if the preceding CASE condition is met.

Declaration:
DEFAULT

Description
The end of the instruction belonging to this DEFAULT is determined by the END-command belonging to the SWITCH.

Examples:
A descriptive text is formulated for a value nomally lying within the range from 0 to 100. If it is ouside of this range, an error message is displayed.

SWITCH Round(value, 1)
CASE 0 TO 48
 Tx = "Lower half"
CASE 49,50,51
 Tx = "Center"
CASE 52 To 100
 Tx = "Upper half"
DEFAULT
 PAUSE Invalid Value
END

See also:
SWITCH, CASE, IF

imc FAMOS Func on Reference - 280 -

(c) 2024 imc Test & Measurement GmbH

DELETE

Deletes a variable

Declaration:
DELETE VariableName

Parameter:

VariableName Name of the variable to be deleted

Description
The variable supplied as the parameter is deleted from the Variable list.

The wildcards character may be specified to delete a series of variables. The wildcard character '?' represents an exact character, '*' represents an
undefined number of characters.

DELETE *

All variables are deleted.

DELETE ??

All variables whose names are exactly 2 characters long are deleted.

DELETE *1a*

All variables, in which the string '1a' is present (also at the beginning or end) are deleted.

DELETE a*:channel?

All channels with the name 'Channel', followed by any character, are deleted from those data groups whose names begin with an 'a'.

DELETE temp?:@Test_2022_12_01

All channels that belong to the "Test_2022_12_01" measurement and whose name is made up of "temp" and another character are deleted.

Examples:
A variable is created, saved and then deleted:

Var = 2
FileSave("result.dat", "", 0, Var)
DELETE Var

One channel in a data group is deleted.

DELETE Group:Channel1

See also:
SHOW, RENAME

imc FAMOS Func on Reference - 281 -

(c) 2024 imc Test & Measurement GmbH

DeqCalc

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: The actual calculation

Declaration:
DeqCalc () -> Remainder count

Parameter:

Remainder count

Remainder count Remainder count; the remaining number of sampling points for the calculation

Description:
This function performs tha actual calculation. Previously, all integration variables, constants, the time basis and input signals had been specified.

Upon first calling this function, the initialization and testing are performed, since this generally could only happen once definition of the entire
task is complete.

Upon the first call, the function begins the calculation. If the calculation is not completed by a certain amount of time, the function returns
anyway.

This function is usually called within a loop until the calculation is completely finished. This makes it possible to cancel the operation.

The calculation can require a long time in total.

A single call of the function lasts approx. 0.5s, if the entire calculation is not yet completed. It is also possible for the time to be excceded if
calculation of a subsequent sample point is very demanding.

When the calculation has been completed, the function returns 0.

Solving differential equations always begins with calling DeqInit(). After all necessary initialization has occurred, the actual calculation with
DeqCalc() begins before the reuslts are retrieved by means of DeqResult().

Examples:
Calculation with checking of the remaining sampling points to be calculated.

local Remain = 1
while Remain > 0
 Remain = DeqCalc()
end

Simple loop

while DeqCalc() > 0
end

imc FAMOS Func on Reference - 282 -

(c) 2024 imc Test & Measurement GmbH

DeqConst

Available in: Professional Edition and above

Solution of a system of ordninary differential equations: Speifies constants

Declaration:
DeqConst (Value, Formula symbols)

Parameter:

Value Value of the constant

Formula symbols Formula symbols for these constants, e.g. "C1"

Description:
In the formulas with y'=, it is possible to enter constants directly as their numerical value. Or alternatively, as a symbol. The value of the constants
is specified using this function and can be conveniently extracted from a FAMOS-variable.

The function is called once for each constant used in a formula.

Solving differential equations always begins with calling DeqInit(). Before the actual calculation with DeqCalc(), it may be necessary to call
DeqConst().

Examples:
undamped pendulum

DeqInit(2, 0, 0)
local Length = 1.5
DeqConst(Length, "Length")
DeqConst(9.81, "g")
DeqX(ramp(0,0.01,1000))
DeqY("phi'", 3)
DeqY("phi''=-(g/Length)*sin(phi)", 0)

Alternative without a constant

DeqInit(2, 0, 0)
DeqX(ramp(0,0.01,1000))
DeqY("phi'", 3)
DeqY("phi''=-(9.81/1.5)*sin(phi)", 0)

imc FAMOS Func on Reference - 283 -

(c) 2024 imc Test & Measurement GmbH

DeqError

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: Queries errors

Declaration:
DeqError () -> Error

Parameter:

Error

Error Error (0: OK; 1: precision level not met; 2: infinte)

Description:
Solving differential equations always begins with calling DeqInit(). After the actual calculatoin with DeqCalc(), DeqError() is used to query any
errors.

Examples:
Values approach infinity; Error=2

DeqInit(1, 0, 0)
DeqX(ramp(0,1,1000))
DeqY("y'=y", 1)
while DeqCalc() > 0
end
Error = DeqError()

Checking for value range violation and loss of precision

DeqInit(1, 0, 0)
DeqX(ramp(0,1,100))
DeqY("y'=-0.1*y", 1)
while DeqCalc() > 0
end
Error = DeqError()
Verify(Error=0)

imc FAMOS Func on Reference - 284 -

(c) 2024 imc Test & Measurement GmbH

DeqFinish

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: Conclusion of the analysis; clearing of memory space

Declaration:
DeqFinish ()

Parameter:

Description:
This function clears out any memory space which had been required in conjunction with the calculation.

It is recommended to call this function, but not mandatory.

At the beginning of any new calculation using DeqInit(), all memory space used in a previous analysis is cleared.

After calling this function, no further Deq*() functions can be called. It is only possible to begin an entirely new analysis by using DeqInit().

Solution of differential equations always begins with calling DeqInit(). Conclusion of the analysis is performed with DeqFinish().

Examples:
Decay function, clearing of memory space at the conclusion

DeqInit(1, 0, 0)
DeqY("y'=-0.1*y", 1, 1e-7, 1e-8)
DeqX(ramp(0,0.3, 300)))
while DeqCalc() > 0
end
Y = DeqResult("y")
DeqFinish()

imc FAMOS Func on Reference - 285 -

(c) 2024 imc Test & Measurement GmbH

DeqInit

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: Initialization

Declaration:
DeqInit ([Y-count] [, U-count] [, Procedure])

Parameter:

Y-count number of equations in the system (optional , Default value: 1)

U-count number of input data sets (optional , Default value: 0)

Procedure According to what procedure is the calculation conducted? (optional , Default value: 0)

0 : RK 45: explicit Runge-Kutta 5th order, Dormand-Prince; embedded method

1 : Mix of implicit and explicit Runge-Kutta. Section-by-section decision for the probably faster procedure.

2 : RK 34, implicit Runge-Kutta 4th-order, GRK4T mtehod, a Rosenbrock-Wanner (ROW) method with Kaps-Rentrop coefficients

3 : RK 4, classical Runge-Kutta 4th order; k1/6+k2/3+k3/3+k4/6

Description:
Solving the system of differential equations is performed over multiple function calls. All start with DeqInit().

Form of the differential equations
Each of the ordinary equation system's equations takes the form y'=f(x,y,u)

y is is the variable to be integrated. Each of the system's individual equations must be put into the form "y'=...".

u is the input data. In the equation, these are mostly time functions which are here specified by an existing time domain data set.

x is the time, the independent coordinate. All y values are functions of time, thus y=y(x)

As an alternative, M*y'=f(x,y,u) with a mass matrix is also possible. Here, y designates the vector containing the variables to be integrated; f is
itself a vector.

Procedure
The procedure works with automatic stepwidth control, which however extends only up to a resolution increase factor of approx. 10000. If this is
not sufficient, a loss of calculation precision is noted.

A smaller stepwidth requires more calculation resources.

Procedure=0 is usually the best choice.

Procedure=2, implied Runge-Kutta is generally only useful with stiff systems. This procedure does not support all options.

Procedure=3 (RK 4) uses Richardson extrapolation for stepwidth control (comparison of result at half stepwidth).

A call having a group as the parameter is not possible.

Solving differential equations always begins by calling DeqInit(). The example below illustrates the principles of the process of calling the
functions.

If critical errors occur in the procedure, such as insufficient memory space, then the whole procedure will usually need to restart with DeqInit().

Examples:
Oscillating body, single degree of freedom (SDOF). The plot of force over time is given. Find the displacement, velocity and acceleration.

The equation is given as m*y'' + c*y' + k*y = F; where m is mass, y displacement, F force; c=2*damp*omega; k=omega^2;omega=f0*PI2

Transforming gives: v' = u - 2*damp*omega*v - omega^2*y ; and y'=v; with u = F/m

Force_m=1/(0.1+ramp(0,1e-3,1000))
DeqInit(2, 1, 0)
DeqInput(Force_m,"u")
DeqConst(20, "f0")
DeqConst(0.1, "damp")
DeqY("y'=v", 0, 1e-5, 1e-7, "m")
DeqY("v' = u-2*damp*(f0*PI2)*v-((f0*PI2)^2)*y", 0.02, 1e-5, 1e-8, "m/s", 1)
while DeqCalc() > 0
end
Displacement = DeqResult("y")
Speed = DeqResult("v")
Acceleration = DeqResult("v'")

Principles of the process

Solving differential equations always begins with a call of DeqInit(). Next, the equations' formulas, input data etc. are specfied. At least one call

imc FAMOS Func on Reference - 286 -

(c) 2024 imc Test & Measurement GmbH

of DeqY() must be included. Additionally, at least one call of DeqInput() or DeqX() must occur. Next, calculation is performed using DeqCalc().
Next, the results are returned. Finally, error query with DeqError() and clearing of memory space with DeqFinish() are optional.

DeqInit()
DeqInput() or DeqX()
DeqY()
while DeqCalc() > 0
end
DeqResult()
DeqError()
DeqFinish()

imc FAMOS Func on Reference - 287 -

(c) 2024 imc Test & Measurement GmbH

DeqInput

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: Specifies an input function

Declaration:
DeqInput (Input signal [, Formula symbols])

Parameter:

Input signal Data set with the input signal U

Formula symbols Formula symbol for this input signal, e.g. u1. If not specified, then u1, u2 etc. are assumed. (optional , Default value: "")

Description:
The input signal is considered to be interpolated in a stairstep shape.

In the function DeqInit(), one specifies how many input signals are used. For each input signal, the function DeqInput() is called once.

All input signals (as well as the data set for X) must have the same time basis, meaning the same start time, same sampling interval, and same
length.

If DeqX() is not called, in other words there is no data set for X, then we have: The start-time, sampling interval and length determine the
sampling points of the result data.

The sampling interval must be specified so that it is appropriate to the problem to be calculated. If it is too high, the algorithm will need too
much time for stepwidth refinement.

The data set specified is equidistant. It may not contain any events or segments.

A call having a group as the parameter is not possible.

Solving differential equations always beings with a call of DeqInit(). Before the actual calculation using DeqCalc(), at least one call of DeqInput()
or DeqX() must occur.

Examples:
SDOF. Specification of the force F. A FAMOS-variable already exists which specifies the plot of the force. In the formula, the force is to be
designated F.

Force=ramp(0,1e-3,1000)
DeqInit(2, 1, 0)
DeqInput(Force, "F")
DeqY("y'", 0.0)
DeqY("y''=F/8-10*y'-20000*y", 1)

2 input signals

hx=ramp(0,1e-3,1000)
gx=ramp(0,1e-3,1000)*2
DeqInit(1, 2, 0)
DeqInput(hx, "h")
DeqInput(gx, "g")
DeqY("y'=y-0.1*(h-g)", 1.0)

imc FAMOS Func on Reference - 288 -

(c) 2024 imc Test & Measurement GmbH

DeqMassMatrix

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: Specifies an element of the mass matrix

Declaration:
DeqMassMatrix (Element, Row, Column)

Parameter:

Element Numerical value (single value) or freely definable formula

Row Row, from 1 to Y-count from DeqInit()

Column Column, from 1 to Y-count from DeqInit()

Description:
When using a square mass matrix M, the system of ordninary differential equations takes the form:

M*y'=f(x,y,u)

M often signifies the mass matrix.

As soon as the function has been called once, a mass matrix is pre-initialized: With 1 on the diagonals, else 0. This function is called only for the
few elements of the matrix which deviate from that.

The element can be specified as a known numerical value, e.g. 7.7.

Alternatively, the element can be specified as a formula. The formula can lead to a constant value. However, it may also contain the other
quantities appearing in f(x,y,u). The term defining the element is specified in the formula.

The function is called once for each element of the matrix. But this is only necessary if the element differs from the corresponding element of
the identity matrix.

Solving differential equations always begins with calling DeqInit(). Before the actual calculation with DeqCalc(), some calls of DeqMassMatrix()
may be necessary.

Examples:
Crane trolley damped with swinging load

mass matrix:

[1 0 0 0]

[0 1 0 0]

[0 0 mLd+mcr Lng*mLd*cos(phi)]

[0 0 Lng*mLd*cos(phi) JLd+mLd*Lng^2]

DeqInit(4, 0, 0)
DeqConst(9.81, "g"); m /s^2
DeqConst(150, "mcr"); mass crab, kg
DeqConst(900, "mLd"); mass load, kg
DeqConst(2, "Lng"); distance between crab and load, m
DeqConst(120, "JLd"); kgm^2
DeqConst(200, "c") ; damper
DeqMassMatrix("mLd+mcr", 3, 3)
DeqMassMatrix("JLd+mLd*Lng^2", 4, 4)
DeqMassMatrix("Lng*mLd*cos(phi)", 3, 4)
DeqMassMatrix("Lng*mLd*cos(phi)", 4, 3)
DeqX(ramp(0,2e-3,6000), "t")
DeqY("x'=v", 0, 1e-5, 1e-7,"m", 0)
DeqY("phi'=omega", 0.5, 1e-5, 1e-7,"", 0)
DeqY("v'=mLd*Lng*omega^2*sin(phi)-v*c", 0, 1e-5, 1e-7,"m/s", 0)
DeqY("omega'=-mLd*g*Lng*sin(phi)", 0, 1e-5, 1e-7,"1/s", 0)
while DeqCalc() > 0
end
X = DeqResult("x")
phi= DeqResult("phi")
v = DeqResult("v")
omega = DeqResult("omega")

imc FAMOS Func on Reference - 289 -

(c) 2024 imc Test & Measurement GmbH

DeqResult

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: Gets a result

Declaration:
DeqResult (Name_Y) -> Result

Parameter:

Name_Y Name of the requested variable, for example "y"

Result

Result The calculated plot of the variable requested

Description:
All quantities which were introduced with DeqY() can be retrieved. For instance if "y'=..." was defined, then the result y can be retrieved.

Additional derivatives can be retrieved if their calculation had previously been ordered by means of DeqY() and the parameter "Derivatives": For
instance, if "y'=..." was defined and "Derivatives"=1, then y' can be retrieved. If "Derivatives"=2, then y'' can also be retrieved.

Solving differential equations alwas begins with calling DeqInit(). After the actual calculation with DeqCalc(), the results are retrieved using
DeqResult().

Examples:
Decay function

DeqInit(1, 0, 0)
DeqY("y'=-0.1*y", 1, 1e-7, 1e-8, "", 0)
DeqX(ramp(0,0.3, 300))
while DeqCalc() > 0
end
Y = DeqResult("y")

Decay function; derivatives desired

DeqInit(1, 0, 0)
DeqY("y'=-0.1*y", 1, 1e-7, 1e-8, "", 2)
DeqX(ramp(0,0.3, 300))
while DeqCalc() > 0
end
Y = DeqResult("y")
{Y'} = DeqResult("y'")
{Y''} = DeqResult("y''")

undamped pendulum

DeqInit(2, 0, 0)
DeqX(ramp(0,0.01,1000))
DeqY("phi'", 3)
DeqY("phi''=-(9.81/1.5)*sin(phi)", 0)
while DeqCalc() > 0
end
phi = DeqResult("phi")
{phi'} = DeqResult("phi'")

imc FAMOS Func on Reference - 290 -

(c) 2024 imc Test & Measurement GmbH

DeqX

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: Specifiying the time basis

Declaration:
DeqX (TimeBasis_Signal [, Formula symbol x])

Parameter:

TimeBasis_Signal Signal serving as the time basis

Formula symbol
x

Formula symbol for x, the independent coordinate with respect to which the derivative is taken. Can also be redefined as
"t", for example. (optional , Default value: "")

Description:
Here, a data set having the desired time base for the result is supplied.

The content of the signal specified is ignored.

The start-time, sampling interval, x-unit and length determine the sampling points of the result data.

All input signals (as well as the data set for X) must have the same time basis, meaning the same start time, same sampling interval, and same
length.

If there are no input data U present, so that DeqInput() is not called, it is absolutely necessary to call DeqX().

The sampling interval must be specified so that it is appropriate to the problem to be calculated. If it is too high, the algorithm will need too
much time for stepwidth refinement.

The data set specified is equidistant. It may not contain any events or segments.

A call having a group as the parameter is not possible.

If DeqX() is not called, then "x" is assumed as the formula symbol.

Even if DeqInput() is called, it is permitted to call DeqX(). This can be used to redefine the formula symbol. It is convenient to use one of the data
sets passed to DeqInput() as the data set.

Solving differential equations always beings with a call of DeqInit(). Before the actual calculation using DeqCalc(), at least one call of DeqInput()
or DeqX() must occur.

Examples:
Integration of the parabola whose derivative is given: y'= 3*t^2

tt = ramp(0,1e-3, 10000)
DeqInit(1, 0, 0)
DeqX(tt, "t")
DeqY("y'=0.03*t^2", 0)

imc FAMOS Func on Reference - 291 -

(c) 2024 imc Test & Measurement GmbH

DeqY

Available in: Professional Edition and above

Solution of a system of ordinary differential equations: Specifying a variable to be integrated

Declaration:
DeqY (Formula [, initial value] [, Tolerance, relative] [, Tolerance, absolute] [, y-unit] [, Derivatives] [,
Prior record])

Parameter:

Formula Freely defineable formula. E.g. " y'=-0.1*y ". This is used to define one equation in the equation system.

initial value initial value; for y, if the formula starts with y'= (optional , Default value: 0)

Tolerance,
relative Tolerance, relative; for y, if the formula starts with y'= (optional , Default value: 0)

Tolerance,
absolute Tolerance, absolute; for y, if the formula starts with y'= (optional , Default value: 0)

y-unit y-unit for the calculated y (optional , Default value: "")

Derivatives Besides y, should derivative such as y' and y'' also be offered as the calculation result? (optional , Default value: 0)

0 : no

1 : 1st derivative

2 : 1st and 2nd derivative

Prior record Prior record. Value before the process start. Only with delay differential equations (DDE), if this Y is also used in a fomula by
means of delay(). (optional , Default value: 0)

Description:

Tolerances
The tolerances are applied at each individual step. But not in terms of the calculated value compared to the true value, which is not known.
Rather, as the comparison between two calculated values.

In conjunction with stepwidth control and resolution increase of the stepwidth, tighter tolerances are used. However, the resulting deviation for
the entire step can become larger.

If tolerances are too high, there is a special hazard of instability emerging. This is because grossly incorrect values are classified as accepted
values.

If the absolute and relative tolerance are both = 0, the assumed relative tolerance = 1e-6 and the assumed absolute tolerance = 1e-20.

Caution: if either of the values absolute/relative tolerance becomes = 0: If the absolute tolerance = 0, then for a tiny magnitude the steps have
extremely fine resolution. If the relative tolerance = 0, then for a gigantic magnitude the steps have extremely fine resolution. For this reason,
both values should be specified to be as appropriate as possible.

Variables to be integrated
In the formula, the derivative of a quantity on the left side of the equals sign is generally specified. On the right side, the term according to which
this derivative is calculated.

In cases with a differential calculation in which a higher derivative is defined, for instance "y1''=...", then a dummy variable is generally
introduced: y1'=y2; This then leads to the formula "y2'=..." and an additional formula "y1'=y2". DeqY() is then called twice.

Alternatively, it is possible to do without the dummy variable: "y1''=..." is specified as a formula. "y1'" without any equals sign is specified as the
second formula in a subsequent call of DeqY(). This is because for y1', it is also necessary to specify the initial values, tolerances etc.

Solving differential equtions always begins with calling DeqInit(). Before the actual calculation using DeqCalc(), there must be at least one call of
DeqY().

Continuity
The formula should lead to a continuous function. The Runge-Kutta algorithm assumes this. In case of signal jumps between sampling points, the
Runge-Kutta generally responds with (highly) increased resolution of the stepwidth.

An implicit Runge-Kutta requires the use of the Jacobi-matrix. In this case, all derivatives of the formula must also be continuous.

If any input variables are specified using DeqInput(), these are interpreted as steps. Since, however, the resulting discontinuities only occur at
the sampling points, they do not cause problems for the Runge-Kutta procedure.

Formula content
Along with the arithmentical operators, the formula can also contain the functions sin, cos, tan, exp, asin, acos, atan, ln, log, sqrt.

All trigonometric functions work with radians. If a phase expressed in degrees is desired, the pre-defined constants PI and PI2 can be used.

Special functions

imc FAMOS Func on Reference - 292 -

(c) 2024 imc Test & Measurement GmbH

abs With the absolute value abs(x), be aware of the discontinuous derivative at x=0.

sign Sign function. sign(x) returns 1, 0, -1 for x>0, x=0, x<0. This function is discontinuous at x=0.

condi Decision function. condi(y,a,b) returns a, if y does not equal 0; else b. Example: condi(x>0.1, x, 0). Continuity depends on the
parameters.

delay Delay function. delay(y,delaytime); y is one of the variables to be integrated. This variable is delayed by the fixed, specified time
amount "delaytime". When this function is used, it leads to a delay differential equation (DDE).

Delay differential equations (DDE)
The delayed variables, in other words y(x-x0) instead of y(x), are denoted within a formula by means of the function delay().

The delayed plots are interpreted cubically between the sampling points measured.

The undelayed function starts with the value provided as the parameter "Initial Value". Since the delayed function also requires values from
before the actual start, the value of the parameter "Prior Record" is applied. This defines the value before the start time.

If the delay time is very long, the procedure requires a correspondingly large data volume.

If the delay time is very short, it may be necessary to work with a shortened stepwidth.

Examples:
Decay function with initial value y=3.0

DeqInit(1, 0, 0)
DeqY("y'=-0.1*y", 3.0)

SDOF. The equation "y''=u-12*y'-400000*y" is given. y is the displacement. y'' is the acceleration, y'=v is introduced as the velocity.

DeqInit(2, 1, 0)
DeqY("y'=v", 0.0)
DeqY("v'=u-12*v-400000*y", 1)

SDOF. The quation "y''=u-12*y'-400000*y" is given. It is possible to skip the extra symbol y'=v. However, for y' and v'(=y'') an initial value must be
specified. The defining equation is present only once, namely with the highest derivative.

DeqInit(2, 1, 0)
DeqY("y'", 0.0)
DeqY("y''=u-12*y'-400000*y", 1)

Decay function; derivatives desired

DeqInit(1, 0, 0)
DeqY("y'=-0.1*y", 1, 1e-7, 1e-8, "", 2)
DeqX(ramp(0,0.3, 300))
while DeqCalc() > 0
end
Y = DeqResult("y")
{Y'} = DeqResult("y'")
{Y''} = DeqResult("y''")

Retarded differential equation, Mackey-Glass. P upon start and previously at 0.1

P_ini=0.1
DeqInit(1, 0, 0)
N=10
Theta= 1
DeqConst(Theta^N, "theta")
DeqConst(22, "tau")
DeqConst(0.2, "beta")
DeqConst(0.1, "gamma")
DeqConst(N, "N")
DeqX(ramp(0,0.2,4000))
DeqY("P'=(beta*theta*delay(P,tau))/(theta+delay(P,tau)^N)-gamma*P", P_ini, 1e-6, 1e-6, "", 0, P_ini)
while DeqCalc() > 0
end
P = DeqResult("P")

imc FAMOS Func on Reference - 293 -

(c) 2024 imc Test & Measurement GmbH

DFilt

Digital filter

Declaration:
DFilt (Data, Coefficients) -> Filtrate

Parameter:

Data Data set to be filtered. Permitted data types: [ND]

Coefficients Data set containing the denominator and numerator coefficients

Filtrate

Filtrate Filtering results

Description:
This function filters a channel using a digital filter. The filter is specified using a coefficient data set; only causal filters can be calculated.

The coefficients can be expressed in either of two ways.

1. Rational Polynomial

The coefficients must meet the following pattern:

or expressed in the time domain:

The coefficient data set must first contain all an followed by all bn. The coefficient data set must always contain the same number of numerator
and denominator coefficients. Any unnecessary coefficients are specified as zero. The numerator coefficient must be specified first and the first
value of the numerator coefficient. The first coefficient i the denominator a0 must not be equal to zero.

2. Biquad Form

The filter was desiged as a "series connection" of 2nd order filters.

Each of these filters is defined by a biquad-term of the form

or in the time domain as follows:

y[t] = b0u[t] + b1u[t-1] + b2u[t-2]+ a1y[t-1] + a2y[t-2]

The coefficient data set must then be specified in the following manner:

0 | a2 a1 b2 b1 b0 | a2 a1 b2 b1 b0 |...| a2 a1 b2 b1 b0 |
0 |_1. biquad______|_2. biquad______|...|_n. biquad______|

The preceding zero is the fixed identifier used to automatically identify the format.

This format of coefficient transfer is used by the imc Filter Design program.

Examples:

file = GetSystemInfo("Famos.Path.SampleData", "") + "\Damped_Harmonic_Oszillator.dat"
FileLoad(file, "", 0)
ParamT = [1, -0.9, 2, 0.1]
Filtrat = DFilt(Damped_Harmonic_Oszillator, ParamT)

The example file 'Damped_Harmonic_Oszillator.dat' is loaded. A variable 'ParamT' is filled with filter coefficients of a first-order low-pass filter.
The data set is filtered with the low-pass filter defined in this way and placed on the 'filtrate' variable.

See also:
Smo, Smo3, FilterAnalog, FiltHP, FiltLP, FiltBP, FiltBS

imc FAMOS Func on Reference - 294 -

(c) 2024 imc Test & Measurement GmbH

DFTSpectrum

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

The DFT (discrete Fourier transformation) is applied to the time-based signal. For this purpose, the time signal's rms-spectrum is determined. The
time signal's length need not be a power of two.

Declaration:
DFTSpectrum (Time-based signal, WindowType) -> Result

Parameter:

Time-based
signal The time plot of the signal from which the spectrum is to be computed

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Result

Result The spectrum determined is a complex data set with magnitude and phase. The magnitude of the individual frequency lines is
stated as an RMS-value.

Description:

Examples:
The DFT of a time-based signal t is to be determined using rectangular windowing.

Spectrum = DFTSpectrum (t, 0)

See also:
FFT, ZoomSpectrumChirpZ

imc FAMOS Func on Reference - 295 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

Dialog

Calls a user-defined dialog or a Panel in Dialog-mode.

Declaration:
Dialog (TxFileName, TxParameter, SvOption) -> SvReturn

Parameter:

TxFileName Filename of the dialog-definitions file (*dlg) or of the Panel-file (*.panel).

TxParameter The parameter is passed on to the event sequence "Init".

SvOption Option-parameter. Always zero.

SvReturn

SvReturn Return value of the dialog/Panel. Corresponds to the value of the parameter passed to the function DlgCloseDialog() or
PnClose().

Description:
The function starts a user-defined dialog or a Panel in Dialog-mode.

The function only returns once the dialog/panel window has been closed again by the user. In the meantime, the FAMOS-main window is
disabled.

The function's return value equals the parameter passed to the function DlgCloseDialog() or PnClose().

For Panels started by means of this command, the option "Panel settings"/"Use as dialog-window" should be activated.

The 2nd parameter is passed on unchaged to the event-sequence "Initialization".

Unless a complete path is specified along with the filename, the system looks for the file in the following folders in succession:

Project folder: If a project is open, the system looks for it in the current project folder.
Current working folder: This is the folder from which the calling sequence was opened.
Default folder for sequences, dialogs and Panels: Upon launching imc FAMOS, this is initially the folder specified under "Options"/ "Folders".
It can be reset using either the command MDIR or the function SetOption().

Unless a file extension is specified, the filename is initially extended with '.dlg'. If no such file is present, the extension '.panel' is tried next.

When a sequence is active, the Windows taskbar's notification area contains an additional icon. Right-clicking the mouse calls a context menu
which offers a command for interrupting the current run.

To interrupt, you can also use the keyboard combination "CTRL" + "Break".

On the creation and use of dialogs and Panels, please see the chapters 'User-defined dialogs' and 'Panels' in the imc FAMOS user's manual for
more information.

Multithreading: The function may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e. within sequence
functions that are executed in a separate thread) is not permitted.

Examples:
In a dialog called 'EditProperties.dlg', a variety of characteristic data set values is displayed, including the trigger time in a 'Calendar'- and a 'Time'-
element. The data set's name is passed to the function Dialog(). When the dialog is closed using the 'OK' button, any changes made by the user to
the trigger time are applied in the data set and the dialog is closed.

Sample call:

OK = Dialog("EditProperties", "Chan1", 0)

Event-sequence 'Dialog Initialization'

TxVarName = PA1
time = Time?(<TxVarName>)
DlgSetValue("time", time)
DlgSetValue("date", time)

Event-sequence 'Pressed' for the 'OK'-button

date = DlgGetValue("time")

imc FAMOS Func on Reference - 296 -

(c) 2024 imc Test & Measurement GmbH

time = DlgGetValue("date")
SetTime(<TxVarName>, TimeAdd(date, time))
DlgCloseDialog(1)

Event-sequence 'Pressed' for the 'Cancel'-button

DlgCloseDialog(0)

When the dialog is closed with the [OK]-button, the variable OK receives the value 1. On the other hand, if the [Cancel]-button is pressed, a 0 is
returned.

A panel 'InputValue.panel' generally consists of an input box "input" for entering a positive numerical value, as well as 2 buttons: 'OK' and
'Cancel'. The Dialog()-command returns the value entered, or -1, if the intent is to cancel.

Event-sequence 'Button pressed' for the 'OK'-button:

value = PnGetValue("input")
PnClose(value)

Event-sequence 'Button pressed' for the 'Cancel'-button

PnClose(-1)

Event-sequence 'Close' (user utilizes the system menu to exit):

; Same behavior as 'Cancel'-button
PnClose(-1)

Call of the dialog:

value = Dialog("InputValue.panel", "", 0)
IF value < 0
 EXITSEQUENCE 0
END
;Further in the sequence...
...

See also:
SEQUENCE, BoxMessage, BoxValue?, BoxText?

imc FAMOS Func on Reference - 297 -

(c) 2024 imc Test & Measurement GmbH

Diff

Differentiation, derivatives

Declaration:
Diff (Data) -> Result

Parameter:

Data Data set to be differentiated. Permitted data types: [ND],[XY]

Result

Result Result of differentiation

Description:
Generates the derivative of the data set passed. The derivative is formed according to a simple, effective algorithm:

The differences between adjacent values (delta-y) are computed and divided by the x-distance between them. For normal, real data sets this
distance equals the sampling time (or delta-x).

Differentiation is thus the inverse of integration.

The derivative of a data set yields the slope at every point. Note that differentiation "roughens" the data set.

Because a difference is formed when calculating two adjacent values, the length of the data set becomes one point shorter. Differentiation
of an empty data set or a single value results in an empty data set.
Special feature with XY-data: The last calculated value is appended again. This enables a meaningful display of the result in the curve
window (step display) as well as ensures reversibility with the Int() function. The length of the input data and the result is therefore the
same here.
The unit of the differentiated data set is the quotient of the y-and x-unit of the specified data set.

Examples:

NDdiff = Diff(NDdata)

Simple calculation of the slope

NDdiff = Diff(Smo3(NDdata))

Often the data set should be smoothed before differentiation to reduce the influence of noise on the result. Noise strongly distorts the result of
differentiation.

NDdiff = Red(Diff(IPol(NDdata, 3)), 3)

When data sets are not very noisy but have relatively large jumps in the function values, it is appropriate to apply spline-interpolation before
performing differentiation. After differentiation, the data volume can be reduced to an appropriate information volume using the sampling
function Red().

NDdata = Diff(Int(NDdata))

This formula does not change the data set.

NDyoff = Int(Diff(NDdata))

The calculated data set may differ by an offset in the y direction.

See also:
Int, MInt

imc FAMOS Func on Reference - 298 -

(c) 2024 imc Test & Measurement GmbH

DisplayY?

Queries the fixed scaling for curve window display

Declaration:
DisplayY? (Data, SvChoice) -> SvScaleValue

Parameter:

Data Data set whose Y-scaling is to be determined

SvChoice Selection of the parameter to be queried

0 : Bottom scale value

1 : Top scale value

SvScaleValue

SvScaleValue Bottom/top scale value

Description:
A fixed Y-axis scaline can also be assiged to a data set as an additional property. It is then used for the display of the data set in a curve window if
the curve window's setting "Automatic Y-axis scaling" is active.

If a fixed scaling has been assignedd to the y-axis, this function returns the range boundaries.

If no fixed scaling has been assigned, then 0 is returned for both boundariy values. The data set will then be scaled according to its own domain
(value range).

Examples:

yMin = DisplayY?(data, 0)
IF yMin > 0
 SetDisplayY(data, 0, DisplayY?(data, 1))
ELSE
 yMax = DisplayY?(data, 1)
 IF yMax < 0
 SetDisplayY(data, DisplayY?(data, 0),0)
 END
END

If no fixed scaling has been assigned to the data set and the zero-line is not included, either the bottom or top scale value is corrected to 0.

See also:
SetDisplayY, Color?

imc FAMOS Func on Reference - 299 -

(c) 2024 imc Test & Measurement GmbH

Div

Time-correct or x-correct division.

Declaration:
Div (Dividend, Divisor, SvOption) -> Quotient

Parameter:

Dividend First parameter; Dividend; allowed types: [ND],[XY].

Divisor Second parameter, Divisor; allowed types: [ND],[XY].

SvOption Option

0 : The trigger time of the two summands is ignored.

1 : Time-correct superposition with regard to trigger-time

Quotient

Quotient Quotient; result of division [XY]

Description:
Two data sets undergo time-correct or x-correct division, meaning that one of the y-values for each shared x-value is divided by the other's.

The result is defined only within the x-range which is shared by both data sets. Within this range a resultvalue is determined for every point at
which at least one of the data sets possesses a value. If no value exists for the other data set, one is determined by linear interpolation.

The x-tracks of both parameter data sets must be monotonous, i.e. the x-coordinates must increase continuously.

The division operator '/', by contrast, divides the values of each successive point of each data set, without regard to their absolute x-positions.

Examples:
Two channels are measured; one between 11:00 and 13:00, and the other between. 12:00 and 14:00.

Quot12_13h = Div(voltage11_13h, voltage12_14h, 1)

Time-correct division of the two data sets is performed, with regard given to the trigger time. The result is defined for the time period between
12:00 and 13:00 hours.

See also:
/(Division), Add, Sub, Mult, Append

imc FAMOS Func on Reference - 300 -

(c) 2024 imc Test & Measurement GmbH

DlgApplyData

Scope: User-defined dialogs

Checks validity of changes to any input boxes and/or applies in the linked variables.

Declaration:
DlgApplyData () -> Success

Parameter:

Success

Success 0 for error. 1 for success.

Description:
For all dialog elements with active data linkage, the current value is checked against the criteria set under Element Properties (see 'Validation'),
and upon success, the value is adopted by any linked variable.

If the check fails, the used is informed by means of a message box. A typical applicaton of this function would be, for instance, the 'Pressed'-
sequence of an 'Apply'-button, or the 'Close dialog'-sequence.

Examples:
When the 'OK'-button is pressed, all data entered are checked and any linked variables updated. Upon success, the dialog is closed.

--> Event sequence 'Button pressed' for the 'OK'-button

IF DlgApplyData()
 DlgCloseDialog(0)
END

See also:
DlgCloseDialog

imc FAMOS Func on Reference - 301 -

(c) 2024 imc Test & Measurement GmbH

DlgCloseDialog

Scope: User-defined dialogs

Closes the dialog

Declaration:
DlgCloseDialog (EwReturn)

Parameter:

EwReturn The dialog's return value. Corresponds to the return value of the function Dialog().

Description:
The dialog is closed. This proceeds in three stages:

The dialog window becomes invisible.
The event 'Dialog End' is triggered.
After the event sequence is run, the dialog is closed. The function Dialog(..), with which the dialog was originally created, returns the value
which served here as the parameter as an event.

By default, the function is called in the event sequence 'Close dialog'. This event is triggered whenever the user has clicked either the button
'Close' in the window's title bar, or the corresponding system menu item, or pressed the combination of the ALT+F4 keys.

Otherwise, the function is often used in 'Button pressed' event sequences, in order to close the dialog at the push of a button, typically such
buttons have the caption 'OK' or 'Cancel'.

In such cases it is recommended to supply a unique parameter value for each button. Since this value is reflected in the return value of the
function Dialog(..), the one calling the function can recognize with which button the dialog was closed.

Examples:
A dialog 'Continue.dlg' consists of only the question 'Continue running the sequence?' and 2 buttons 'OK' and 'Cancel'.

--> Event sequence 'Button pressed' for the 'OK'-button:

DlgCloseDialog(1)

--> Event sequence 'Button pressed' for the 'Cancel'-button:

DlgCloseDialog(0)

--> Call the dialog:

Continue = Dialog("Continue.dlg", "", 0)
IF Continue = 0
 EXITSEQUENCE 0
END
;Next in the sequence...
...

See also:
Dialog

imc FAMOS Func on Reference - 302 -

(c) 2024 imc Test & Measurement GmbH

DlgDeleteItem

Scope: User-defined dialogs

Deletes one or all entries (list, table etc.)

Declaration:
DlgDeleteItem (TxElementName, Index)

Parameter:

TxElementName Name of the dialog element to be changed

Index Index of the entry to be deleted. The first entry has the index 1. To delete all entries, enter a 0.

Applies to:
Listbox, Droplist, ComboBox, Tableview, Treeview

Examples:
In a list box with multi-selection, all selected entries are deleted:

Count = DlgGetItemCount("list1")
i = Count
WHILE i > 0
 IF DlgIsItemSelected("list1", i)
 DlgDeleteItem("list1", i)
 END
 i = i - 1
END

See also:
DlgGetItemCount, DlgGetItemText, DlgSetItemText, DlgInsertItem, DlgFindItem

imc FAMOS Func on Reference - 303 -

(c) 2024 imc Test & Measurement GmbH

DlgEnable

Scope: User-defined dialogs

The active dialog or the specified dialog element is disabled (made unavailable to the user) or restored.

Declaration:
DlgEnable (TxElementName, OnOff)

Parameter:

TxElementName Name of the dialog element to be changed. If an empty text is specified, the entire active dialog is enabled/ disabled.

OnOff

0 : Disable condition

1 : Enable condition

Applies to:
All dialog elements (also menu items)

Examples:
A dialog for inquiring the date consists of a dialog element of the type 'Datepicker' and a button 'btnOk' for closing the dialog. The button 'btnOK'
is only enabled once the user has entered a valid date.

--> Event sequence 'Dialog initialization'

;temporarily blocks the 'OK'-button
DlgEnable("btnOK", 0)

--> Event sequence 'Changed' of the 'calendar' element

;Test of the date set
_Date = DlgGetValue(PA1)
IF _Date >= TimeSystem?()
 DlgEnable("btnOK", 1)
ELSE
 DlgEnable("btnOK", 0)
END

--> Event sequence 'Button pressed' for the 'btnOK'-button:

;Close dialog and return date
DlgCloseDialog(_Date)
DELETE _Date

See also:
DlgShow

imc FAMOS Func on Reference - 304 -

(c) 2024 imc Test & Measurement GmbH

DlgExpandTree

Scope: User-defined dialogs

Expansion or collapse of a node in a tree diagram

Declaration:
DlgExpandTree (TxElementName, Index, Action)

Parameter:

TxElementName Name of the dialog element to be changed

Index Position of the desired tree entry. The first entry has the index 1. Enter 0 to have all entried expanded, or collapsed,
respectively.

Action Sets what action is to be performed

0 : Collapse of the node

1 : Expansion of the node

2 : Expand entire sub-tree

Applies to:
Treeview

Examples:
Expands the currently selected node in a tree diagram

i = DlgGetSelectedItem("Tree")
IF i > 0
 DlgExpandTree("Tree", i, 1)
END

See also:
DlgInsertTreeItem, DlgGetItemLevel

imc FAMOS Func on Reference - 305 -

(c) 2024 imc Test & Measurement GmbH

DlgFileName

A dialog for selection/entry of a filename is called.

Declaration:
DlgFileName (TxFolder, TxExtension, TxTitle, SvTask) -> TxFileName

Parameter:

TxFolder Folder in which the dialog should start. When an empty string is supplied, the default folder for loading files is used.

TxExtension

Default extension for filenames, e.g. "dat". Once a valid extension has been provided, only files having this extension are
displayed upon initialization of the dialog. If the filename entered has no extension, this extension is appended to it. An empty
text is allowed. As of Version 2022, it is also possible to specify multiple extensions, separated by semicolons, so for example
"dat;raw".

TxTitle The dialog's title. For an empty text, a default title is used.

SvTask Task

0 : "Open file"-dialog

1 : "Save File"-dialog

TxFileName

TxFileName Entered filename (complete path); in case of failure (canceled by user), an empty text.

Description:
Using the standard Windows dialog for file selection, an existing file can be selected or a new filename can be entered.

The position at which the dialog box appears can be specified with the help of the function SetBoxPos().
You can also manually change the dialog's position (e.g. by moving it with the mouse). The position is remembered for the duration of the
current session.
Multithreading: The function may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e. within
sequence functions that are executed in a separate thread) is not permitted.

Examples:

fileName = DlgFileName("", "dat", "", 0)
FileLoad(fileName, "", 0)
IF VarExist?("y")
 y2 = sin(y)
 saveFileName = DlgFileName("c:\imc\dat", "", "Please enter file name", 0)
 FileSave(saveFileName, "", 0, y2)
END

See also:
FsDlgSelectDirectory, FsDlgSelectFiles, BoxValue?, BoxOutput, BoxMessage, SetBoxPos

imc FAMOS Func on Reference - 306 -

(c) 2024 imc Test & Measurement GmbH

DlgFindItem

Scope: User-defined dialogs

Finds a (list-/ table-, etc.) entry with the specified contents.

Declaration:
DlgFindItem (TxElementName, TxContents) -> Index

Parameter:

TxElementName Name of the dialog element in question

TxContents Text for the entry for which to search

Index

Index Index of the entry to be found; (>=0) if found. 0 otherwise.

Description:
The function is not case-sensitive

Applies to:
Listbox, Droplist, ComboBox

Examples:
Looks for an entry in a list box (with single-selection). If the entry exists, it is selected and scrolled into view, if necessary.

i = DlgFindItem("list", "100.0")
IF i > 0
 DlgSelectItem("list", i)
END

See also:
DlgGetItemCount, DlgGetItemText, DlgSetItemText, DlgInsertItem, DlgDeleteItem

imc FAMOS Func on Reference - 307 -

(c) 2024 imc Test & Measurement GmbH

DlgGetBarMax

Scope: User-defined dialogs

Determines the value range's upper limit

Declaration:
DlgGetBarMax (TxElementName) -> Max

Parameter:

TxElementName Name of the dialog element (Slider control) to be queried

Max

Max Value range maximum

Applies to:
Slider

Examples:
A Slider control is to be set to a new value. Beforehand, a test is conducted of whether the desired value lies within the permitted range and if
appropriate, an error message is posted.

IF newValue >= DlgGetBarMin("Slider1") AND newValue <= DlgGetBarMax("Slider1")
 DlgSetValue("Slider1", newValue)
ELSE
 BoxMessage("Error", "Limit exceeded", "1!")
END

See also:
DlgSetBarRange, DlgGetBarMin, DlgGetValue, DlgSetValue

imc FAMOS Func on Reference - 308 -

(c) 2024 imc Test & Measurement GmbH

DlgGetBarMin

Scope: User-defined dialogs

Determines the value range's lower limit

Declaration:
DlgGetBarMin (TxElementName) -> Min

Parameter:

TxElementName Name of the dialog element (Slider control) to be queried

Min

Min Value range minimum

Applies to:
Slider

Examples:
A Slider control is to be set to a new value. Beforehand, a test is conducted of whether the desired value lies within the permitted range and if
appropriate, an error message is posted.

IF newValue >= DlgGetBarMin("Slider1") AND newValue <= DlgGetBarMax("Slider1")
 DlgSetValue("Slider1", newValue)
ELSE
 BoxMessage("Error", "Limit exceeded", "1!")
END

See also:
DlgSetBarRange, DlgGetBarMax, DlgGetValue, DlgSetValue

imc FAMOS Func on Reference - 309 -

(c) 2024 imc Test & Measurement GmbH

DlgGetCellText

Scope: User-defined dialogs

The content of the specified table cell is queried

Declaration:
DlgGetCellText (TxElementName, Row, Colummn) -> TxValue

Parameter:

TxElementName Name of the dialog element (table) to be queried

Row Column index. The first row has the index 1. The column header (if visible) has the index 0.

Colummn Column index. The first column has the index 1. The row header (if visible) has the index 0.

TxValue

TxValue Current table cell contents

Applies to:
Tableview

Examples:
A table presents a variety of characteristic values for a data set, including the Y-unit. If the user changes the corresponding table cell, the new
unit is adopted by the data set.

--> Event sequence 'Dialog initialization'

...
DlgSetCellText("Tab1", 1, 2, Unit?(MyData,1))
...

--> Event sequence 'Changed' of the table 'Tab1'

Row = PA2
Column = PA3
IF Row = 1 AND Column = 2
 TxUnit = DlgGetCellText(PA1, Row, Column)
 SetUnit(MyData, txUnit, 1)
END

See also:
DlgSetCellText, DlgGetCellValue, DlgSetCellValue

imc FAMOS Func on Reference - 310 -

(c) 2024 imc Test & Measurement GmbH

DlgGetCellValue

Scope: User-defined dialogs

Queries the value of the specified table cell

Declaration:
DlgGetCellValue (TxElementName, Row, Colummn) -> Value

Parameter:

TxElementName Name of the dialog element to be queried

Row Row index. The first row has the index 1. The column header (if visible) has the index 0.

Colummn Column index. The first column has the index 1. The row header (if visible) has the index 0.

Value

Value Current value of table cell

Description:
If the current contents of the table cell queried cannot be converted to a number, a 0 is returned.

Applies to:
Tableview

Examples:
After the user changes the contents of a table cell, a check is made of whether the value entered is a number > 0. If not, the cell is marked red.

--> Event sequence 'Changed' of the table

Row = PA2
Column = PA3
newValue = DlgGetCellValue(PA1, Row, Column)
IF newValue <= 0
 DlgSetCellTextColor(PA1, Row, Column, RGB(255,0,0))
ELSE
 DlgSetCellTextColor(PA1, Row, Column, -2)
END

See also:
DlgSetCellValue, DlgGetCellText, DlgSetCellText

imc FAMOS Func on Reference - 311 -

(c) 2024 imc Test & Measurement GmbH

DlgGetItemCount

Scope: User-defined dialogs

Determines the number of entries in the specified dialog element (list, table etc.)

Declaration:
DlgGetItemCount (TxElementName) -> Count

Parameter:

TxElementName Name of the dialog element to be queried

Count

Count Number of entries

Applies to:
Listbox, Droplist, ComboBox, Treeview, Tableview, Radiogroup

Examples:
In a list box with multi-selection, all selected entries are deleted:

Count = DlgGetItemCount("list1")
i = Count
WHILE i > 0
 IF DlgIsItemSelected("list1", i)
 DlgDeleteItem("list1", i)
 END
 i = i - 1
END

See also:
DlgGetItemText, DlgSetItemText, DlgInsertItem, DlgFindItem, DlgDeleteItem

imc FAMOS Func on Reference - 312 -

(c) 2024 imc Test & Measurement GmbH

DlgGetItemLevel

Scope: User-defined dialogs

Finds the level (indicated by the indent) of a tree diagram entry

Declaration:
DlgGetItemLevel (TxElementName, Index) -> Level

Parameter:

TxElementName Name of the dialog element to be changed

Index Position of the desired tree entry. The first entry has the index 1.

Level

Level An entry's level. Root entries have the level 0.

Applies to:
Treeview

Examples:
Whether a button is enabled depends on the current selection in a tree diagram. The button should be enabled if a root element (Level = 0) is
selected.

i = DlgGetSelectedItem("Tree")
enable = (i > 0) AND (DlgGetItemLevel("Tree", i) = 0)
DlgEnable("button", enable)

See also:
DlgInsertTreeItem, DlgExpandTree

imc FAMOS Func on Reference - 313 -

(c) 2024 imc Test & Measurement GmbH

DlgGetItemText

Scope: User-defined dialogs

Returns the text for an entry into a dialog element (list box, tree diagram etc.).

Declaration:
DlgGetItemText (TxElementName, Index) -> TxContents

Parameter:

TxElementName Name of the dialog element to be queried

Index Index of the entry to be queried. The first entry has the index 1.

TxContents

TxContents Text for the specified entry

Applies to:
Listbox, Droplist, , ComboBox, Treeview

Examples:
The currently selected entry is read out of a list containing names of measurement files in FAMOS-format, and the corresponding file is opened.

i = DlgGetSelectedItem("listFiles")
IF i > 0
 FileName$ = DlgGetItemText("listFiles", i)
 fh = FileOpenDSF(FileName$,0)
 IF fh > 0
 ;...
 FileClose(fh)
 END
END

See also:
DlgGetItemCount, DlgSetItemText, DlgInsertItem, DlgFindItem, DlgDeleteItem

imc FAMOS Func on Reference - 314 -

(c) 2024 imc Test & Measurement GmbH

DlgGetPath

Scope: User-defined dialogs

Returns the complete path of the currently executed dialog file.

Declaration:
DlgGetPath (Option) -> TxPath

Parameter:

Option Option

0 : Complete path

1 : Directory only

TxPath

TxPath Complete path or directory of the currently executed dialog file.

Description:

Examples:
When a dialog has been started with:

ret = Dialog("c:\imc\seq\MyDialog.dlg", "", 0)
TxFullPath = DlgGetPath(0)
 ; TxFullPath contains "c:\imc\seq\MyDialog.dlg"
TxDir = DlgGetPath(1)
 ; TxDir contains "c:\imc\seq"

See also:
DlgSetTextColor, DlgSetCellTextColor

imc FAMOS Func on Reference - 315 -

(c) 2024 imc Test & Measurement GmbH

DlgGetSelectedItem

Scope: User-defined dialogs

Determines the entry currently selected in a list/ table with single-selection.

Declaration:
DlgGetSelectedItem (TxElementName) -> Index

Parameter:

TxElementName Name of the dialog element in question

Index

Index Index of the selected entry (>=0). 0, if no entry is selected.

Applies to:
Listbox (single selection), DropDown-List, Combobox, Table (single selection), Treeview, Radiogroup

Examples:
The currently selected entry is read out of a list containing names of measurement files in FAMOS-format, and the corresponding file is opened.

i = DlgGetSelectedItem("listFiles")
IF i > 0
 FileName$ = DlgGetItemText("listFiles", i)
 fh = FileOpenDSF(FileName$,0)
 IF fh > 0
 ;...
 FileClose(fh)
 END
END

See also:
DlgSelectItem, DlgIsItemSelected

imc FAMOS Func on Reference - 316 -

(c) 2024 imc Test & Measurement GmbH

DlgGetSelectedItemCount

Scope: User-defined dialogs

Determines the number of selected entries in a list with multi-selection.

Declaration:
DlgGetSelectedItemCount (TxElementName) -> Count

Parameter:

TxElementName Name of the dialog element in question

Count

Count Number of selected entries. 0, if no entry is selected.

Description:

Applies to:
Listbox (multi-selection), Tableview (multi-selection)

Examples:
The selected entries in a list box with multi-selection are to be evaluated at the push of a button. The button is only to be enabled if at least one
entry is selected. For this purpose, the amount of entries selected in the event 'Selected' is checked:

--> The list box's event-sequence 'Selected'

Count = DlgGetSelectedItemCount(PA1)
DlgEnable("Button1", Count > 0)

See also:
DlgIsItemSelected, DlgSetItemSelection, DlgGetSelectedItem

imc FAMOS Func on Reference - 317 -

(c) 2024 imc Test & Measurement GmbH

DlgGetText

Scope: User-defined dialogs

DQueries the content or caption of the specified element.

Declaration:
DlgGetText (TxElementName) -> TxText

Parameter:

TxElementName Name of the dialog element to be queried

TxText

TxText Current content or caption of the dialog element

Applies to:
The function can only be used for such dialog element which possess a caption or whose current state can be expressed by a text. Interpretation
of the text depends on the element's type.

Element Meaning
Button Button caption

Label Content of the text box

Editbox (single line) Content of the input box

Editbox (multi-line) Content of the input box

Checkbox The element's caption

Groupbox The element's caption

Radiogroup Caption for the frame around the radiogroup. Only applicable for "Frame" = "With caption".

Listbox (Single selection) Text of the currently selected entry.

Droplist Text of the currently selected entry.

Treeview Text of the currently selected entry.

Combobox Content of the input box

Dialog The dialog's title bar. For TxElementName, an empty text is to be entered.

Statusbar Content of the dialog's status bar. For TxElementName, "#Status" is available.
For elements which aren't listed in the table above, the function isn't applicable.

Examples:
A dialog displays a variety of a data set's characteristic values; among others the Y-unit in an input box 'input_unit'. When closing the dialog with
the 'OK' button, any changes of the unit made by the user are adopted in the data set.

--> Event sequence 'Dialog initialization'

...
DlgSetText("input_unit", Unit?(MyData,1))
...

--> Event sequence 'Button pressed' for the 'OK'-button

TxUnit = DlgGetText("input_unit")
SetUnit(MyData, TxUnit, 1)
DlgCloseDialog(0)

See also:
DlgGetValue, DlgGetValue, DlgSetText

imc FAMOS Func on Reference - 318 -

(c) 2024 imc Test & Measurement GmbH

DlgGetValue

Scope: User-defined dialogs

Queries the specified element's current numerical value.

Declaration:
DlgGetValue (TxElementName) -> Value

Parameter:

TxElementName Name of the dialog element to be queried

Value

Value Current dialog element value

Applies to:
The function can only be applied to such dialog elements whose current state can be expressed by a number. How the value is interpreted
depends on the element's type.

Element Value
Listbox (Single
selection) If the value currently selected in the list can be converted to a number, the number is returned. Otherwise 0.

Droplist ..

Combobox If the text in the input box can be converted to a number, this number is returned. Otherwise 0.

Editbox (single line) ..

Checkbox Returns 1 if the check box is checked, otherwise 0.

Radiogroup Returns the index of the option currently selected. The first option has the index 1.

Slider Returns the slider's current value.

Datepicker Returns the current value in the FAMOS time format. This value can be processed with the functions in function group
#18 "Date/Time".

Timepicker Returns the current value in the FAMOS time format. This value can be processed with the functions in function group
#18 "Date/Time".

For elements which aren't listed in the table above, the function isn't applicable.

Examples:
A dialog serves the purpose of setting filter parameters. A pop-down list 'CBoxType' contains the entries 'High-pass' and 'Low-pass'. A
combination box 'CBox_Order' is for specifying the filter order, and an input box 'Input_Freq' for specifying the cutoff frequency. After that, the
filtering is carried out at the push of a button:

Type = DlgGetSelectedItem("CBox_Type")
Order = DlgGetValue("CBox_Order")
freq = DlgGetValue("Input_Freq")
IF Order > 1 AND freq > 0
 IF Type = 1 ; Lowpass
 filtrat = FiltTP(MyData, 0, 0, Order, freq)
 ELSE ; Highpass
 filtrat = FiltHP(MyData, 0, 0, Order, freq)
 END
END

See also:
DlgSetValue, DlgGetText

imc FAMOS Func on Reference - 319 -

(c) 2024 imc Test & Measurement GmbH

DlgInsertItem

Scope: User-defined dialogs

Adds a new entry to a dialog element (list, table etc.).

Declaration:
DlgInsertItem (TxElementName, Index, TxContents, Option)

Parameter:

TxElementName Name of the dialog element to be changed

Index Insert position. The first entry has the index 1. To append the entry to the end, enter a 0.

TxContents Text for the new entry

Option Option parameter

0 : Default

1 : The new entry is scrolled into view (if necessary).

Applies to:
Listbox, Droplist, , ComboBox, Tableview

Examples:
A list box is filled with the names of all files located in the specified folder.

Dir$ = FsDlgSelectDirectory("Select folder", "", 0)
FileListID = FsFileListNew(Dir$, "*.*", 0, 0, 0)
FileCount = FsFileListGetCount(FileListID)
i = 1
WHILE i <= FileCount
 File$ = FsSplitPath(FsFileListGetName(FileListID, i), 4)
 DlgInsertItem("listFiles", i, File$, 0)
 i = i + 1
END
FsFileListClose(FileListID)

A list box is filled with the names of all variables which are in the FAMOS variables list when the program is started. Subsequently, the first entry
is selected.

Count = VarGetInit(0)
i = 1
WHILE i <= Count
 DlgInsertItem("ListVariables", i, VarGetName?(i), 0)
 i = i + 1
END
DlgSelectItem("ListVariables", 1)

A list box is filled with all values belonging to a (short) data set.

Count = leng?(MyData)
i = 1
WHILE i <= Count
 TxVal = TForm(MyData[i], "")
 DlgInsertItem("list1", 0, TxVal, 0)
 i = i + 1
END

See also:
DlgGetItemCount, DlgGetItemText, DlgSetItemText, DlgFindItem, DlgDeleteItem

imc FAMOS Func on Reference - 320 -

(c) 2024 imc Test & Measurement GmbH

DlgInsertTreeItem

Scope: User-defined dialogs

Adds a dialog element (tree diagram) to a new entry

Declaration:
DlgInsertTreeItem (TxElementName, Index, TxContents, Level, Option)

Parameter:

TxElementName Name of the dialog element to be changed

Index Insert position. The first entry has the index 1. To append the entry to the end, enter a 0.

TxContents Text for the new entry

Level Indent of the new entry. Root entries have an indent of 0.

Option Option parameter

0 : Default

1 : The new entry is scrolled into view (if necessary).

Applies to:
Treeview

Examples:
At the beginning of a tree diagram, two new root entries with child elements are added.

DlgInsertTreeItem("Tree1", 1, "Root1", 0, 0)
DlgInsertTreeItem("Tree1", 2, "Leaf1", 1, 0)
DlgInsertTreeItem("Tree1", 3, "Leaf2", 1, 0)
DlgInsertTreeItem("Tree1", 4, "Root2", 0, 0)
DlgInsertTreeItem("Tree1", 5, "Leaf3", 1, 0)

See also:
DlgInsertItem, DlgDeleteItem

imc FAMOS Func on Reference - 321 -

(c) 2024 imc Test & Measurement GmbH

DlgIsItemSelected

Scope: User-defined dialogs

Determines whether an entry in the list/ table is selected with multi-selection

Declaration:
DlgIsItemSelected (TxElementName, Index) -> IsSelected

Parameter:

TxElementName Name of the dialog element in question

Index Index of the entry to be verified. the first entry has the index 1.

IsSelected

IsSelected The entry's selection status

0 : Not selected

1 : Selected

Applies to:
Listbox (multi-selection), Tableview (multi-selection)

Examples:
A list box in a dialog is filled with all of the values of a (short) data set. At the push of a button, all selected values are set to 0.

--> Event sequence 'Dialog initialization'

;Fills the list box with the data set's values:
Count = leng?(MyData)
i = 1
WHILE i <= Count
 TxVal = TForm(MyData[i], "")
 DlgInsertItem("list1", 0, TxVal, 0)
 i = i + 1
END

--> Event sequence 'Button pressed'

;The selected samples are set to 0.
Count = DlgGetItemCount("list1")
i = 1
WHILE i <= Count
 IF DlgIsItemSelected("list1", i)
 MyData[i] = 0
 DlgSetItemText("0")
 END
 i = i + 1
END

See also:
DlgGetSelectedItemCount, DlgSetItemSelection, DlgGetSelectedItem

imc FAMOS Func on Reference - 322 -

(c) 2024 imc Test & Measurement GmbH

DlgSelectItem

Scope: User-defined dialogs

Selects an entry in a list/ table with single-selection

Declaration:
DlgSelectItem (TxElementName, Index)

Parameter:

TxElementName Name of the dialog element to be queried

Index Index of the entry to be selected. The first entry has the index 1. Specify 0 to clear the selection.

Applies to:
Listbox (single selection), DropDown-List, Combobox, Table (single selection), Treeview

Examples:
Looks for an entry in a list box (with single-selection). If the entry exists, it is selected and scrolled into view, if necessary.

i = DlgFindItem("list", "100.0")
IF i > 0
 DlgSelectItem("list", i)
END

See also:
DlgGetSelectedItem, DlgSetItemSelection

imc FAMOS Func on Reference - 323 -

(c) 2024 imc Test & Measurement GmbH

DlgSetBackColor

Scope: User-defined dialogs

Sets the background color for the selected element

Declaration:
DlgSetBackColor (TxElementName, RGBColor)

Parameter:

TxElementName Name of the dialog element to be changed. If an empty text specified, the dialog background is set.

RGBColor Colour

>=0 : RGBvalue of the desired color

-1 : Transparent

-2 : Automatic

Description:
The RGB-value supplied as the 2nd parameter represents the proportional intensities of the 3 fundamental colors Red, Green and Blue. To
generate such a color value, you can use the FAMOS function RGB().

The value (-1) sets the background color to transparent. This option only makes sense and is only supported for certain dialog element types.

The value (-2) sets the background automatically. For the dialog, this means that the current Windows system configuration is used. For dialog
elements, this option means that the dialog's background color is adopted ('inherited').

Applies to:
Function is not applicable for: Datepicker, Timepicker, Curvewindow, Menu

Examples:
The data set's maximum value is checked against a cutoff limit and the result is displayed in a text box ("Label1") in the dialog. If the limit has
been exceeded, the text box's background and text color are chaged (red/ white) and a warniong message is posted.

_max = Max(Daten)
IF _max > 12
 DlgSetTextColor("Label1", RGB(255,255,255))
 DlgSetBackColor("Label1", RGB(255,0,0))
 DlgSetText("Label1", "Limit exceeded!")
ELSE
 DlgSetTextColor("Label1", -2)
 DlgSetBackColor("Label1", -2)
 DlgSetText("Label1", "Dataset OK.")
END

See also:
DlgSetTextColor, DlgSetCellTextColor

imc FAMOS Func on Reference - 324 -

(c) 2024 imc Test & Measurement GmbH

DlgSetBarRange

Scope: User-defined dialogs

Configures a Slider control in terms of range minimum and -maximum, as well as step size.

Declaration:
DlgSetBarRange (TxElementName, Minimum, Maximum, StepSmall, StepLarge)

Parameter:

TxElementName Name od dialog element (Slider control) to be changed.

Minimum Lower limit of value range

Maximum Upper limit of value range

StepSmall Sets the size of small steps (navigation keys 'Left', 'Right' ...).

StepLarge Sets the size of large steps('PgUp' and 'PgDn' keys)

Applies to:
Slider

Examples:
A Slider control's value range is set. The range is specified as 0 to 100 (percent). The arrow-keys change the instrument value by +/-1; keys 'PgUp'
and 'PgDn' by +/-10. The slider is initially centered.

DlgSetBarRange("Slider1", 0, 100, 1, 10)
DlgSetValue("Slider1", 50)

See also:
DlgGetBarMin, DlgGetBarMax, DlgGetValue, DlgSetValue

imc FAMOS Func on Reference - 325 -

(c) 2024 imc Test & Measurement GmbH

DlgSetCellBackColor

Scope: User-defined dialogs

Sets the background color for the specified table cell

Declaration:
DlgSetCellBackColor (TxElementName, Row, Colummn, RGBColor)

Parameter:

TxElementName Name of the table to be changed

Row Row index. The first row has the index 1. If 0, the color is used for the whole column.

Colummn Column index. The first column has the index 1. If 0, the color is used for the entire row.

RGBColor RGB-value of the desired color or (-2) for automatic.

Description:
The RGB-value supplied as the 2nd parameter represents the proportional intensities of the 3 fundamental colors Red, Green and Blue. To
generate such a color value, you can use the FAMOS function RGB().

The setting 'automatic' (-2) means here that the column's default background color is used

Applies to:
Tableview

Examples:
A table presents a variety of a data set's characteristic values. If the maximum exceeds a cutoff limit, the corresponding table cell appears in a
distinct color.

DlgSetCellText("Table", 1, 1, "Length ")
DlgSetCellValue("Table", 1, 2, leng?(MyData))
DlgSetCellText("Table", 2, 1, "Sampling time ")
DlgSetCellValue("Table", 2, 2, xdel?(MyData))
DlgSetCellText("Table", 3, 1, "Maximum ")
value = max(MyData)
DlgSetCellValue("Table", 3, 2, value)
IF value > 100
 DlgSetCellTextColor("Table", 3, 2, RGB(255,0,0))
 DlgSetCellBackColor("Table", 3, 2, RGB(127,127,127))
ELSE
 DlgSetCellTextColor("Table", 3, 2, -2)
 DlgSetCellBackColor("Table", 3, 2, -2)
END

See also:
DlgSetCellTextColor, DlgSetTextColor, DlgSetBackColor

imc FAMOS Func on Reference - 326 -

(c) 2024 imc Test & Measurement GmbH

DlgSetCellText

Scope: User-defined dialogs

Sets new content for the specified table cell.

Declaration:
DlgSetCellText (TxElementName, Row, Colummn, TxContents)

Parameter:

TxElementName Name of the dialog element to be edited (table).

Row Row index. The first row has the index 1. The column header (if visible) has the index 0.

Colummn Column index. The first column has the index 1. The row header (if visible) has the index 0.

TxContents Text to be set for the cell.

Applies to:
Tableview

Examples:
A table presents a variety of a data set's characteristic values. If the maximum exceeds a cutoff limit, the corresponding table cell appears in a
distinct color.

DlgSetCellText("Table", 1, 1, "Length ")
DlgSetCellValue("Table", 1, 2, leng?(MyData))
DlgSetCellText("Table", 2, 1, "Sampling time ")
DlgSetCellValue("Table", 2, 2, xdel?(MyData))
DlgSetCellText("Table", 3, 1, "Maximum ")
value = max(MyData)
DlgSetCellValue("Table", 3, 2, value)
IF value > 100
 DlgSetCellTextColor("Table", 3, 2, RGB(255,0,0))
 DlgSetCellBackColor("Table", 3, 2, RGB(127,127,127))
ELSE
 DlgSetCellTextColor("Table", 3, 2, -2)
 DlgSetCellBackColor("Table", 3, 2, -2)
END

See also:
DlgSetCellValue, DlgGetCellText

imc FAMOS Func on Reference - 327 -

(c) 2024 imc Test & Measurement GmbH

DlgSetCellTextColor

Scope: User-defined dialogs

Sets the font color for the specified table cell.

Declaration:
DlgSetCellTextColor (TxElementName, Row, Colummn, RGBColor)

Parameter:

TxElementName Name of the table to be changed

Row Row index. The first row has the index 1. If 0, the color is used for the whole column.

Colummn Column index. The first column has the index 1. If 0, the color is used for the entire row.

RGBColor RGB-value of the desired color or (-2) for automatic.

Description:
The RGB-value supplied as the 2nd parameter represents the proportional intensities of the 3 fundamental colors Red, Green and Blue. To
generate such a color value, you can use the FAMOS function RGB().

The setting 'automatic' (-2) means here that the column's default text color is used.

Applies to:
Tableview

Examples:
After the user changes the contents of a table cell, a check is made of whether the value entered is a number > 0. If not, the cell is marked red.

--> Event sequence 'Changed' of the table

Row = PA2
Column = PA3
newValue = DlgGetCellValue(PA1, Row, Column)
IF newValue <= 0
 DlgSetCellTextColor(PA1, Row, Column, RGB(255,0,0))
ELSE
 DlgSetCellTextColor(PA1, Row, Column, -2)
END

See also:
DlgSetCellBackColor, DlgSetTextColor, DlgSetBackColor

imc FAMOS Func on Reference - 328 -

(c) 2024 imc Test & Measurement GmbH

DlgSetCellValue

Scope: User-defined dialogs

Resets the value of the specified table cell

Declaration:
DlgSetCellValue (TxElementName, Row, Colummn, Value)

Parameter:

TxElementName Name of the dialog element to be edited (table).

Row Row index. The first row has the index 1. The column header (if visible) has the index 0.

Colummn Column index. The first column has the index 1. The row header (if visible) has the index 0.

Value Numerical value to which the cell is to be set

Description:
Conversion of the numerical value to displayed text proceeds according to the data type set for the table cell (property: "Data linking/ Data
type"). For "Real number" or "automatic", this corresponds to the result of the function TForm(..., "").

Applies to:
Tableview

Examples:
A table presents a variety of a data set's characteristic values. If the maximum exceeds a cutoff limit, the corresponding table cell appears in a
distinct color.

DlgSetCellText("Table", 1, 1, "Length ")
DlgSetCellValue("Table", 1, 2, leng?(MyData))
DlgSetCellText("Table", 2, 1, "Sampling time ")
DlgSetCellValue("Table", 2, 2, xdel?(MyData))
DlgSetCellText("Table", 3, 1, "Maximum ")
value = max(MyData)
DlgSetCellValue("Table", 3, 2, value)
IF value > 100
 DlgSetCellTextColor("Table", 3, 2, RGB(255,0,0))
 DlgSetCellBackColor("Table", 3, 2, RGB(127,127,127))
ELSE
 DlgSetCellTextColor("Table", 3, 2, -2)
 DlgSetCellBackColor("Table", 3, 2, -2)
END

See also:
DlgSetCellText, DlgGetCellValue

imc FAMOS Func on Reference - 329 -

(c) 2024 imc Test & Measurement GmbH

DlgSetItemSelection

Scope: User-defined dialogs

Sets of cancels the selection for an entry in a list with multi-selection.

Declaration:
DlgSetItemSelection (TxElementName, Index, OnOff)

Parameter:

TxElementName Name of the dialog element in question

Index Index of the entry to be changed. The first entry has the index 1. In order to (de-)select all entries, enter 0.

OnOff Selection On/ Off

0 : Cancel selection

1 : Selects an entry

Applies to:
Listbox (multi-selection), Tableview (multi-selection)

Examples:
Inverts the current selection in a list with multi-selection:

Count = DlgGetItemCount("list1")
i = 1
 WHILE i <= Count
 Sel = DlgIsItemSelected("list1", i)
 DlgSetItemSelection("list1", i, NOT(Sel))
 i = i + 1
END

See also:
DlgGetSelectedItemCount, DlgIsItemSelected, DlgSelectItem

imc FAMOS Func on Reference - 330 -

(c) 2024 imc Test & Measurement GmbH

DlgSetItemText

Scope: User-defined dialogs

Replaces an entry (list box, tree diagram etc.) with the specified text.

Declaration:
DlgSetItemText (TxElementName, Index, TxNewContents)

Parameter:

TxElementName Name of the dialog element to be changed

Index Index of the entry to be replaced. The first entry has the index 1.

TxNewContents New text for the entry to be replaced

Applies to:
Listbox, Droplist, , ComboBox, Treeview

Examples:
A list box in a dialog is filled with all of the values of a (short) data set. At the push of a button, all selected values are set to 0.

--> Event sequence 'Dialog initialization'

;Fills the list box with the data set's values:
Count = leng?(MyData)
i = 1
WHILE i <= Count
 TxVal = TForm(MyData[i], "")
 DlgInsertItem("list1", 0, TxVal, 0)
 i = i + 1
END

--> Event sequence 'Button pressed'

;The selected samples are set to 0.
Count = DlgGetItemCount("list1")
i = 1
WHILE i <= Count
 IF DlgIsItemSelected("list1", i)
 MyData[i] = 0
 DlgSetItemText("0")
 END
 i = i + 1
END

See also:
DlgGetItemCount, DlgGetItemText, DlgInsertItem, DlgFindItem, DlgDeleteItem

imc FAMOS Func on Reference - 331 -

(c) 2024 imc Test & Measurement GmbH

DlgSetText

Scope: User-defined dialogs

Sets a new content or caption of the specified element.

Declaration:
DlgSetText (TxElementName, TxText)

Parameter:

TxElementName Name of the dialog element to be changed

TxText Text to which the dialog element is to be set

Applies to:
The function can only be used for such dialog element which possess a caption or whose current state can be expressed by a text. Interpretation
of the text depends on the element's type.

Element Meaning
Button Button caption

Label Content of the text box

Editbox (single line) Content of the input box

Editbox (multi-line) Content of the input box

Checkbox The element's caption

Radiogroup Sets the caption for the frame around the radiogroup. Only applicable for "Frame" = "With caption".

Groupbox The element's caption

Listbox (Single selection) If a list entry with the specified text exists, it is selected. If there is none, the current selection is retained.

Droplist Like Listbox

Treeview Like Listbox

Combobox Content of the input box

Dialog The dialog's title bar. For TxElementName, an empty text is to be entered.

Statusbar Content of the dialog's status bar. For TxElementName, "#Status" is available.
For elements which aren't listed in the table above, the function isn't applicable.

Examples:
A dialog displays a variety of a data set's characteristic values; among others the Y-unit in an input box 'input_unit'. When closing the dialog with
the 'OK' button, any changes of the unit made by the user are adopted in the data set.

--> Event sequence 'Dialog initialization'

...
DlgSetText("input_unit", Unit?(MyData,1))
...

--> Event sequence 'Button pressed' for the 'OK'-button

TxUnit = DlgGetText("input_unit")
SetUnit(MyData, TxUnit, 1)
DlgCloseDialog(0)

See also:
DlgGetValue, DlgGetValue, DlgGetText

imc FAMOS Func on Reference - 332 -

(c) 2024 imc Test & Measurement GmbH

DlgSetTextColor

Scope: User-defined dialogs

Sets the font color

Declaration:
DlgSetTextColor (TxElementName, RGBColor)

Parameter:

TxElementName Name of the dialog element to be changed. If an empty text is specified, the default value is set for the entire dialog.

RGBColor RGB-value of the desired color or (-2) for automatic.

Description:
The RGB-value supplied as the 2nd parameter represents the proportional intensities of the 3 fundamental colors Red, Green and Blue. To
generate such a color value, you can use the FAMOS function RGB().

If you changed the text color for the whole dialog, this also changes the text color of all those dialog elements whose text color is set to
"automatic".

The value (-2) sets the text color to automatic. For the dialog this means that the current Windows system configuration is used. For dialog
elements, this option means that the dialog's text color is adopted ('inherited').

Applies to:
This function can not be applied to: sliders, pictures, curve windows, menu items, calendars, clock

Examples:
The data set's maximum value is checked against a cutoff limit and the result is displayed in a text box ("Label1") in the dialog. If the limit has
been exceeded, the text box's background and text color are chaged (red/ white) and a warniong message is posted.

_max = Max(Daten)
IF _max > 12
 DlgSetTextColor("Label1", RGB(255,255,255))
 DlgSetBackColor("Label1", RGB(255,0,0))
 DlgSetText("Label1", "Limit exceeded!")
ELSE
 DlgSetTextColor("Label1", -2)
 DlgSetBackColor("Label1", -2)
 DlgSetText("Label1", "Dataset OK.")
END

See also:
DlgSetBackColor, DlgSetCellTextColor

imc FAMOS Func on Reference - 333 -

(c) 2024 imc Test & Measurement GmbH

DlgSetValue

Scope: User-defined dialogs

Sets a new value for the specified element.

Declaration:
DlgSetValue (TxElementName, Value)

Parameter:

TxElementName Name of the dialog element to be set

Value Numerical value to which the dialog element is to be set

Applies to:
The function can only be applied to such dialog elements whose current state can be expressed by a number. How the value is interpreted
depends on the element's type.

Element Value
Label The contents of the Label is set to the given value. The formatting depends from the Label's property "Data format".

Listbox
(Single
selection)

If available, the corresponding numeric value in the list is selected. If not found, the current selection is not changed. The
conversion of the number is analogous to the function call TForm(...,"") . Practicable for integer numbers only.

Droplist Like Listbox

Combobox The number is converted to text and the input box is filled accordingly. Conversion of the number is performed analogously to
calling the function TForm(...,"").

Editbox
(single line) Like Combobox

Checkbox Allowed: 1 or 0. The check-box's status is set accordingly. No other values are allowed.

Radiogroup Sets the option to be selected. The first option has the index 1.

Slider Sets the slider to the value specified. If the value is outside of the range limits set for the control, the slider is positioned at the
respective range edge.

Datepicker Sets the element to the specified value for the date. The value must be stated in the FAMOS time format and can be generated
and processed using the functions belonging to Function Group #18, 'Date/Time'.

Timepicker Sets the element to the specified clock time. The value must be enterd in the FAMOS time format and can be generated and
processed using the functions belonging to Function Group #18, 'Date/Time'.

For elements which aren't listed in the table above, the function isn't applicable.

Examples:
A slider control's value range is set and the midpoint initialized.

DlgSetBarRange("Slider1", 0, 100, 1, 10)
DlgSetValue("Slider1", 50)

Various characteristic values of a data set are displayed in a dialog, among others the trigger time, in a 'Datepicker'- and a 'Timepicker'-element.
Upon closing the dialog by means of the 'OK' button, any changes to the time made by the user are adopted by the data set.

--> Event sequence 'Dialog initialization'

...
Time = Zeit?(MyData)
DlgSetValue("time", time)
DlgSetValue("date", time)
...

--> Event sequence 'Button pressed' for the 'OK'-button

date = DlgGetValue("time")
time = DlgGetValue("date")
SetTime(Mydata, TimeAdd(date, time))

See also:
DlgGetValue, DlgGetText, DlgSetText

imc FAMOS Func on Reference - 334 -

(c) 2024 imc Test & Measurement GmbH

DlgShow

Scope: User-defined dialogs

The active dialog or a special dialog element is hiddent or showed (again).

Declaration:
DlgShow (TxElementName, OnOff)

Parameter:

TxElementName Name of the dialog element to be changed. If an empty text is specified, the entire active dialog is displayed or hidden.

OnOff

0 : Hide element

1 : Show element

Applies to:
The function can be used for all dialog elements except menus, toolbars and the status bar.

Examples:
The results of a calculation are saved to an EXCEL-file. Subsequently, EXCEL is opened and the file is displayed for checking. As long as EXCEL is
open, the current dialog is hidden.

Filtrat = FiltTP(Daten, 0, 0, 6, 100)
fh = FileOpenXLS2("z:\dat\res.xls", "Template #2", 1, 1, 1)
IF fh > 0
 err = FileObjWrite(fh, Filtrat)
 err = FileClose(fh)
 DlgShow("", 0)
 Execute("Excel", "z:\dat\res.xls", "", 0, -1)
 DlgShow("", 1)
END

See also:
DlgEnable

imc FAMOS Func on Reference - 335 -

(c) 2024 imc Test & Measurement GmbH

DrTitleN

Scope: Report Generator

Retrieves object title.

Declaration:
DrTitleN (ObjectIndex, Zero) -> TxTitle

Parameter:

ObjectIndex Object is selected with this index.

Zero Reserved, always set to 0

TxTitle

TxTitle Title of the addressed object.

Description:
The title of the object specified by SvIndex is retrieved. If the object has no title or if SvIndex is greater than the number of objects in the Report
Generator, an empty string ("") is returned.

This function is provided for reasons of compatibility. For newly created sequences or programs, RgObjGetTitle should be used.
SvIndex always starts at 1.

Examples:

Amount = PrTitleI(0)
Title$ = PrTitleN(Amount, 0)

The last object's title is determined.

See also:
RgObjGetTitle, RgObjGetCount, RgObjGetType, DrTitleI

imc FAMOS Func on Reference - 336 -

(c) 2024 imc Test & Measurement GmbH

DSPLOAD

Loads a DIGISKOP(c)-file (Copyright remes GmbH)

Declaration:
DSPLOAD SvBoard SvChannel Filename VariableName

Parameter:

SvBoard Board to load (1..5)

SvChannel Channel to be loaded (1...160)

Filename Name of the file to be loaded

VariableName Variable in to which the file excerpt is entered

Description
A DIGISKOP(c) file group, defined by the remes company, is loaded in FAMOS. This DIGISKOP(c) file group consists of a *.DSP, *.PTR and *.DRD
file, differentiated only by their file name extension. These files contain information and measurement values from 1 to 5 data acquisition
boards and 1 to 160 channels per board. The desired file section is read using the parameters "Board" and "Channel". The parameter "Board" can
accept values between 1 and 5, the parameter "Channel" values between 1 and 160.

The selected file excerpt is loaded with the designation specified under [VariableName].

The filename can be a complete pathname included folder and filename extension, but can also be specified without either. Then, the
system searches for the file in the folder from which FAMOS loads data. The extension is selected automatically.
The filename can also be specified to contain quotation marks. This can be necessary, if, for instance, the path contains spaces.

Examples:

DSPLOAD 4 1 DSCP
DSPLOAD 4 1 c:\dig\DSCP.DSP karte4_1

In both cases, the first channel of the fourth board in read from the file group "DSCP.*" and entered in imc FAMOS under the name "board4_1".

board = 4
chan = 1
DSPLOAD kart kan DSCP daten

Two variables define the desired range of the file group "DSCP". The range is entered under the name "data".

DSPLOAD 4 1 "c:\Meine Daten\DSCP.DSP" karte4_1

The pathname contains spaces and must therefore be written inside of quotation marks.

See also:
FileLoad, FileOpenFAS, LDIR

imc FAMOS Func on Reference - 337 -

(c) 2024 imc Test & Measurement GmbH

e

Euler number e = 2.718...

Examples:
The natural logarithm of the pre-defined constant e is 1:

one = ln(e)

The following two formulas are equivalent:

y = exp(x)
y = e ^ x

See also:
ln, exp

imc FAMOS Func on Reference - 338 -

(c) 2024 imc Test & Measurement GmbH

eFit

Exponential regression; fits data set to an exponential function

Declaration:
eFit (Data) -> eFunction

Parameter:

Data Data set to be fitted to the exponential function [ND],[XY]

eFunction

eFunction Data set fitted to the exponential function

Description:
A data set given by the equation

f(x) = A * exp(B*x)

is determined, which best approximates the original data set.

After completion of the function, the equation determined is displayed in the output box. The equation is displayed with the units and has the
following form:

f(x) = 13.81 [V] * exp (116.8 [Ohm] * x)

Calling the function with an empty text as the parameter returns the last coefficients computed, B and A, in the form of a data set with 2 values.

Normal data set [NW]:

The data set generated has the length and unit of the specified data set, with a maximum length of 1000. If the length is shortened (truncated),
the sampling time is changed so that the specified data set is defined for the same interval.

XY -data set [XY]

The data set generated has the length 1000. It is defined by the same x-interval as the source data set.

The numerical values of the specified data set must be greater than zero.
If numerical values below zero occur, a warning will appear along with the equation determined. This equation is meaningless and must not
be considered correct under any circumstances. For this reason, in a sequence one should always check the coefficients found. If they are 1
and 0, the result is not valid.
Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Examples:
Calculates the exponential regression for a data set. Subsequently, the two cofficients of the e-function are determined:

ExpRegression = eFit(Daten)
coeff = eFit("")
factorB = coeff[1]
factorA = coeff[2]

See also:
LFit, exp, ln, Appro, ApproNonLin, Poly

imc FAMOS Func on Reference - 339 -

(c) 2024 imc Test & Measurement GmbH

ELSE

In an IF- branching, this initializes the instructions to be performed if neither the IF-condition nor any exisiting ELSEIF-conditions are met.

Declaration:
ELSE

Description
The end of the instructions belonging to this block is denoted by a subsequent END.

An IF-block may contain any arbitrary amount of ELSEIF-branchings. If any ELSE-branching is also specified, it must appear at the last position of
the chain.

Instead of IF/ELSEIF/ELSE, for many applications it is easier to use the SWITCH/CASE/DEFAULT-instruction.

Examples:
If the maximum value of a variable is greater than 0, the variable is displayed in a curve window. Otherwise, the variable is deleted.

Maxi = Max(data)
IF Maxi
 SHOW data
ELSE
 DELETE data
END

When a file is loaded, its return value is checked and an error message posted if appropriate.

fh = FileOpenDSF("Channel1.dat", 0)
IF fh = 0
 Pause ==> Can't load file <==
ELSE
 ; ...
 FileClose(fh)
END

A portion of an equidistantly sample data set [data] is to be cut out. The two boundaries [xmin] and [xmax] have previously been entered by the
user and are now being checked for validity:

IF xmin < xoff?(data) OR xmin <= 0
 txError = "Illegal lower limit"
ELSEIF xmax > (xoff?(data)+(leng?(data)-1)*xdel?(data))
 txError = "Illegal upper limit"
ELSEIF xmin >= xmax
 txError = "Illegal limit relation"
ELSE
 result = Cut(data, xmin, xmax)
END

See also:
ELSEIF, ELSE, SWITCH

imc FAMOS Func on Reference - 340 -

(c) 2024 imc Test & Measurement GmbH

ELSEIF

Initializes an additional condition branch in an IF-branch. This is run if the previous condition branches were not run, and if the condition stated
here has been met.

Declaration:
ELSEIF Condition

Parameter:

Condition The following block's instructions are only carried out if the condition is met (evaluation returns a value >0).

Description
The end of the instructions belonging to this block is denoted by a subsequent, additional ELSEIF, an ELSE or END.

As the condition, it is possible to specify, for example, a single value variable or a complex expression using logical operators (AND, OR..) and/or
comparison operators (<, =, ...).

An IF-block can contain any arbitrary amount of additional ELSEIF-branchings. Any ELSE-branch specified must appear at the last position in the
chain.

Instead of IF/ELSEIF/ELSE, for many applications it is easier to use the SWITCH/CASE/DEFAULT-instruction.

Examples:
A portion of an equidistantly sample data set [data] is to be cut out. The two boundaries [xmin] and [xmax] have previously been entered by the
user and are now being checked for validity:

IF xmin < xoff?(data) OR xmin <= 0
 txError = "Illegal lower limit"
ELSEIF xmax > (xoff?(data)+(leng?(data)-1)*xdel?(data))
 txError = "Illegal upper limit"
ELSEIF xmin >= xmax
 txError = "Illegal limit relation"
ELSE
 result = Cut(data, xmin, xmax)
END

See also:
IF, ELSE, SWITCH

imc FAMOS Func on Reference - 341 -

(c) 2024 imc Test & Measurement GmbH

EMPTY

Empty data set of length 0.

Examples:
A typical application of these constants is the initialization of a data set which is to be constructed step-by-step in a subsequent loop.

result = EMPTY
FOR i = 1 to ...
 newValue = ...
 result = Join(result, newValue)
END

See also:
Join

imc FAMOS Func on Reference - 342 -

(c) 2024 imc Test & Measurement GmbH

END

The command denotes the end of a sequence of instructions in a loop or branching.

Declaration:
END

Description
Last command in a loop (WHILE, FOR, FOREACH), of a conditional branching (IF , ELSEIF), or of a case distinction (SWITCH, CASE, DEFAULT).

Examples:
If a variable's maximum is greater than 0, it is displayed in a curve window.

Maxi = Max(data)
IF Maxi
 SHOW data
END

A descriptive text is formulated for a value nomally lying within the range from 0 to 100. If it is ouside of this range, an error message is displayed.

SWITCH Round(value, 1)
CASE 0 TO 48
 Tx = "Lower half"
CASE 49,50,51
 Tx = "Center"
CASE 52 To 100
 Tx = "Upper half"
DEFAULT
 PAUSE Invalid Value
END

See also:
IF, SWITCH, FOR, WHILE, FOREACH, BREAK, CONTINUE

imc FAMOS Func on Reference - 343 -

(c) 2024 imc Test & Measurement GmbH

END_PARALLEL

Available in: Professional Edition and above

Declaration:
END_PARALLEL

Description
A parallel execution block opened with BEGIN_PARALLEL is closed. The system waits until all previously started parallel executions are
concluded.

See also:
BEGIN_PARALLEL

Supported since:
Version 2022, Editionen: Professional, Enterprise, Runtime

imc FAMOS Func on Reference - 344 -

(c) 2024 imc Test & Measurement GmbH

Envelope1

Constructs the upper and lower envelope curve according to the interval-secant-method.

Declaration:
Envelope1 (Data, SvTimeInterval, SvOption, Zero) -> ErgHüllkurve

Parameter:

Data Data set for which to construct an envelope curve [ND]

SvTimeInterval Time interval, scaled in the data set's x-unit

SvOption Defines the calculation type

1 : Upper envelope curve

2 : Lower envelope curve

3 : The upper envelope curve of the absolute value of the input data

4 : Upper envelope curve, but with additional, interpolated values in the places where the lower envelope curve has nodes

5 : Lower envelope curve, but with additional, interpolated values in the places where the upper envelope curve has nodes

Zero Reserved parameter, always 0

ErgHüllkurve

ErgHüllkurve Resulting envelope curve

Description:
The algorithm demonstrated on the basis of the upper envelope curve:

The first input data value is stored. The secant in the interval with the greatest slope is sought, starting from the interval's beginning. This 2nd
intersection point of the secant is stored. A new interval begins from this point onward. This procedure is then repeated. The last value is also
stored.

Slopes are regarded as equal if they differ from each other by 1e-13. If the same slope is found in several places in the interval, the last
occurrence is given preference.
Options 4 and 5 are much more demanding on computational capacity than ordinary envelope curves. The options are good choices when the
upper and lower curves are to be combined in formulas. In that case, both curves should be computed with Options 4 or 5, respectively.
Using the function Sub() the difference between the two envelope curves can be computed in conjunctions with Options 1 and 2, even if the
nodes are not at the same locations.

Examples:
The oscillations in a waveform have a period of up to 2.0 seconds. This is rounded up to 5.0 sec. The function is supposed to join all the peak
values in an upper envelope curve without dipping down into the valleys.

Envel = Envelope1(TimeData, 5.0, 1, 0)

For quickly finding the difference between the upper and lower envelopes:

UpperEnvel = Envelope1(TimeData, 1e-3, 1, 0)
LowerEnvel = Envelope1(TimeData, 1e-3, 2, 0)
Difference = Sub(UpperEnvel, LowerEnvel, 0)

An inefficient way of determining the difference:

UpperEnvel = Envelope1(TimeData, 1e-3, 4, 0)
LowerEnvel = Envelope1(TimeData, 1e-3, 5, 0)
Difference = XYof(UpperEnvel.x, UpperEnvel.y - LowerEnvel.y)

Comparison of original data set and envelope, sample for sample:

UpperEnvel = Envelope1(TimeData, 1e-3, 1, 0)
Oe = XYdt(UpperEnvel.x, UpperEnvel.y, xdel?(TimeData))
; "UE" is now a data set which is sampled exactly like "Timedata".
deviation = Oe - TimeData

The data set "slope.dat", provided with the imc FAMOS package, can be manipulated in the following way to demonstrate this function's
workings:

UpperEnvel = Envelope1(slope, 1e-3, 1, 0)

imc FAMOS Func on Reference - 345 -

(c) 2024 imc Test & Measurement GmbH

LowerEnvel = Envelope1(slope, 1e-3, 2, 0)

Using a smaller interval makes the envelope tighter:

h1 = Envelope1(slope, 3e-4, 1 ,0)
h2 = Envelope1(slope, 3e-4, 2 ,0)

See also:
Envelope2, Sub, XYof

imc FAMOS Func on Reference - 346 -

(c) 2024 imc Test & Measurement GmbH

Envelope2

Constructs the upper and lower envelope curve according to the interval-secant-method using specified nodes.

Declaration:
Envelope2 (Data, SvTimeInterval, SvOption, Zero, Nodes) -> ErgHüllkurve

Parameter:

Data Data set for which to construct an envelope curve [ND]

SvTimeInterval Time interval, scaled in the data set's x-unit

SvOption Defines the calculation type

1 : Upper envelope curve

2 : Lower envelope curve

3 : The upper envelope curve of the absolute value of the input data

4 : Upper envelope curve, but with additional, interpolated values in the places where the lower envelope curve has nodes

5 : Lower envelope curve, but with additional, interpolated values in the places where the upper envelope curve has nodes

Zero Reserved parameter, always 0

Nodes Data set of time points or x-coordinates; must be ordered to increase strictly monotonically! At these time points, the
envelope curve is forced to coincide with an input sample.

ErgHüllkurve

ErgHüllkurve Resulting envelope curve

Description:
The algorithm demonstrated on the basis of the upper envelope curve:

The first input data value is stored. The secant in the interval with the greatest slope is sought, starting from the interval's beginning. This 2nd
intersection point of the secant is stored. A new interval begins from this point onward. This procedure is then repeated. The last value is also
stored. Additionally, the results contain all points specified in the list of nodes.

Slopes are regarded as equal if they differ from each other by 1e-13. If the same slope is found in several places in the interval, the last
occurrence is given preference.
Options 4 and 5 are much more demanding on computational capacity than ordinary envelope curves. The options are good choices when the
upper and lower curves are to be combined in formulas. In that case, both curves should be computed with Options 4 or 5, respectively.
Using the function Sub() the difference between the two envelope curves can be computed in conjunctions with Options 1 and 2, even if the
nodes are not at the same locations.

See also:
Envelope1, Sub, XYof

imc FAMOS Func on Reference - 347 -

(c) 2024 imc Test & Measurement GmbH

Equal

Available in: Professional Edition and above

Compares two data sets for equality. Each measurement value of one data set is compared with the corresponding measurement value of the
other data set. The data sets are only equal of all values are exactly equal.

Declaration:
Equal (Value1, Value2 [, Tolerance] [, Calculation] [, Tolerance2] [, Calculation2]) -> IsEqual

Parameter:

Value1 1st comparison value

Value2 2nd comparison value

Tolerance Tolerance to apply to the comparison. The two values to be compared may only differ by a maximum of this tolerance value. >= 0.
(optional , Default value: 0)

Calculation How is the tolerance calculated? (optional , Default value: "absolute")

"absolute" : Absolute deviation

"relative" : Relative deviation

Tolerance2 Tolerance of 2nd component. Only needed if the data sets to be compared are either XY or complex. (optional , Default value: 0)

Calculation2 How is the tolerance of the 2nd component calculated? Only needed if the data sets to be compared are either XY or complex.
(optional , Default value: "absolute")

"absolute" : Absolute deviation

"relative" : Relative deviation

IsEqual

IsEqual IsEqual, so 1 for equality, 0 for deviation

Description:
This function is used to incorporate self-verification into sequences in a compact way.

Only the measured readings are compared. Other properties such as the trigger time, sampling time, or units are not compared.

If the measurement readings to be compared are real numbers, it is generally necessary to apply a tolerance.

A relative deviation of 1e-7 is near the 4-Byte real number resolution; 1e-14 is near to the 8-Byte real number resolution.

Equality can only be achieved if the number of samples is the same in both data sets.

This function can be applied to input data having events or segments. Equality is only achieved when the number of segments and events is also
equal.

With absolute deviation, the absolute value of the difference between Value1 and Value2 may not exceed the tolerance.

With relative deviation, the ratio of Value1 to Value2 may deviate only by a certain proportion: Value1 / (1+Tolerance) <= Value2 <= Value1 *
(1+Tolerance)

If data have 2 components (XY or complex), then both components are compared. In that case, Tolerance2 and Calculation2 must also be
observed.

Examples:
Successful checking of two almost equal numbers which differ by a small percentage

A=2
B=sqrt(2)^2 ; A <> B !
eq = equal(A, B, 1e-10, "relative")
verify(eq)

Checking of two time series which actually should be equal, but due to the numerical math only are approximately equal. The difference
between the two is always below 1e-3.

ra1=ramp(0,1,1024) ; test data
ra2 = ifft(fft(ra1))
eq = equal(ra1, ra2, 1e-3, "absolute")

See also:
Verify

imc FAMOS Func on Reference - 348 -

(c) 2024 imc Test & Measurement GmbH

EventAppend

One or more events are appended to an event-based data set

Declaration:
EventAppend (EventData, NewEventData, Zero)

Parameter:

EventData Event-based data set

NewEventData Data to append

Zero Reserved parameter. Always 0.

Description:
A data record is appended to an event-based data set.

If the 2nd parameter itself does not have an event structure, the data set is appended as a new event.

If the 2nd parameter is already evented itself, all its events are appended.

The two data sets must have the same data type (both normal real or both XY-data sets). The data format of the result remains intact. The
properties x-offset (pretrigger), x-delta (sampling rate) and trigger time of the 2nd parameter are applied to the new event. All other properties
remain intact.

To generate an event-based data set, either use the function EventNew() or pass a non-event-based data set as the first parameter to the
EventAppend()-function. This is then automatically converted to an event-based data set before the second event is appended.

Instead of

a = EventNew(a, 0)
EventAppend(a, b, 0)

can thus also be written more briefly:

EventAppend(a, b, 0)

When a data set is structured in events, the individual events may have different lengths; other properties such as the trigger time and pre-
trigger (or x-offset) may also be event-specific. For example, it is possible to join consecutive measurements together on one physical
measurement channel in an event-based data set, for simplicity of management.

Many imc FAMOS functions can not process multi-shot channels directly, but must be performed by a loop over all the data set's events.

Examples:
A new, three-event data set is created from three individual data sets:

DataAllDay = EventNew(Data0_8h, 0)
EventAppend(DataAllDay, Data8_16h, 0)
EventAppend(DataAllDay, Data16_24h, 0)

See also:
EventNew, EventGet, EventDel, EventNum?, EventJoin, Join, JoinEx

imc FAMOS Func on Reference - 349 -

(c) 2024 imc Test & Measurement GmbH

EventDel

One event is deleted from an event-based data set.

Declaration:
EventDel (EventData, SvEventIndex, Zero)

Parameter:

EventData Event-based data set

SvEventIndex Index of the event to be deleted; in the range 1.. Event Count

Zero Reserved parameter. Always 0.

Description:
The event specified is deleted. The total length of the data set is reduced by the length of the deleted event.

If you wish to perform this function in a loop on all the events of a data set, remember that by deleting an event the total number of events in
the data set decreases, thus altering the (addressing) structure within the data set. Therefore, it is recommendable to delete events from a data
set from the end backwards (see example).

Examples:
All events comprising less than 10 measurement values are deleted from a data set:

count = EventNum?(signal)
index = count
WHILE index >= 1
 eventLeng = EventProp?(signal, index, 3)
 IF eventLeng < 10
 EventDel(signal, index, 0)
 END
 index = index -1
END

See also:
EventGet, EventSet, EventNum?

imc FAMOS Func on Reference - 350 -

(c) 2024 imc Test & Measurement GmbH

EventGet

One event is copied from an event-based data set.

Declaration:
EventGet (EventData, SvEventIndex, Zero) -> EventCopy

Parameter:

EventData Event-based data set

SvEventIndex Index of the desired event; in the range 1.. Event Count

Zero Reserved parameter. Always 0.

EventCopy

EventCopy Copy of the specified event

Description:
This function returns a copy of a specified event. All the event's properties, including the data format, are adopted. The resulting data set has no
event structure.

This function is generally used to enumerate the individual events. Many imc FAMOS functions can not process multi-shot channels directly, but
must be performed by a loop over all the data set's events.

In imc FAMOS an event can also be accessed directly via its index by means of [..]:

singleEvent = EventData[Index]

Examples:
A loop is executed on all the events of a data set. Each event is smoothed and copied back into the original data set.

count = EventNum?(signal)
FOR index = 1 TO count
 thisEvent = EventGet(signal, index, 0)
 ;; also possible:
 ;; thisEvent = signal[index]
 thisEvent = Smo5(thisEvent)
 EventSet(signal, thisEvent, index, 0)
 ;; also possible:
 ;; signal[index] = thisEvent
END

Note: Such tasks can often be solved more elegantly by means of a FOREACH EVENT-loop.

See also:
EventSet, EventNum?, EventDel, FOREACH

imc FAMOS Func on Reference - 351 -

(c) 2024 imc Test & Measurement GmbH

EventJoin

Dissolves the event-structure of a data set.

Declaration:
EventJoin (EventData, Zero)

Parameter:

EventData Event-based data set

Zero Reserved parameter. Always 0.

Description:
All events in a data set are attached to each other to a continuous stream of data; the event structure is canceled in the process. The properties of
the first event in the data set are adopted by the entirety of the new data set.

CAUTION: The event-specific properties of the latter events are lost, this includes trigger time, pretrigger, sampling rate.

The total length of the data set remains intact.

If the first parameter has no event structuring, it remains unchanged by this function. A warning message is generated.

This function is generally used in preparation for further processing.. Many imc FAMOS functions can not process multi-shot channels directly, but
must be performed by a loop on all the data set's events, or on a data set previously restructured by this function.

Examples:
The absolute maximum across all events of an event-based data set is determined:

EventJoin(signal, 0)
Maximum = Max(signal)

See also:
EventSet, EventGet, JoinEx

imc FAMOS Func on Reference - 352 -

(c) 2024 imc Test & Measurement GmbH

EventNew

From an unstructured data set, an event-based data set is generated.

Declaration:
EventNew (FirstEvent, Zero) -> EventData

Parameter:

FirstEvent Data set from which the first event is formed

Zero Reserved parameter. Always 0.

EventData

EventData Event-based data set

Description:
A copy of the source data, incorporating or multi-sot structure, is created. Subsequent use of the EventAppend function can be used to expand
the data set by additional events.

When a data set is structured in events, the individual events may have different lengths; other properties such as the trigger time and pre-
trigger (or x-offset) may also be event-specific. For example, it is possible to join consecutive measurements together on one physical
measurement channel in an event-based data set, for simplicity of management.

Examples:
A new, three-event data set is created from three individual data sets:

DataAllDay = EventNew(Data0_8h, 0)
EventAppend(DataAllDay, Data8_16h, 0)
EventAppend(DataAllDay, Data16_24h, 0)

See also:
EventAppend, JoinEx

imc FAMOS Func on Reference - 353 -

(c) 2024 imc Test & Measurement GmbH

EventNum?

Gets the number of events in a data set.

Declaration:
EventNum? (EventData) -> SvEventCount

Parameter:

EventData Event-based data set

SvEventCount

SvEventCount EventNumber

>=0 : Number of events included

-1 : The parameter is not an event-based data set.

Description:
The number of events present in a multi-shot channel is determined. A value of 1 is returned if the data set is not accordingly structured.

This function is generally used to prepare for subsequent enumeration of the data set's individual events. Many imc FAMOS functions can not
process event-based data sets directly, but must be called for all the data set's events by means of a loop.

Examples:
A loop is executed on all the events of a data set. Each event is smoothed and copied back into the original data set.

count = EventNum?(signal)
FOR index = 1 TO count
 thisEvent = signal[index]
 thisEvent = Smo5(thisEvent)
 signal[index] = thisEvent
END

Note: Such tasks can often be solved more elegantly by means of a FOREACH EVENT-loop.

See also:
EventSet, EventGet, Join

imc FAMOS Func on Reference - 354 -

(c) 2024 imc Test & Measurement GmbH

EventProp

Sets event-specific properties

Declaration:
EventProp (EventData, SvEventIndex, SvTask, SvNewProperty)

Parameter:

EventData Event-based data set to be changed

SvEventIndex Index of the event to be changed; in the range 1.. Event Count

SvTask Selection of the characteristic value to be changed

0 : The event's trigger time (expressed in the internal time format).

1 : Sampling interval/x-Delta

2 : Pretrigger time/x-Offset

5 : z-Offset

SvNewProperty New value

Description:
For a specified event in a data set, event-specific properties are changed.

When a data set is structured in events, the individual events may have different lengths; other properties such as the trigger time and pre-
trigger (or x-offset) may also be event-specific. For example, it is possible to join consecutive measurements together on one physical
measurement channel in an event-based data set, for simplicity of management.

Examples:
All events of an event-basedd data set are assigned the same trigger time.

time = TimeJoin(11, 2, 1997, 15, 0, 0)
count = EventNum?(signal)
FOR index = 1 TO count
 EventProp(signal, index, 0, time)
END

See also:
EventSet, EventNum?, EventProp?

imc FAMOS Func on Reference - 355 -

(c) 2024 imc Test & Measurement GmbH

EventProp?

Queries event-specific properties

Declaration:
EventProp? (EventData, SvEventIndex, SvTask) -> SvProperty

Parameter:

EventData Event-based data set to be queried

SvEventIndex Index of the desired event; in the range 1.. Event Count

SvTask Selection of the characteristic value to be requested

0 : The event's trigger time (expressed in the internal time format).

1 : Sampling interval/x-Delta

2 : Pretrigger time/x-Offset

3 : Length (number of data points)

4 : Index of the data sets first point belonging to the relevant event. For the first event this is 1. For all subsequent events it is
the sum of the lengths of preceding events, plus 1.

5 : z-Offset

SvProperty

SvProperty Value requested

Description:
For a specified event in a data set, event-specific values are requested.

When a data set is structured in events, the individual events may have different lengths; other properties such as the trigger time and pre-
trigger (or x-offset) may also be event-specific. For example, it is possible to join consecutive measurements together on one physical
measurement channel in an event-based data set, for simplicity of management.

Examples:
All events comprising less than 10 measurement values are deleted from a data set:

count = EventNum?(signal)
index = count
WHILE index >= 1
 EventLeng = EventProp?(signal, index, 3)
 IF EventLeng < 10
 EventDel(signal, index, 0)
 END
 index = index - 1
END

See also:
EventProp, EventSet, EventNum?

imc FAMOS Func on Reference - 356 -

(c) 2024 imc Test & Measurement GmbH

EventSet

A selected event in a data set is replaced.

Declaration:
EventSet (EventData, NewEvent, SvEventIndex, Zero)

Parameter:

EventData Event-based data set

NewEvent New data for the specified event

SvEventIndex Index of the event to be changed; in the range 1.. Event Count

Zero Reserved parameter. Always 0.

Description:
In an event-based data set, a specified event is replaced. The replacement data set may not itself have a multi-event structure.

The first two parameters must have the same data type (both real, complex, or XY-data sets). The data format of the first parameter is retained.

This function is generallyused to separate an individual event from the data set, and later restore it after having first processed it. Many imc
FAMOS functions can not process multi-shot channels directly, but must be performed by a loop over all the data set's events.

In imc FAMOS an event can also be accessed directly via its index by means of [..]:

EventData[Index] = NewData

Examples:
A loop is executed on all the events of a data set. Each event is smoothed and copied back into the original data set.

count = EventNum?(signal)
FOR index = 1 TO count
 thisEvent = EventGet(signal, index, 0)
 ;; also possible:
 ;; thisEvent = signal[index]
 thisEvent = Smo5(thisEvent)
 EventSet(signal, thisEvent, index, 0)
 ;; also possible:
 ;; signal[index] = thisEvent
END

Note: Such tasks can often be solved more elegantly by means of a FOREACH EVENT-loop.

See also:
EventGet, EventNum?, EventDel, FOREACH

imc FAMOS Func on Reference - 357 -

(c) 2024 imc Test & Measurement GmbH

Execute

A program is started and/or an action with a document file is carried out.

Declaration:
Execute (TxFileName, TxParameter, TxAction, SvDisplayOption, SvWaitOption) -> SvExitCode

Parameter:

TxFileName Name of the executable file (*.exe, *.bat, *.com) or name of the document-file to be edited. A document-file must be linked to
an application via the Windows system settings.

TxParameter Parameter to be used when starting application, separated by a space. For document-files an empty text.

TxAction States the nature of action to be performed. The available action verbs depend on the specified file's type. To run an application,
an empty string or "Open".

SvDisplayOption Display of the program window

0 : Starts/shows the application in a normal window. The application is activated.

1 : Starts/shows the application in a normal window. The application is not activated.

2 : Starts/shows the application as an icon.

3 : Starts/shows the application in a maximized window.

SvWaitOption Waits for the end

0 : The application is started. The function returns immediately.

-1 : The application is started. The function returns once the application has been completed. Useful for calls of the command
interpreter and other applications no having an explicit user interface.

>0 : Maximum waiting time (in seconds). The function returns when the application which was started is completed OR when the
waiting time has elapsed.

SvExitCode

SvExitCode Status

>=0 : Function has been successfully executed and completed. The particular value depends on the application and corresponds to
the code returned to the operating system by the application. This code can, for instance, report success in executing the function.

-2 : The application was started successfully, but isn't completed within the specified waiting time.

-3 : The desired action was carried out by an already open instance of the application and thus no new application was started.

Description:
Notes on editing document files:

If a document-file is given as the first parameter, the application with which this file is edited must be known. A corresponding link can be established
in the Windows system settings (Explorer / View / Options / File types) and is identified by the filename extension.

Along with the Windows default settings, such links are normally creeated automatically upon installation of an application, but can be manually
revised later by the user. Here, so-called action verbs are defined, which describe various processing actions. An action defined in this way must then
be supplied as the 3rd parameter [TxAction].

The following action verbs are common for documents:

"Open" Starts the file (executable file or document)

"Edit" Opens an editor and loads the document.

"Explore" Opens the Windows Explorer and displays the specified directory.

"Find" Starts a search in the specified directory.

"Print" Prints out the document-file.

"Properties" Opens the Properties dialog for the specified file.
Which verbs are actually available depends on the Windows system settings. An application itself can determine which actions are supported and
define additional verbs (e.g. "play" for video and sound-files).

Remarks

If no full pathname is specified for executable files, a search of the folders listed by the environment variable [PATH] is conducted. For document-
files, by contrast, the complete pathname must be specified.
In case of an error (e.g. invalid pathname or unknown filename-extension), an error message is displayed and sequence processing is aborted.
While the function is waiting for the end of the application started ([WaitOption] = -1 or >0), FAMOS can't be operated (exception: curve window).
However, a running sequence can be interrupted in the usual ways ("Sequence"-symbol with context menu in System Tray or [Ctrl+Break]).
During the waiting time, FAMOS is partially accessible via DDE: data can be received, but no commands executed.

imc FAMOS Func on Reference - 358 -

(c) 2024 imc Test & Measurement GmbH

If a parameter in [TxParameter] contains spaces, it must be enclosed in quotation marks. See the example.
Query of return value is optional in FAMOS.
The parameter [WaitOption] is passed to the application started. However, it depends on the application whether it is taken into account.
If some instance of the desired application is already open, the resulting response also depends on the application. Either a new, addtional
program instance is started or the already open one re-used. In the latter case the system doesn't wait for the end, regardless of the parameter
[WaitOption], the function returns immediately (denoted by a return value of [-3]).

Examples:
Starts the Editor [Notepad] and loads the specified file. The function returns immediately.

ret = Execute("notepad.exe", "c:\tmp\MyTest.txt", "", 0, 0)

Parameters with spaces must be enclosed in quotation marks:

ret = Execute("notepad.exe", """c:\tmp\My Text.txt""", "", 0, 0)

The same result can be obtained by making the following call (Assuming: Extension "txt" is linked to [Notepad]):

ret = Execute("c:\tmp\My Text.txt", "", "open", 0, 0)

Starts MS-EXCEL and loads the table specified. The function returns when EXCEL closes again, but after 60s at the latest. Both calls are equivalent.

ret = Execute("excel.exe", "c:\tmp\1.xls", "", 0, 60)
ret = Execute("c:\tmp\1.xls", "", "open", 0, 60)

Prints out the specified MS-EXCEL file.

ret = Execute("c:\tmp\1.xls", "", "print", 2, 0)

Calls the packing program "7-Zip" for unpacking a file:

fullname$ = "c:\files\archive.zip" ; input file
dir$ = "c:\files\unpacked" ; output folder

para$ = "e """ + fullname$ +""" -o""" + dir$ + """"
; Please note the extra quotation marks around the filenames. These are needed in case the filenames contain spaces.
ret$ = Execute("c:\Program Files\7-Zip\7z", para$, "", 0, -1)

Starts MS-EXCEL and loads the table specified. The function returns when EXCEL closes again, but after 60s at the latest. Both calls are equivalent.

ret = Execute("excel.exe", "c:\tmp\1.xls", "", 0, 60)
ret = Execute("c:\tmp\1.xls", "", "open", 0, 60)

Prints out the specified MS-EXCEL file.

ret = Execute("c:\tmp\1.xls", "", "print", 2, 0)

To execute an operating system command, the command processor can be started with the option "/C", followed by the desired command. In the
example, a folder is created. The console window is shown in minimized mode. The function returns when the Command-interpreter is finished, in
other words, after the folder was actually created.

ret = Execute("cmd.exe", "/C MkDir z:\NewFolder", "", 2, -1)

Calls the "Properties"-dialog for the specified file:

ret = Execute("c:\tmp\data.raw", "", "properties", 0, 0)

Comment: Here, the standard Windows Explorer is used to display the Properties dialog. Since this is always active, a (-3) is returned here and the last
parameter [WaitOption] is ignored.

See also:
APPLICATION

imc FAMOS Func on Reference - 359 -

(c) 2024 imc Test & Measurement GmbH

EXITSEQUENCE

Quit sequence execution

Declaration:
EXITSEQUENCE SvOption

Parameter:

SvOption Option

0 : Sequence processing is stopped completely. Default for classic sequences, not permitted within sequence functions.

1 : Skip to the end of the current sequence. If this is a sub-sequence, processing of the calling sequence resumes. Default for
sequence functions.

2 : Skip to the end of the current sequence. If that is a cyclical sub-sequence (called with parameters containing wildcards), the
system resumes with the next cycle. Otherwise, the system resumes processing of the calling sequence. Not permitted within
sequence functions.

Description
The sequence processing is stopped. Depending on this option chosen, either only the running sub-sequence/sequence function is stopped (skip
back to the calling sequence), or the entire sequence processing is terminated.

The parameter is optional. If not specified, then in case of a classic sequence, the system assumes 0 (complete Cancel), or in the case of a
sequence function, it assumes 1 (skip to end of the sequence).

Examples:
Cancelling a sequence after a user input:

Stop = BoxMessage("Evaluation", "Cancel evaluation ?", "?4")
IF Stop
 EXITSEQUENCE
END

Calling the following sequence with

SEQUENCE Evaluation *.dat

causes all files named "*.dat" which belong to the current folder to be evaluated and which could be successfully loaded in imc/FAMOS format to
be evaluated.

; Sequence "Evaluation.seq"
fh = FileOpenDSF("PA1", 0)
IF fh < 1
 EXITSEQUENCE 2
END
...
; Extensive evaluation follows
...

Conversely, if the EXITSEQUENCE parameter is changed to 1, execution stops as soon as opening of a file fails (e.g. because the file is not saved in
the imc/FAMOS format).

See also:
PAUSE

imc FAMOS Func on Reference - 360 -

(c) 2024 imc Test & Measurement GmbH

exp

Exponential function (exponent of base e)

Declaration:
exp (Parameter) -> Result

Parameter:

Parameter Parameter. Allowed types: [ND],[XY].

Result

Result Result from calculation of the e-function.

Description:
The exponential function raises the base e (Eulersche number = 2.718...) to the parameter in the exponents.

The exponential function can also be expressed using the function ^ (Power). The following formulas have the same effect:

y = exp(x)
y = e ^ x

Remarks

The x-coordinate(s) of the parameter and the result are the same.
The exponential function increases rapidly in a positive argument. The valid numerical range is exceeded in arguments with values over 46.
Calling ln (exp (x)) represents an identity as long as the intermediate value does not exceed the permitted range of values.
The parameter of the exponential function should not have any unit.
The parameter may be structured (events/segments).

Examples:
Values from a measurement device are corrected according to a exponential characteristic:

data_corrected = 2 * exp(0.1 * data)

See also:
ln, ^(hoch)

imc FAMOS Func on Reference - 361 -

(c) 2024 imc Test & Measurement GmbH

ExpoRMS

Moving RMS with exponential averaging

Declaration:
ExpoRMS (Data, SvTimeConstant, SvReduction) -> MovingRMS

Parameter:

Data Data set to be averaged. [ND]

SvTimeConstant Time constant/weighting of the filter

>=0 : Time constant of filter

-1 : FAST weighting

-2 : SLOW weighting

-3 : IMPULSE weighting

-4 : PEAK weighting

SvReduction Width of the reduction interval (in x-units).

MovingRMS

MovingRMS Moving RMS value

Description:
The floating RMS with exponential weighting and subsequent resampling is computed.

The exponential weighting used here can be considered as a 1st order filter. The time constant can be greater or less than the sampling rate.

The floating RMS is calculated in the following manner: The signal is squared, then the exponentially weighted mean is taken, and then the
mean's square root. A conventional RMS weights all squares equally, whereas here a time-weighting is performed for the moving RMS
calculation.

The function MvRMS provides a floating RMS featuring equal weighting across the width of the window. 'Older' measured values are weighted
less here.

After filtering the result is resampled over the interval width [SvReduction]. If [SvReduction] is smaller than or equal to the sampling rate, no
data reduction takes place.

This function operates analogously to the RMS computation in the functions KBT (KB-Evaluation) , OctA (octave analysis), and ABCRating..

The predefined time-weighting modes are defined as per the standard IEC 651 as follows::

FAST Time constant = 0.125 s.

SLOW Time constant = 1 s.

IMPULSE For increasing amplitudes the time constant is 35 ms, for decreasing amplitudes 1.5 s. Thus impulse-shaped signals are captured
quickly, the response decays slowly.

PEAK Extreme response for very short impulses; ensuring capture of the peak value. Time constant is zero during increasing amplitude (can
be performed exactly by computer, by analog operation only in approximation); during decreasing amplitude 3 s.

Examples:

resultRMS = ExpoRMS(timeData, 0.125, 0.05)

The floating RMS is determined every 0.125 s (FAST-weighting). The value at every 0.05s of the result is used.

resultRMS = ExpoRMS(timeData, -2, 0)

Calculation of RMS with 1s time constant (SLOW-weighting). No data reduction performed.

See also:
MvRMS, MvMean, KBT, RMS, ABCRating

imc FAMOS Func on Reference - 362 -

(c) 2024 imc Test & Measurement GmbH

FAMOS

Sets the imc/FAMOS format for subsquent loading of files using th command LOAD

Declaration:
FAMOS

Description
The command is obsolete; instead of the command combination FAMOS/LOAD, you can use the more powerful and user-friendly functions
FileLoad() or FileOpenDSF().
The file format for loading files is set to the FAMOS format.

Multithreading: The command has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:

FAMOS
LOAD DATA

The file format for loading files is set to FAMOS format. The file DATA.DAT is loaded and entered in the variable list under the name DATA.

See also:
LOAD, FileLoad, FileOpenDSF

imc FAMOS Func on Reference - 363 -

(c) 2024 imc Test & Measurement GmbH

FASLOAD

Loads a file in a user-defined format (File Assistant or import/export extension library)

Declaration:
FASLOAD TxFileName TxFormat VariableName

Parameter:

TxFileName Name of the file to be loaded. To be passed as a text constant in "" or as text variable.

TxFormat Specification of the file format

VariableName Name under which the variable is entered in the Variables list. This name is used only when the file contains exactly one data
object. Otherwise, the name specified in the format definition is used (transfer as text constant in "" or as text variable)

Description
This command is obsolete; instead of it you can use the more powerful and convenient function FileLoad().
There are two ways of specifying the format in the parameter <TxFormat>:

Import filter (File Assistant)
The format is determined by an importation description file (an import filter) created by means of the imc File Assistant. Such an import filter file
usually takes the extension ".fas". This file's name is then supplied as the parameter. Unless a complete pathname is provided, the system
searches in the default definitions' folder ("Extra"/ "Options"/ "Folders").

Import/Export extension library
The necessary functionality is provided by an import/export expansion library. Such libraries (Dynamic Link Library, DLL) are offered by imc or our
distribution partners and can be seamlessly integrated into the FAMOS user's interface and function library. This means that FAMOS can be
flexibly adapted to support additional file formats. One example is the DLL for importing and exporting the MATLAB file format which is included
in the standard FAMOS package.

The syntax of the parameter <TxFormat> is then as follows:

"#DLLName|FormatName|Parameter"

[DLLName] specifies the expansion library's filename; the extension ".dll" can be omitted.

[FormatName] specifies the name of the desired format (an expansion library can certainly support multiple formats). This can be omitted if the
DLL provides only one format and thus needs no additional parameters.

[Parameter] is for passing additional optional parameters to the library. Whether parameters are needed, and what theur syntax depends on the
respective extension library. Often not required, in which case it can be omitted.

Tip:Use the Functions Assistant to parameterize the function. Here, you can conveniently make a selecton from a list of all installed file filters.

Examples

FASLOAD "1.txt" "#MyFormat.DLL"
FASLOAD "1.txt" "#MyFormat.DLL|Txt"
FASLOAD "1.asc" "#MyFormat.DLL|Asc|Header=yes"

An overview of the import filters included with the FAMOS product package, and how to parameterize them, is available in the online help
"FAMOS User's Manual"=>"Import/Export Filter"

If the filename does not contain a full filepath, the folder currently set for file loading is used. After launching imc FAMOS, this path is the
default path set in the dialog "Options"/ "Folders" and can be modified with the command LDIR or the function SetOption(), for example.
Wildcards can also be specified in file names to load a series of files. The wildcard '?' stands for an exact character, '*' stands for an undefined
number of any characters.
The variable name is optional. It is used only when the file to be read contains exactly one data object. Otherwise, the variable names
specified with the File Assistant are used.
To load user-defined files, you can also use the function FileOpenFAS(). This is especially preferable when working with multi-channel files.

Examples:

FASLOAD "Daten.dat" "Oszi2311.fas" "Kanal1"

The file DATA.DAT is read using the specified format description format and saved in imc FAMOS as a variable with the name "Channel1".

FASLOAD "Daten.mat" "#MatLabImportExport.DLL"

The file DATA.MAT in the MatLab® -format is loaded.

TxFormatFile = "myformat.fas"
FASLOAD "c:\imc*.*" TxFormatFile

imc FAMOS Func on Reference - 364 -

(c) 2024 imc Test & Measurement GmbH

All files are loaded in the directory c:\imc.

FASLOAD "a??.*" TxFormatFile

All files whose names begin with an 'a' and consist of three characters are loaded in the current directory. Any file name extension can be used.

FASLOAD "*a1*.dat" TxFormatFile

All files with the extension 'dat', whose names contain the string '1a' (at the beginning or end) are loaded.

See also:
FileLoad, FileOpenFAS, LDIR

imc FAMOS Func on Reference - 365 -

(c) 2024 imc Test & Measurement GmbH

FFT

Spectrum according to the FFT algorithm

Declaration:
FFT (Data [, SvWindow] [, SvMode]) -> Spectrum

Parameter:

Data Data set from which the spectrum should be calculated [NW].

SvWindow Window-function (optional , Default value: -1)

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman/Harris

5 : Flat-Top

-1 : The global preset (dialog: 'Options'/'Functions', SetOption(), FFTOPTION) is used. Compatibe with older versions of FAMOS (<
V2022).

SvMode Procedure (optional , Default value: -1)

0 : Radix 2: Before the calculation, the length of the data set is reduced (truncated) to the next lower power of 2.

1 : Radix 2: Before the calculation, the data set's length is increased (by adding zeroes) up to the next higher power of 2.

2 : Radix 2: Before the calculation, the data set is re-sampled so that the data set's length becomes a power of 2. This corresponds
to a previous application of the function Red2().

3 : Mixed-Radix: The length of the data set needs to be a product of powers of the numbers 2, 3 and 5. Other data set lengths can
not be processed.

-1 : The global preset (dialog: 'Options'/'Functions', SetOption(), FFTOPTION) is used. Compatibe with older versions of FAMOS (<
V2022).

Spectrum

Spectrum Discrete spectrum of the data according to FFT-algorithm [MP].

Description:
The FFT-function calculates a data set's discrete spectrum according to the very fast FFT-algorithm. In this implementation, the classic algorithm
by Cooley and Tukey is used in the Radix-2- or Mixed-Radix form. The FFT (Fast Fourier-Transformation) is a special case of the general discrete
Fourier-Transformation (DFT). In this special case, the procedure exploits the fact that the length of the data set is a power of 2 (Radix 2) or the
product of powers of the numbers 2, 3 and 5 (Mixed-Radix).

The spectrum generated by FFT indicates the magnitudes and phases of the harmonics contained in the signal. The values of the spectrum are
arranged by frequency, with the first value belonging to the frequency 0 and indicating the mean value of the signal.

Note that the magnitudes of the harmonics cannot be interpreted directly as amplitudes; if this is desired, use the Spec() function.
Please note that a continual spectrum is not calculated, only a discrete spectrum. This means that the spectrum is only calculated for certain
discrete frequencies: those which have and integer number of periods within the calculation interval. For example, to calculate the FFT of a data
set with a length of 0.5 s , the spectrum would be determined at the frequencies 0, 2 Hz, 4 Hz, 6 Hz, 8 Hz

An important principle in this context is that a discrete spectrum is the spectrum of a periodic signal. In calculating the spectrum, the signal is
interpreted as if it consisted of a long chain of identical signals. If the actual signal represents only one pulse, the spectrum is calculated not for
this pulse, but for a signal containing a series of pulse identical to it. This periodic concatenation is noticeable whenever a non-integer number of
periods are contained in a signal.

For example, a data set contains 3.5 periods of a sinusoidal signal. One harmonic is expected as the spectrum; however, since the signal is
extended periodically for the spectrum calculation, the signal no longer appears as a sine wave, rather a series of sine-shaped sections with the
appearance of having been put together incorrectly. The spectrum of this signal will include many harmonics, which are particularly strong in the
vicinity of the actual frequency. This apparent disadvantage of the FFT function can be avoided in two ways. The first option is to specify a section
of the signal which contains an integer number of periods before calculation of the spectrum, a standard task for periodic signals. The other
option is to use a window function. These methods can also be combined.

A window function assigns different significance to different values of a data set. The edges of the signal are especially weak, the center values
influence the result very strongly.

Six different window functions are available:

imc FAMOS Func on Reference - 366 -

(c) 2024 imc Test & Measurement GmbH

Rectangle
Hanning
Hamming
Blackman
Blackman-Harris.
Flat Top

The rectangular window treats all values equally, representing the standard setting for which no extra calculation is required. The Flat Top-
window is the opposite extreme. The "windowing" effect increases from the top to the bottom of this list. The effect of the window function is
demonstrated using a 3.5-period sinusoidal signal.

The spectrum exhibits additional harmonics around the frequency, whose amplitudes decrease with increasing distance from the actual
frequency. The rectangular window shows a noticeable, sharp peak around 3 and 4, but even at greater distances a distorting influence on the
spectrum is present. Using the other windows will increase the width of the peak, but the greater the distance from the actual frequency, the
less distortion is apparent. Each window function represent a compromise between the two extremes.

To differentiate between harmonics located very closely, the rectangular window is appropriate; to ascertain the exact amplitudes and phases of
harmonics located further away from each other, use the Blackman window.

Note that, in contrast to the Spec() function(), the middle harmonics are not multiplied by a factor of 2, and therefore cannot be interpreted
as amplitudes.
If direct interpretation of the amplitudes of the spectrum is important for the specific application, use the Spec() function. The FFT() function
should be used to calculate the spectrum if additional operations, such as filtering or convolution are to be performed in the frequency
range.
The Spectral package (included in the Professional/Enterprise edition) contains additional functions which are substantially more powerful
and closely adapted to the requirements of signal analysis, for the calculation of spectra. Example: AmpSpectrumRMS() calculates an
amplitude spectrum (harmonics as RMS-value), with moving windows and linear averaging.
The optional parameters for the window function and mode are suported as of FAMOS 2022. If these parameters are omitted, then as with
earlier versions the global settings set by means of the dialog: 'Options'/'Functions', by means of the command FFTOPTION or by means of
the function SetOption() are in force.
If the length of the data set specified as a parameter exceeds 2^27, an appropriate warning message is generated and calculation is not
possible. Use the functions Leng() or Red2() to shorten the data set. The maximum amount of points which can be processed is 134.217.728;
resulting in a complex data set with 67.108.865 points.
FAMOS implements an FFT which returns only the positive side of the spectrum. For the real data set used here, the spectrum is always
conjugated symmetrically, so that the other half does not contain any additional information. The representation of negative frequencies or
of frequencies greater than half the sampling rate are meaningless.
If the data set provided has N points and if N is even, then the spectrum generated has N/2 + 1 points. Since the first and last value (center
value and highest harmonic) are always only real while the other spectral lines are complex, it follows that the spectrum has exactly as many
significant digits as the data set contains, so that no information has been lost. If N is odd (only possible with Mixed-Radix procedure), then
the spectrum generated has (N-1)/2 + 1 points. The highest harmonic is then complex and not multiplied by a factor of 2.
The Mixed-Radix-procedure has the advantage of returning spectra with "round" frequency line distances from data sets having common
sampling frequencies (e.g. 1kHz and multiples in the pattern1/2/5) and an appropriate selection of the input length. For a data set sampled
at 1kHz, for instance, and a length of 1000 samples (1000 = 2^3 * 5^3), the procedure returns a spectrum having a frequency line distance of
1Hz; for a length of 20000 samples (= 2^5 * 5^4), the frequency line distance is 50mHz.
The data set can be reconstructed from the spectrum if a rectangular window was used for spectrum calculation
The x-unit of the spectrum is always Hz; the y-unit of the magnitude corresponds to that data set. The phase is given in degrees.
The x-offset of the specified data set should be zero. If it is not, a warning message is generated and the x-offset is treated as zero. To
include the influence of an x-offset in the phase, adjust the phase after the spectrum calculation, correcting it with a linear function.

Examples:

MPfft = FFT(NWdata, 1, 0)

Simple application for calculating the spectrum of a data set whose length is a power of 2, and in which direct interpretability of the amplitudes is
not important (Hamming window).

DPTransfer=dB(FFT(NWout, 0, 2)/FFT(NWin, 0, 2))
; is equivalent to:
DPTransfer=dB(FFT(Red2(NWout), 0, 0)/FFT(Red2(NWin), 0, 0))

Calculation with a transfer function in dB of two data sets with equal length, whose length is not a power of two.

First1000Samples = CutIndex(data1kHz, 1, 1000)
FFT_with_1Hz_distance = FFT(First1000Samples, 0, 3)

The FFT of the first 1000 samples of a data set sampled at 1kHz is calculated. The result has 501 spectral llines at the frequencies 0, 1, 2, ... 500 Hz.

; Pay attention when the input length is odd:
First125amples = CutIndex(data1kHz, 1, 125)
FFT_with_8Hz_distance = FFT(First125Samples, 0, 3)

The FFT of the first 125 samples of a data set sampled at 1 kHz is calculated. The result has 63 spectral lines at frequencies 0, 8, 16, ... 496 Hz. The
last spectral line is complex and does not lie at half the sampling frequency.

imc FAMOS Func on Reference - 367 -

(c) 2024 imc Test & Measurement GmbH

NDwindow = iFFT(FFT(Ramp(0, 1, 256) * 0 + 1, 2, 0))

A data set whose value is constant at value = 1 is generated. The currently set window function weights this data set when calculating the FFT, the
iFFT then shows the window function (here: Hanning).

See also:
AmpSpectrumRMS_1, AmpSpectrumRMS, Spec, iFFT, Red2, dB, ACF

Supported since:
Optional parameters and Mixed-Radix-procedure are supported as of Version 2022.

imc FAMOS Func on Reference - 368 -

(c) 2024 imc Test & Measurement GmbH

FFTOPTION

Set FFT-settings

Declaration:
FFTOPTION SvWindow SvMode

Parameter:

SvWindow Window function

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman/Harris

5 : Flat-Top

SvMode Mode

0 : Reduce waveform length to next power of two

1 : Increase waveform length to next power of two and fill with zeros

Description
The FFTOPTION command is obsolete; instead, the corresponding optional parameters of the FFT() and Spec() functions or the SetOption()
function should be used in newly created sequences.
This command is essentially an automation of the corresponding settings in the dialog box under 'Extra'/'Options'/'Functions'.

These settings affect the functions FFT(), Spec(), CCF() and ACF().

Multithreading: The command has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:

FFTOPTION 4 1
FFTresult = FFT(data)

A Blackman/Harris window function was selected. The waveform is extended to the next power of two and filled with zeros.

See also:
FFT, Spec, SetOption

imc FAMOS Func on Reference - 369 -

(c) 2024 imc Test & Measurement GmbH

FileClose

Closes an opened file

Declaration:
FileClose (SvFileID) -> SvStatus

Parameter:

SvFileID ID of the open file, which was returned with a FileOpen*() function when the file is opened

SvStatus

SvStatus Success of the function

0 : Function executed successfully

-1 : Error in executing the function

Description:
The function closes a file which was opened with one of the functions FileOpenDSF(), FileOpenFAS(), FileOpenASCII(), FileOpenASCII2(),
FileOpenXLS() or FileOpenXLS2(). If the file was opened for writing, if it was changed, the file will actually be written here.

The behavior of the function if an error occurs depends on whether the global presetting "No error boxes in file functions" is set in the
"Options"/ "Functions" dialog or with the function SetOption(). If this option is not selected, an output box with the error message is
displayed and the return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
a return value of -1 is generated and an error message is not displayed.
If necessary, the cause of the error can be inquired using the functions FileErrText?() or FileErrCode?().
Querying the return value is optional in imc FAMOS, however, this value should be evaluated especially when writing to files.

Examples:
A file "xxx.dat" is opened to write in imc FAMOS format; two variables are added to this file and stored by calling the function FileClose.

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 1)
IF idFile > 0
 data = Ramp(0, 1, 100)
 sinData = sin(data)
 status= FileObjWrite(idFile, data)
 status= FileObjWrite(idFile, sinData)
 status= FileClose(idFile)
END

See also:
FileOpenDSF, FileOpenFAS, FileOpenASCII, FileOpenXLS, FileResetAll

imc FAMOS Func on Reference - 370 -

(c) 2024 imc Test & Measurement GmbH

FileComm?

Gets the comment on a file in the imc/FAMOS-format

Declaration:
FileComm? (SvFileID) -> TxComment

Parameter:

SvFileID ID of opened file, which was returned when file is opened using function FileOpenDSF()

TxComment

TxComment File comment; empty text if a comment is not present of if error occurs.

Description:
The function inquires the file comment of an opened imc FAMOS file. The file must have been opened using the function FileOpenDSF.

How the function responds to an error depends on the global presetting for "No error messages for file functions", which is set in the dialog
called by "Options / Functions", or using the function SetOption. If this option is not selected, an output box containing the error message is
displayed and the return text is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
an empty text is returned and an error message is not displayed.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.

Examples:
A imc FAMOS file "xxx.dat" is opened in imc FAMOS format for reading and writing. An inquiry of the comment is made and if one is not present,
a comment is entered and the file is closed.

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 2)
txComment = FileComm?(idFile)
IF TLeng(txComment) = 0
 FileSetComm(idFile, "Checked")
END
FileClose(idFile)

See also:
FileOpenDSF, FileSetComm

imc FAMOS Func on Reference - 371 -

(c) 2024 imc Test & Measurement GmbH

FileErrCode?

Get error code of the last file function executed

Declaration:
FileErrCode? () -> SwErrorCode

Parameter:

SwErrorCode

SwErrorCode Last error code

Description:
The function provides the error code of the last executed function in the group of File*()-functions.

General error codes:

0 The function was successful.

1 Insufficient memory

2 Too many files are open.

3 The idientifier is invalid

4 No opened file exists for this identifier

5 Canceled by user

6 Invalid object-index.

7 Attempt to change a file opened in "Read only" mode

8 Function allowed only for DSF files.

9 Invalid option when opening the file.

10 Internal error

11 Unable to open file

12 This function cannot be applied to ASCII-files.

13 This function can only be applied to ASCII-files.

14 Error in writing to file (data carrier full?)

15 Error in reading the file

16 Invalid attempt to read from file opened in "write"-mode.

17 The library "im22form.dll" either isn't present or cannot be opened.

18 This function can only be applied to XLS-files.
The following error messages refer to files in the imc FAMOS format, which were opened using FileOpenDSF(..):

21 Insufficient temporary memory

22 Writing error; drive full

23 Unable to create file

24 Too many large objects in file; file size no longer manageable.

25,26 Error when writing temporary file

27 File is write-protected

28 Unable to open file

29..69 Format error in the file
The following error messages refer to user-defined file format, which were opened using FileOpenFAS(..):

71 Canceled by user

72 Insufficient memory

73 Error when opening format definition file

imc FAMOS Func on Reference - 372 -

(c) 2024 imc Test & Measurement GmbH

74 Error in opening measurement value file

75 Unable to fine Assistant-DLL

76 Incorrect version of definitions file

77 Error in reading the format definitions file

78 Error in reading the measurement value file
The error messages below pertain to files previously opened by FileOpenXLS or FileOpenXLS2.

121 Version conflict with library "im22form.dll". The file is too old.

122 Version conflict with library "im22form.dll". The file is too new.

123 Implementation problem

124 Unknown internal error

136 At least one of the data sets to be saved is of an invalid file type.

137 Insufficient memory

138 Data could not be saved. All data sets transferred are of invalid type (e.g. Text) or of length 0.

139 Data of type "Time stamp-ASCII" can only be saved individually and not together with other data sets in the file. Also, they may not
contain events or segments.

140 For the "Common scaling column" mode, all data sets must have a monotonous x- or time track.

152 The specified template file contains no valid templates.

153 The specified template file is of an invalid or non-matching version.

154 The specified template file is of the wrong type.

168 The specified file cannot be opened. Please check the filename.

169 Error in writing to output file. The data carrier may be full.

184 Error in activating EXCEL

186 The scaling column is empty or contains invalid values.

187 No readable values at the specified table position

188 Unable to start Excel.

Examples:

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 0)
IF idFile >= 1
 status = FileObjWrite(idFile, data)
 IF status = -1
 BoxOutput("Error writing file: " + FileErrText?(), FileErrCode?(), "", 0)
 END
END

If the variable cannot be written to the file, an output box containing the error text and error code is generated.

See also:
FileErrText?

imc FAMOS Func on Reference - 373 -

(c) 2024 imc Test & Measurement GmbH

FileErrText?

Get error text of the last file function executed

Declaration:
FileErrText? () -> TxErrorText

Parameter:

TxErrorText

TxErrorText Last error text

Description:
Error text of the last executed function in the file function group (File*(..))

Examples:

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 0)
IF idFile >= 1
 status = FileObjWrite(idFile, data)
 IF status = -1
 BoxOutput("Error writing file: " + FileErrText?(), FileErrCode?(), "", 0)
 END
END

If the variable cannot be written to the file, an output box containing the error text and error code is generated.

See also:
FileErrCode?

imc FAMOS Func on Reference - 374 -

(c) 2024 imc Test & Measurement GmbH

FileLineRead

Read the next row(s) from an opened ASCII-file

Declaration:
FileLineRead (SvFileID, TxLine, Zero) -> SvStatus

Parameter:

SvFileID ID of the open file, which was returned by the function FileOpenASCII when the ASCII-file was opened.

TxLine Text variable or text array for containing the text read

Zero Reserved parameter. Always 0.

SvStatus

SvStatus Success of the function (optional).

0 : Function executed successfully

1 : End of file reached

-1 : An error occurred

Description:
This function reads the next row(s) from an opened ASCII-file. The file needs to have been previously opened using the function FileOpenASCII().

The combination of characters "Carriage Return/ Linefeed" (ASCII-characters 13 and 10), or only "line Feed", is identified as the end of the line of
text. The read text does not contain these characters.

The variable passed to the function as the 2nd parameter must already exist when the function is called. This can be accomplished by means of a
simple assignment, for example:

TxLine = ""

or for text arrays:

TxAllLines= TxArrayCreate(0)

If a text array is passed to the function as the 2nd parameter, all remaining rows up to the end of the file are read and these are appended to the
text array as new elements.

This function is useful for reading in log files or short numerical series in ASCII-format (for subsequent conversion of text to numbers). For
reasons of speed, this command is generally not well suited to reading long files of measurement values.
For reading such files, it is recommended to use the ASCII-Import-Assistant, or to create a file filter using the File Assistant.
In case of an error (SvStatus=-1), the cause can be inquired through the use of the functions FileErrText? or FileErrCode?.

Examples:
From a multi-column text file with numerical values (columns separated by a comma), the first column is to be imported:

idFile = FileOpenASCII("z:\000.txt", 0)
TxLine = ""
channel1 = EMPTY ; one blank channel
WHILE 1
 isEOF = FileLineRead(idFile, TxLine, 0) ; read one text line from file
 IF isEOF = 1
 BREAK ; End Of File
 END
 TxLineSplit = TxSplit(TxLine, ",") ; split comma separated values from line
 TxChannel1 = TxLineSplit[1] ; get 1. separated value for channel 1
 SvChannel1 = TtoSV(TxChannel1, "f") ; convert text to float value
 AppendLoop(channel1, SvChannel1) ; attach value to value
END
AppendLoopEnd(channel1)
FileClose(idFile) ; close file processing

Remarks: Import tasks of this type can often be accomplished more conveniently using the ASCII-Import-Assistant.

The same task can be solved with a text array in a much more elegant and quick way:

idFile = FileOpenASCII("z:\000.txt", 0)
TxaLines = TxArrayCreate(0)
ret = FileLineRead(idFile, TxaLines, 0) ; read all text lines from file
IF ret = 0
 TxaLines = TxRegexMatch(TxaLines, "^[^,]+", " ", 0, 0) ; split 1st column (comma separated) from line

imc FAMOS Func on Reference - 375 -

(c) 2024 imc Test & Measurement GmbH

 ; To get the 3rd column, you could use the following line (note the '{2}' for the the zero based column index):
 ; TxaLines = TxRegexMatch(TxaLines, "^(?:[^,]+,){2}([^,]+)", " ", 0, 1)
 channel = TxArrayToChannel(TxaLines, 0);
END
FileClose(idFile) ; close file processing

Events are recorded in a report file line by line according to the following pattern: "12.2.95 13:00:42 Alarm # 123 File::c12_34.dat". These records are
displayed consecutively. The user can opt to load and display the data set indicated.

idFile = FileOpenASCII("c:\dat\prot.dat", 0)
txRow = ""
ok = FileLineRead(idFile, txRow, 0)
WHILE ok = 0
 yes = BoxMessage("Display?", txRow, "?4")
 IF yes
 txFile= TPart(txRow, TxWhere(txRow, "::")+2, 100)
 FileLoad(txFile + ".dat, "", 0)
 SHOW <txFile>
 END
 ok = FileLineRead(idFile, txRow, 0)
END
FileClose(idFile)

See also:
FileOpenASCII, FileOpenASCII2, FileLineWrite, FileClose

imc FAMOS Func on Reference - 376 -

(c) 2024 imc Test & Measurement GmbH

FileLineWrite

Appends row(s) to an opened ASCII-file

Declaration:
FileLineWrite (SvFileID, TxLines, SvOption) -> SvStatus

Parameter:

SvFileID ID of the open file, which was returned by the function FileOpenASCII when the ASCII-file was opened.

TxLines Text to write. The data types allowed are Text and Text Array.

SvOption Options

0 : Append line break

1 : No line break

SvStatus

SvStatus Success of the function

0 : Function executed successfully

-1 : An error occurred

Description:
This function appends one row (if a text is passed as the 2nd parameter) or multiple rows (if a text array is passed as the 2nd parameter) to an opened
ASCII-file. The file needs to have previously been opened for writing using the function FileOpenASCII().

A 'CarriageReturn'- (ASCII 13) and a 'LineFeed'-character (ASCII 10) are (optionally) appended to the row of text in order to ensure a line return appears
after the text written.

If a text array is specified, each element is written as a new row. The Options parameter is then ignored.

The text is first temporarily stored. The actual writing to the file takes place upon calling of FileClose().

This function is useful for writing log files or short numerical series in ASCII-format (for subsequent conversion of text to numbers). For reasons of
speed, this function is not well suited to writing long files of measurement values in ASCII format. For such purposes, you can use the function
FileOpenASCII2().
The behavior of the function if an error occurs depends on whether the global presetting "No error boxes in file functions" is set in the "Options"/
"Functions" dialog or with the function SetOption(). If this option is not selected, an output box with the error message is displayed and the
return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected, a return value of -1 is
generated and an error message is not displayed.
Querying and evaluating the return value is not absolutely necessary in imc FAMOS, but recommended.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.

Examples:
In a complex evaluation procedure, error and status messages are recorded together with the current time, e.g.:. "12.10.23 13:00:02 : Measurement xyz
violates tolerances".

idFile = FileOpenASCII("c:\dat\prot.dat", 2)
;; ... Evaluation ...
;; ...
IF TLeng(TxStatus) > 0
 txTime = TimeToText(TimeSystem?(), 0)
 txRow = txTime + TxStatus
 ret= FileLineWrite(idFile, txRow, 0)
END
;; ... more FileLineWrite ...
;; ...
ret= FileClose(idFile)

A text-file with multiple columns, separated by commas, is read. The 3rd column is extracted and saved in a new file.

; Read file with at least 3 comma separated columns
idFile = FileOpenASCII("z:\000.txt", 0)
TxaLines = TxArrayCreate(0)
FileLineRead(idFile, TxaLines, 0) ; read all text lines from file
TxaLines = TxRegExMatch(TxaLines, "^(?:[^,]+,){2}([^,]+)", " ", 0, 1) ; split 3rd column (comma separated) from line
FileClose(idFile) ;
; Write new file with 1 column
idFile = FileOpenASCII("z:\000_col3.txt",1)
FileLineWrite(idFile, TxaLines, 0) ; write all text lines to file
FileClose(idFile) ;

imc FAMOS Func on Reference - 377 -

(c) 2024 imc Test & Measurement GmbH

See also:
FileOpenASCII, FileOpenASCII2, FileLineRead, FileClose

imc FAMOS Func on Reference - 378 -

(c) 2024 imc Test & Measurement GmbH

FileLoad

Loads the file of measured data in the specified format and enters all data objects it contains in FAMOS' Variables list.

Declaration:
FileLoad (TxFile, TxFormat, SvOptions) -> SvSuccess

Parameter:

TxFile Name of the file. Unless a full pathname is provided, the pre-set loading folder is used.

TxFormat Specification of the file format

SvOptions Options

0 : Default behavior

1 : Any measurement association determined by the import filter will be ignored.

SvSuccess

SvSuccess Success of the function

-1 : Error loading the file. The error cause can be inquired using the function GetLastError().

>=0 : Amount of data objects to load (optional).

Description:
The content of the specified file(s) is loaded completely and the data objects created are adopted in FAMOS' Variables list. The function does not
return any information on whether variables (under which name) have been generated and it is thus suitable for applications in which the
structure of the files to be loaded, and thus the results of the loading process, are predictable.

For files having unknown or variable content, or if you wish to load only selected channels from a multi-channel file, it is better to use the
powerful functions FileOpenDSF() or FileOpenFAS().

It is possible to place wildcard characters in the filename in order to open multiple files. The wildcard character '?' stands for exactly one arbitrary
character. The wildcard character '*' stands for a non-specific amount of arbitrary characters.

Tip: Use the Function Assistant to parameterize the function. By this means, you are easily able to select any kind of import format from a list.

For specifying the format, multiple different ways are possible:

Open in the default imc/FAMOS-format
For <TxFormat>, either an empty text or the identifier "imc/FAMOS" must be entered.

if the file name supplied has no extension, then ".dat" is appended automatically.

You can also specify that the option 'Quick Load' is to be used; in this case, use the format identifier "imc/FAMOS|Quick". The effect of this option
is that the file is not copied when loaded, but is handled internally as a reference to the original file. This can accelerate the loading of very large
data sets, but is only sensible to use of you do not wish to alter the data sets later.

Loads a text variable from a text file
In order to transfer the content of a text file to a text variable, enter the format identifier "imc/Text".

If the filename supplied has no extension, ".txt" is appended automatically. The text variable created has the same name as the file.

You can also specify the character set encoding (Code page) of the file. The current Windows code page is standard.

"imc/Text" The current Windows ANSI code page is assumed.

"imc/Text/auto"
The coding is determined automatically. For this purpose, it is checked whether the file begins with a defined BOM
(byte order mark). The BOM for UTF-8 and UTF-16 ("Big endian" and "Little endian" byte order) are recognized. If no such
BOM is recognized, the current Windows code page is assumed.

"imc/Text/UTF8" UTF-8-Encoding

"imc/Text/UTF16_LE" UTF-16 LE (Byte order "Little endian", least significant Byte first)

"imc/Text/UTF16_BE" UTF-16 BE (Byte order "Big endian", most significant Byte first)

Import with format description file (*.FAS, imc File Assistant).
The format is determined by an import description file (Importfilter), which had been created using the imc File Assistant. Such an import filter
file typically takes the extension ".fas" and must be located in the pre-set definitions folder ("Extras/Options/Folders"). This file's name is then
passed as a parameter, and the extension ".fas" can be omitted.

Import with an appropriate extension library (*.DLL).
The syntax for <TxFormat> is then:

"#DLLName|FormatName|Parameter"

DLLName: specifies the filename of the extension library; the extension ".DLL" can be omitted.

imc FAMOS Func on Reference - 379 -

(c) 2024 imc Test & Measurement GmbH

FormatName: specifies the name of the desired format (an extension library may certainly support multiple formats). Can be omitted if the
DLL only provides one single format and does not require any additional parameters.

Parameters: serves for the optional transfer of further parameters to the library. Whether parameters are required and their syntax depends
on the respective extension library. Often not required, can then be omitted. If necessary, look for the name of the format used in the help,
where the format-specific use of the parameter is described.
The FAMOS product package contains a number of extension libraries for the import of common file formats (such as MatLab).

The ASCII-Import-Assistant built into FAMOS is also an extension library (ImportAscii1.dll). Any filters creating with it can also be used here (see
example).

Import with a derivative import filter
Import is performed by a derivative import filter. The parameter's syntax <TxFormat> is then as follows:

"$FormatName"

[FormatName] matches the name assigned by the user, such as it is displayed in the FAMOS dialog "Options/Import filter", for example.

Special format "ByteBlob": Uninterpreted binary data
The the complete file content is written to a data set in a binary and uninterpreted format. For this, specify the format ID "imc/ByteBlob".

The resulting data format is '1 Byte unsigned'. Normally required only for special applications, e.g. in conjunction with the FAMOS-Database Kit
for the purpose of being able to save and retrieve any file types (e.g. PDF, images, videos) to and from databases jointly with the actual
measurement data.

Any existing variables with the same name can be overwritten without warning.
The function's behavior at fault condition depends on the global presetting 'No error boxes with file functions' (which is set in the dialog
"Options/Functions" or by means of the function SetOption). If this option is deactivated, an error message box is displayed and the return
value is not generated. This represents the default behavior of imc FAMOS functions. On the other hand, if the option is activated, a 0 is
returned and no error message is displayed. If needed, the cause of the error can be queried using the function GetLastError().

Examples:
Opens a file in the FAMOS format:

FileLoad("test","", 0)

..or with 'Quickload'-option:

FileLoad("test","imc/Famos|Quick", 0)

Loads a text file and assignment of the content as a user-defined property to a data set:

FileLoad("mycomment.txt","imc/Text", 0)
UserPropSet(Channel1, "UserComment", mycomment, 1, 0)

Opens a MatLab file (with extension DLL)

FileLoad("1.mat","#MatLabImportExport", 0)

Import filters defined using the ASCII Import Assistant can also be used.

FileLoad("1.txt","#ImportAscii1.dll|FilterName", 0)

[FilterName] corresponds to the name under which the filter had been saved in the ASCII Import-dialog, and is identical with the format name
displayed in the "Load file"-dialog.

Opens a file in LeCroy format (with File Assistant, 'lecroy.fas')

FileLoad("1.lec","lecroy", 0)

Opens an EXCEL file with a derivative import filter which had been created on the basis of the EXCEL format. The private settings are set for the
cells B2 through C300 to be read. The import filter was saved under the name 'EXCEL (B2-C300)'.

FileLoad("c:\test\result.xls","$EXCEL (B2-C300)", 0)

See also:
FileSave, FileOpenDSF, FileOpenFAS

imc FAMOS Func on Reference - 380 -

(c) 2024 imc Test & Measurement GmbH

FileName?

Determines the name of the file from which a data object is to be loaded.

Declaration:
FileName? (Dataobject) -> TxFilename

Parameter:

Dataobject Data object whose origin is to be identified

TxFilename

TxFilename Filename (complete path)

Description:
If the data object was generated in imc FAMOS by loading a file, the file's complete pathname is returned.

If the data object was not generated in imc FAMOS by loading a file, an empty text is returned.

Examples:

FileLoad("c:\imc\dat\slope.dat", "", 0)
RENAME slope TestData
TxFileName = FileName?(TestData)

TxFileName contains the text "c:\imc\dat\slope.dat".

See also:
Comm?

imc FAMOS Func on Reference - 381 -

(c) 2024 imc Test & Measurement GmbH

FileObjDel

The function removes an object from the table of contents of an open file.

Declaration:
FileObjDel (SvFileID, SvObjectIndex) -> SvStatus

Parameter:

SvFileID ID of opened file, which was returned when file is opened using function FileOpenDSF()

SvObjectIndex Index of object to delete. The first object takes the index 1.

SvStatus

SvStatus Success of the function

0 : Function executed successfully

-1 : Error in executing the function

Description:
This function deletes the specified object from the list of file contents. The altered file is written physically only when FileClose() is called.

The file must previously have been opened for writing (Mode 2 = "Append/ Edit") by means of the function FileOpenDSF().

The behavior of the function if an error occurs depends on whether the global presetting "No error boxes in file functions" is set in the
"Options"/ "Functions" dialog or with the function SetOption(). If this option is not selected, an output box with the error message is
displayed and the return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
a return value of -1 is generated and an error message is not displayed.
If necessary, the cause of the error can be inquired using the functions FileErrText?() or FileErrCode?().
Querying and evaluating the return value is not absolutely necessary in imc FAMOS, but recommended.

Examples:
The file "test.dat" in imc FAMOS-format is opened. All channels with a maximum value over 20 are deleted. Note that the channels are counted
backwards. This is simpler because deleting a channel would change the indices of all subsequent channels in the list.

idFile = FileOpenDSF("c:\dat\test.dat", 2)
IF idFile >= 1
 num = FileObjNum?(idFile)
 index = num
 WHILE index >= 1
 data = FileObjRead(idFile, index)
 IF max(data) > 20
 err = FileObjDel(idFile, index)
 END
 index = index-1
 END
 err = FileClose(idFile)
END

See also:
FileOpenDSF, FileObjWrite, FileObjRead

imc FAMOS Func on Reference - 382 -

(c) 2024 imc Test & Measurement GmbH

FileObjFind

Searches for a data object with a specified name in an opened file.

Declaration:
FileObjFind (SvFileID, TxSearchName, SvStartIndex) -> SvIndex

Parameter:

SvFileID ID of opened file, which was returned when file is opened using function FileOpenDSF or FileOpenFAS

TxSearchName Name of the object to find

SvStartIndex Starting location of the search; 1= from the beginning

SvIndex

SvIndex Index of the object when successful

>0 : Found object's index

0 : No object with the search name was found

-1 : Error in executing the function

Description:
The function searches for a data object with the specified name in the content list of an opened file. If the object is found, the index is returned;
0 means that the object could not be found.

The behavior of the function if an error occurs depends on whether the global presetting "No error boxes in file functions" is set in the
"Options"/ "Functions" dialog or with the function SetOption(). If this option is not selected, an output box with the error message is
displayed and the return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
a return value of -1 is generated and an error message is not displayed.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.
The index of the found object is valid only until the next time the file is accessed for writing. For example, if a data set is deleted before the
specified data set is found, this index would then indicate the following object in the file.

Examples:
The program searches for a data set named "Channel1" in the "test.dat" file in the imc/FAMOS format. If this data set is found, it is loaded and
displayed

idFile = FileOpenDSF("c:\dat\test.dat", 0)
IF idFile >= 1
 index = FileObjFind(idFile, "channel1", 1)
 IF index > 0
 data = FileObjRead(idFile, index)
 SHOW data
 END
END

See also:
FileOpenDSF, FileOpenFAS, FileObjRead

imc FAMOS Func on Reference - 383 -

(c) 2024 imc Test & Measurement GmbH

FileObjName?

Determines the name of a data object in an opened file.

Declaration:
FileObjName? (SvFileID, SvObjectIndex) -> TxName

Parameter:

SvFileID ID of opened file, which was returned when file is opened using function FileOpenDSF or FileOpenFAS

SvObjectIndex Index of the object to be checked. The first object has the index 1.

TxName

TxName Name of the data object. Empty text at fault condition.

Description:
The function returns the name of a data object in a file opened using FileOpenFAS or FileOpenDSF.

The index must lie between 1 and the total number of objects present.

How the function responds to an error depends on the global presetting for "No error messages for file functions", which is set in the dialog
called by "Options / Functions", or using the function SetOption. If this option is not selected, an output box containing the error message is
displayed and the return text is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
an empty text is returned and an error message is not displayed.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.

Examples:
A file is opened in imc FAMOS format. By means of a loop through all data objects in the file, a list of all names is outputted in the output box of
the imc FAMOS main windo:

idFile = FileOpenDSF("c:\dat\test1.dat", 0)
IF idFile >= 1
 count = FileObjNum?(idFile)
 index = 1
 WHILE index <= count
 TxName = FileObjName?(idFile, index)
 BoxOutput(TxName, EMPTY, "", 1)
 index = index +1
 END
 ret=FileClose(idFile)
END

See also:
FileOpenDSF, FileOpenFAS, FileObjType?, FileObjFind, FileObjRead

imc FAMOS Func on Reference - 384 -

(c) 2024 imc Test & Measurement GmbH

FileObjNum?

The number of data objects in an opened file is determined.

Declaration:
FileObjNum? (SvFileID) -> SvCount

Parameter:

SvFileID ID of opened file, which was returned when file is opened using function FileOpenDSF or FileOpenFAS

SvCount

SvCount Number of data objects (data sets, data groups, texts) in the file. -1 in case of error (see remarks)

Description:
The function returns the number of objects (groups, texts, data sets) in an opened file.

The behavior of the function if an error occurs depends on whether the global presetting "No error boxes in file functions" is set in the
"Options"/ "Functions" dialog or with the function SetOption(). If this option is not selected, an output box with the error message is
displayed and the return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
a return value of -1 is generated and an error message is not displayed.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.

Examples:
A file is opened for reading in imc FAMOS format. All data sets are read in imc FAMOS in a loop under their original names. Texts and data groups
are ignored.

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 0)
IF idFile >= 1
 count = FileObjNum?(idFile)
 index = 1
 WHILE index <= count
 type = FileObjType?(idFile, index)
 IF type = 1
 TxName = FileObjName?(idFile, index)
 <TxName> = FileObjRead(idFile, index)
 END
 index = index + 1
 END
 ret = FileClose(idFile)
END

See also:
FileOpenDSF, FileOpenFAS, FileObjRead, FileObjName?

imc FAMOS Func on Reference - 385 -

(c) 2024 imc Test & Measurement GmbH

FileObjRead

A data object is read from an opened file.

Declaration:
FileObjRead (SvFileID, SvObjectIndex) -> Variable

Parameter:

SvFileID ID of opened file, which was returned when file is opened using function FileOpenDSF or FileOpenFAS

SvObjectIndex Index of the object to be read. The first object has the index 1.

Variable

Variable The data set, text or data group read in the file

Description:
The function reads an object from an opened file and assigns a target variable to the object. In case of error, the function is not executed and the
existing variable is not changed.

Examples:
A file is opened for reading in imc FAMOS format. All data sets are read in imc FAMOS in a loop under their original names. Texts and data groups
are ignored.

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 0)
IF idFile >= 1
 count = FileObjNum?(idFile)
 index = 1
 WHILE index <= count
 type = FileObjType?(idFile, index)
 IF type = 1
 TxName = FileObjName?(idFile, index)
 <TxName> = FileObjRead(idFile, index)
 END
 index = index + 1
 END
 ret = FileClose(idFile)
END

See also:
FileOpenDSF, FileOpenFAS, FileObjNum?, FileObjWrite

imc FAMOS Func on Reference - 386 -

(c) 2024 imc Test & Measurement GmbH

FileObjType?

Queries type of data object in an open file.

Declaration:
FileObjType? (SvFileID, SvObjectIndex) -> SvType

Parameter:

SvFileID ID of opened file, which was returned when file is opened using function FileOpenDSF or FileOpenFAS

SvObjectIndex Index of the object to be checked. The first object has the index 1.

SvType

SvType The data object's type

0 : Data group

1 : Data set

2 : Text

-1 : Error in executing the function

Description:
The function yields the type of an object in an opened file, differentiating between data set, text and data group.

The behavior of the function if an error occurs depends on whether the global presetting "No error boxes in file functions" is set in the
"Options"/ "Functions" dialog or with the function SetOption(). If this option is not selected, an output box with the error message is
displayed and the return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
a return value of -1 is generated and an error message is not displayed.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.

Examples:
A file is opened in imc FAMOS format. All texts in the file are loaded into imc FAMOS in a loop under their original names. Data sets and data
groups in the file are skipped.

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 0)
IF idFile >= 1
 count = FileObjNum?(idFile)
 index = 1
 WHILE index <= count
 type = FileObjType?(idFile, index)
 IF type = 2
 TxName = FileObjName?(idFile, index)
 <TxName>= FileObjRead(idFile, index)
 END
 index = index + 1
 END
 ret=FileClose(idFile)
END

See also:
FileOpenDSF, FileOpenFAS, FileObjName?, FileObjFind, FileObjRead

imc FAMOS Func on Reference - 387 -

(c) 2024 imc Test & Measurement GmbH

FileObjWrite

A data object is written to an opened imc FAMOS file.

Declaration:
FileObjWrite (SvFileID, Variable) -> SvStatus

Parameter:

SvFileID ID of the opened file, which was determined when opened using one of the functions FileOpenDSF, FileOpenFas, FileOpenASCII2, or
FileOpenXLS2.

Variable Data set, text or data group to be saved

SvStatus

SvStatus Success of the function

0 : Function executed successfully

-1 : Error in executing the function

Description:
The function adds a variable to the content list of an open file. The file must have been opened using the function FileOpenDSF to write (option 1
or 2) or with one of the functions FileOpenASCII2 or FileOpenXLS2.

A copy of the transferred variables is added to the contents; the content list is actually saved the first time FileClose is called.

When saving a single element from a group, the group information is lost.

The behavior of the function if an error occurs depends on whether the global presetting "No error boxes in file functions" is set in the
"Options"/ "Functions" dialog or with the function SetOption(). If this option is not selected, an output box with the error message is
displayed and the return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
a return value of -1 is generated and an error message is not displayed.
If necessary, the cause of the error can be inquired using the functions FileErrText?() or FileErrCode?().
Querying and evaluating the return value is not absolutely necessary in imc FAMOS, but is recommended.

Examples:
A file "xxx.dat" is opened to write in imc FAMOS format; two variables are added to this file and stored by calling the function FileClose.

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 1)
IF idFile > 0
 data = Ramp(0, 1, 100)
 sinData = sin(data)
 status= FileObjWrite(idFile, data)
 status= FileObjWrite(idFile, sinData)
 status= FileClose(idFile)
END

See also:
FileOpenDSF, FileOpenFAS, FileOpenASCII2, FileOpenXLS2, FileLineWrite

imc FAMOS Func on Reference - 388 -

(c) 2024 imc Test & Measurement GmbH

FileOpenASCII

Opens a file in ASCII-format for reading or writing line by line.

Declaration:
FileOpenASCII (TxFile, SvMode [, SvCodePage]) -> SvFileID

Parameter:

TxFile Name of the file. Unless a full pathname is provided, the pre-set loading folder is used.

SvMode Mode

0 : Opens file for reading

1 : Opens the file for writing. Any existing file of the same name will be overwritten.

2 : Opens file for writing. If the file already exists, the new content is appended.

SvCodePage If the file is to be opened for reading with option 0, the character set encoding (Code page) of the file can be specified here. The
current Windows code page is standard. (optional , Default value: 0)

0 : Current Windows ANSI code page

1 : The encoding is determined automatically. For this purpose, it is checked whether the file begins with a defined BOM (byte
order mark). The BOM for UTF-8 and UTF-16 ("Big endian" and "Little endian" byte order) are recognized. If no such BOM is
recognized, the current Windows code page is assumed.

2 : UTF-8-Encoding

3 : UTF-16 with "little endian" byte order (least significant byte first).

4 : UTF-16 with "Big Endian" byte order (most significant byte first).

SvFileID

SvFileID ID of the opened file, or error code

0 : Error in opening the file. The cause of error can be inquired using the functions FileErrText? or FileErrCode?.

>0 : Identifier of the opened file. It is passed as the parameter for all subsequent file editing functions.

Description:
A file in ASCII-format is opened. Subsequently, the functions FileLineRead() and FileLineWrite() can be used for line-by-line to read/write to the
file.

If no complete filename is entered, the system searches the current loading folder. The current loading folder is set according to the default
defined under "Extra/Options/Folders" when imc FAMOS is started. The default folder can be changed using either the command LDIR or the
function SetOption. Otherwise the folder last specified when a file was loaded is used.

The identifier of the opened file must be specified with a file function each time the file is accessed. This identifier is valid until the function
FileClose() is called.

Every file opened with FileOpenASCII2 must be closed again afterwards by calling FileClose.

imc FAMOS can administer a maximum of 10 open files at once. This amount can easily be reached by neglecting to call FileClose. An appropriate
error message will appear in such a case.

The function FileResetAll closes all files presently open. This can be useful if files whose identifiers are no longer known remain open while
testing imc FAMOS sequences in single-step mode.

This function, in conjunction with FileLineRead and FileLineWrite, is designed for reading and writing log files or short numerical series in
ASCII-format (previously converted from numbers to text or vice-versa). For long measurement files in ASCII-format it can not be
recommended, for reasons of speed.
For writing such files, you should use the function FileOpenASCII2().
For reading such files, it is recommended to use the ASCII-Import-Assistant, or to create a file filter using the File Assistant.
How the function responds to an error depends on the global presetting for "No error messages for file functions", which is set in the dialog
called by "Options / Functions", or using the function SetOption. If this option is not selected, an output box containing the error message is
displayed and the return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
the value 0 is returned and an error message is not displayed. If necessary, the cause of error can be inquired using the functions FileErrText?
or FileErrCode?.
Multithreading:The File-ID returned by the function is only valid for the current execution thread. Files are automatically closed at the end of
the thread (e.g. at the end of a sequence function executed using BEGIN_PARALLEL).

Examples:
In a complex evaluation procedure, error and status messages are recorded together with the current time, e.g.:. "12.10.23 13:00:02 :

imc FAMOS Func on Reference - 389 -

(c) 2024 imc Test & Measurement GmbH

Measurement xyz violates tolerances".

idFile = FileOpenASCII("c:\dat\prot.dat", 2)
;; ... Evaluation ...
;; ...
IF TLeng(txStatus) > 0
 txTime = TimeToText(TimeSystem?(), 0)
 txRow = txTime + txStatus
 ret= FileLineWrite(idFile, txRow, 0)
END
;; ... more FileLineWrite ...
;; ...
ret = FileClose(idFile)

See also:
FileOpenASCII2, FileLineRead, FileLineWrite, FileClose, FileOpenXLS, FileOpenXLS2

imc FAMOS Func on Reference - 390 -

(c) 2024 imc Test & Measurement GmbH

FileOpenASCII2

An ASCII file for writing data sets in columns is opened. The format specificaton is performed by means of a pre-defined ASCII export template.

Declaration:
FileOpenASCII2 (TxFile, TxExportTemplate, SvMode) -> SvFileID

Parameter:

TxFile Name of the ASCII file. Unless a complete pathname is specified, the default folder for opening files is used.

TxExportTemplate Name of the ASCII export template to use

SvMode Mode

1 : Opens the file for writing. Any existing file of the same name will be overwritten.

2 : Opens file for writing. If the file already exists, the new content is appended.

SvFileID

SvFileID ID of the opened file, or error code

0 : Error opening the file. The cause of the error can be queried with the functions FileErrCode?() or FileErrText?().

>0 : Identifier for the opened file. This is provided as a parameter to all subsequent functions for editing this file.

Description:
This function enables writing of ASCII files, in which data sets are written in columns.

Once a file has been opened with this function, the data sets to save can be added using the function FileObjWrite(..).

Every file opened with FileOpenAscii2() must be closed by calling FileClose(). Only then is the file physically written to the data medium.

FileObjWrite() and FileClose() are the only functions which can be applied to files opened using FileOpenAscii2(). Additional headers and footers
can be added by preceding or subsequent calls of FileOpenASCII()/FileClose() in combination with FileLineWrite().

Concrete definition of the file format (e.g. column headers, scaling columns, numerical format..) is accomplished by means of the specified ASCII
export template. Creation and administration of such templates is performed by means of the menu item "Extra / Options / File formats / ASCII
storage"

Tip: Use the Function Assistant for parameterizing the function. It lets you easily select from a list of all ASCII export templates.

If no complete filename is entered, the system searches the current loading folder. The current loading folder is set according to the default
defined under "Extra/Options/Folders" when imc FAMOS is started. The default folder can be changed using either the command LDIR or the
function SetOption. Otherwise the folder last specified when a file was loaded is used.

If the template file (extension: "*.aet") is not located in the Definitions folder currently set, the complete pathname including the filename
extension must be specified.

This function does not verify the validity of the filename and template name entered. Verification only happens with the corresponding call to
FileClose(), once the file is actually written.

How the function behaves at fault condition depends on the setting "No error boxes for file functions" in the "Options"/"Functions" -dialog (or
the corresponding function SetOption("Func.ErrorBoxes", ..). If this option is deactivated, an output box containing the error message is
displayed and execution of the sequence is cancelled (default behavior of FAMOS-functions). On the other hand, if the option is activated, a 0 is
returned and no error message is displayed.

If desired, the error cause can be queried using either of the functions FileErrText?() or FileErrCode?().

imc FAMOS can administer a maximum of 10 open files at once. This amount can easily be reached by neglecting to call FileClose. An appropriate
error message will appear in such a case. The function FileResetAll closes all files open at the moment. This can be useful if, for instance, while
testing sequences in the single-step mode, some files whose ID's you've forgotten remain open.

Texts/Textarrays: From version 2023, text or textarray variables can also be specified with FileObjWrite(). Texts are truncated to a maximum of
32767 characters when saved.

Multithreading:The File-ID returned by the function is only valid for the current execution thread. Files are automatically closed at the end of the
thread (e.g. at the end of a sequence function executed using BEGIN_PARALLEL).

Examples:
A data set is filtered and subsequently saved along with the filtering results to an ASCII file. The exact format is defined by the export template
"Template #2", which was previously created using the command "Extra / Options / File Formats / ASCII-Storage".

signal = ...
filtered = FiltLP(signal, 0, 0, 6, 100)
fh = FileOpenAscii2("z:\dat\result.txt", "Template #2", 1)
IF (fh > 0)
 err = FileObjWrite(fh, signal)
 err = FileObjWrite(fh, filtered)
 err = FileClose(fh)

imc FAMOS Func on Reference - 391 -

(c) 2024 imc Test & Measurement GmbH

END

The following sequence saves the selected variables column-by-column in an ASCII file. Subsequently, an additional footer is appended to the
file.

TxFileName = "c:\dat\protocol.txt"

fh = FileOpenAscii2(TxFileName, "Template #2", 1)
IF (fh > 0)
 count = VarGetInit(1)
 n = 1
 WHILE (n <= count)
 TxVarName = VarGetName?(n)
 err = FileObjWrite(fh, <TxVarName>)
 n = n+1
 END
 err = FileClose(fh)
END

fh = FileOpenAscii(TxFileName, 2) ; Option 2: append
IF (fh > 0)
 err = FileLineWrite(fh, "User: Paul Smithr", 0)
 err = FileClose(fh)
END

See also:
FileOpenAscii, FileObjWrite, FileClose, FileOpenXLS, FileOpenXLS2

imc FAMOS Func on Reference - 392 -

(c) 2024 imc Test & Measurement GmbH

FileOpenDSF

Opens a measurement value file in the imc/FAMOS-format.

Declaration:
FileOpenDSF (TxFile, SvMode) -> SvFileID

Parameter:

TxFile Name of the file. Unless a full pathname is provided, the pre-set loading folder is used.

SvMode Mode

0 : Opens file for reading

1 : Opens the file for writing. Any existing file of the same name will be overwritten.

2 : Opens file for writing. If the file already exists, the new content is appended.

SvFileID

SvFileID ID of the opened file, or error code

0 : Error opening the file. The cause of the error can be queried with the functions FileErrCode?() or FileErrText?().

>0 : The identifier for the opened file. It is passed as a parameter to all subsequent file editing functions.

Description:
A measurement value file in imc FAMOS format is opened. If a complete file name is not specified, the program searches in the current directory
for loading files.

This directory for loading files is set to the presettings when imc FAMOS is started (dialog "Options" / "Directories"). Use the command LDIR to
change the load directory; otherwise the directory last specified to load a file is used.

The identifier of the opened file must be specified with a file function each time the file is accessed. This identifier is valid until the function
FileClose() is called.

Each file opened using FileOpenDSF() must be closed by calling FileClose().

imc FAMOS can manage a maximum of 10 open files at the same time. If FileClose is not called enough, the maximum number of files can be
reached quickly and an error message is generated.

The function FileResetAll closes all files presently open. This can be useful if files whose identifiers are no longer known remain open while
testing imc FAMOS sequences in single-step mode.

If the file was opened for reading with the options 0, additional flags can be specified with <SvMode>:

Add
+10:

Fast loading. Upon subsequent calling of the function FileObjRead the data are not copied, but rather managed by reference. This is
useful only if you do not intend to change the data sets later.

Add
+100: No data groups. The data sets or texts contained in the data groups are expanded.

Additional options concerning compatibility with DSF-files, which were generated by programs or devices not produced by imc:

Add
+1000: Offset correction. This becomes necessary if you observe an offset of the data set in the y-direction.

Add
+2000:

Exchanges the values for the day and month when reading the trigger time. Activate this option if you receive an error message
stating "Invalid entry in |NTKey", or if the day and month of a trigger time are interchanged in the loaded data set.

Add
+20000:

This option can be used to load files which were not concluded correctly during measurement. FAMOS then tries to load such files
partially and to read the valid portion of measured data. It is recommended that you subsequently carefully check the data loaded.
This option only affects files in the "imc3" file format.

If the file is to be opened for writing using Option 1 or 2, it is possible to specify adiitional flags with [SvMode]:

Add
+10000:

As of FAMOS 7.4, a new and improved file format (Version 3) is used, which may not be readable by older imc programs (imc FAMOS
7.3, imc STUDIO 5.x). With this option, you can force use of the 'old' file format (Version 2).

How the function responds to an error depends on the global presetting for "No error messages for file functions", which is set in the dialog
called by "Options / Functions", or using the function SetOption. If this option is selected, an output box containing the error message is
displayed and the return value is not generated. This corresponds to the standard response of imc FAMOS functions. If the option is not
selected, the value 0 is returned and an error message is not displayed.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.
Multithreading:The File-ID returned by the function is only valid for the current execution thread. Files are automatically closed at the end of
the thread (e.g. at the end of a sequence function executed using BEGIN_PARALLEL).

imc FAMOS Func on Reference - 393 -

(c) 2024 imc Test & Measurement GmbH

Examples:
A file in imc FAMOS format is opened for reading. All texts are loaded into imc FAMOS in a loop under the original name. Data sets and data
groups in the file are skipped.

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 0)
IF idFile >= 1
 count = FileObjNum?(idFile)
 index = 1
 WHILE index <= count
 Typ = FileObjType?(idFile, index)
 IF Typ = 1
 TxName = FileObjName?(idFile, index)
 <TxName> = FileObjRead(idFile, index)
 END
 index = index + 1
 END
 ret = FileClose(idFile)
END

See also:
FileLoad, FileSave, FileOpenFAS, FileOpenASCII, FileOpenXLS

imc FAMOS Func on Reference - 394 -

(c) 2024 imc Test & Measurement GmbH

FileOpenFAS

Opens a measurement value file in a user-defined format

Declaration:
FileOpenFAS (TxFile, TxFormat, SvMode) -> SvFileID

Parameter:

TxFile Name of the file. Unless a full pathname is provided, the pre-set loading folder is used.

TxFormat Specification of the file format

SvMode Mode

0 : Opens file for reading

100 : Opens the file for reading. Any groups included are expanded.

1 : Opens the file for writing. Any existing file of the same name will be overwritten.

2 : Opens the file for writing. If the file already exists, the new content is appended (provided 'Append' is supported by the export
filter used).

SvFileID

SvFileID ID of the opened file, or error code

0 : Error opening the file. The cause of the error can be queried with the functions FileErrCode?() or FileErrText?().

>0 : Identifier for the opened file. This is provided as a parameter to all subsequent functions for editing this file.

Description:
Opens a file in a user-defined format (File Assistant or import/export extension library or derived import format).

Three variants are possible for specifying the format:

Import with format description file (*.FAS, imc File Assistant).
The format is determined by an importation description file (an import filter) created by means of the imc File Assistant. Such an import filter file
usually takes the extension ".fas".

<TxFormat> specifies the name of the format describing file. Unless a complete pathname is provided, the system searches in the default
definitions' folder ("Extra"/ "Options"/ "Folders").

With this variant, files of measured data can only be read, not written; thus, <Mode> must always be set to 0.

Import or export with an associated extension library (*.DLL).
The necessary functionality is provided by an import/export extension library. Such libraries (Dynamic Link Library, DLL) are offered by imc or our
distribution partners and can be seamlessly integrated into the imc FAMOS user's interface and function library. This means that imc FAMOS can
be flexibly adapted to support additional file formats. One example is the DLL for importing and exporting the MATLAB file format which is
included in the standard imc FAMOS package.

The syntax of <TxFormat> is then as follows:

"#DLLName|FormatName|Parameter"

DLLName: specifies the filename of the extension library; the extension ".DLL" can be omitted.
FormatName: specifies the name of the desired format (an extension library may certainly support multiple formats). Can be omitted if the
DLL only provides one single format and does not require any additional parameters.

Parameters: serves for the optional transfer of further parameters to the library. Whether parameters are required and their syntax depends
on the respective extension library. Often not required, can then be omitted. If necessary, look for the name of the format used in the help,
where the format-specific use of the parameter is described.
Import with a derivative import filter
Import is performed by means of a derived import filter. The syntax for <TxFormat> is then as follows:

"$FormatName"

"FormatName" is the name of the derived filter, as displayed in the FAMOS dialog "Options"/Import filter".

Note: A measurent association defined in the derived import filter is ignored when loading channels.

Loading a text variable from a text file
To transfer the content of a text file to a text variable, enter the format identifier "imc/Text".

You can also specify the character set encoding (Code page) of the file. The current Windows code page is standard.

imc FAMOS Func on Reference - 395 -

(c) 2024 imc Test & Measurement GmbH

"imc/Text" The current Windows ANSI code page is assumed.

"imc/Text/auto)"
The encoding is determined automatically. For this purpose, it is checked whether the file begins with a defined BOM
(byte order mark). The BOM for UTF-8 and UTF-16 ("Big endian" and "Little endian" byte order) are recognized. If no such
BOM is recognized, the current Windows code page is assumed.

"imc/Text/UTF8" UTF-8-Encoding

"imc/Text/UTF16_LE" UTF-16 LE (Byte order "Little endian", least significant Byte first)

"imc/Text/UTF16_BE" UTF-16 BE (Byte order "Big endian", most significant Byte first)

Tip: Use the Function Assistant for setting the function's parameters. With this tool, you can conveniently select from a list of all file filters
installed.

Examples:

FileOpenFAS("1.txt","#MyFormat.DLL", 0)
FileOpenFAS("1.txt","#MyFormat.DLL|Txt", 0)
FileOpenFAS("1.asc","#MyFormat.DLL|Asc|Head=y", 1)
FileOpenFAS("1.lec","$Lecroy #1", 0)

Import of MatLab-files:

FileOpenFAS("1.mat","#MatLabImportExport.DLL", 0)

Export of MatLab-files:

FileOpenFAS("1.mat","#MatLabImportExport.DLL|Matlab 4 Format", 1)
 ; or
FileOpenFAS("1.mat","#MatLabImportExport.DLL|Matlab 5 Format", 1)

ASCII-Import-Assistant

Import filters defined using the ASCII Import Assistant can also be used with the function FileOpenFAS().

FileOpenFAS("1.txt","#ImportAscii1.dll|FilterName", 0)

"FilterName" represents the name under which the filter was saved in the ASCII-Import dialog, and is identical to the format name displayed in
the "Load File" dialog.

Unless a complete pathname is provided for the measured value file, the system searches in the current loading folder. Upon starting imc
FAMOS, the current loading folder is set to the presetting (dialog "Options"/ "Folders"). It can be reset with the command LDIR or the
function SetOption. Otherwise, the folder specified the last time a file was loaded is used.
The identifier of the opened file must be stated each time the file is subsequently accessed with a file function. It remains valid until
FileClose is called.
Every file opened with FileOpenFAS must be closed again by calling FileClose.
imc FAMOS can administer a maximum of 10 open files simultaneously. If calls of FileClose are missing this number can quickly be reached.
In that case, an error message will be posted.
The function FileResetAll closes all files open at the moment. This can be useful if, for example, in a test of imc FAMOS-sequences in the
single-step mode some files stayed open whose identifiers are no longer known.
How the function responds in fault condition depends on the global presetting "No error boxes for file functions" (available on the
"Options"/ "Functions"-dialog or with the function SetOption). If this option is not selected, an output box with the error message is
displayed and the return value is not generated. This conforms to the default behavior of the imc FAMOS functions. If, on the other hand, the
option was selected, a 0 is returned and no error message is generated.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.
Multithreading:The File-ID returned by the function is only valid for the current execution thread. Files are automatically closed at the end of
the thread (e.g. at the end of a sequence function executed using BEGIN_PARALLEL).

Examples:
A file is opened for reading in a user-defined format. The format is described in the file 'format1.fas'. In a loop through all objects, all of the data
sets are created in FAMOS under their original names. Strings and data groups in the file are skipped.

idFile = FileOpenFAS("c:\imc\dat\xxx.dat", "c:\imc\def\format1.fas", 0)
IF idFile >= 1
 count = FileObjNum?(idFile)
 index = 1
 WHILE index <= count
 Typ = FileObjType?(idFile, index)
 IF Typ = 1
 TxName = FileObjName?(idFile, index)
 <TxName>= FileObjRead(idFile, index)
 END
 index = index + 1
 END
 ret = FileClose(idFile)

imc FAMOS Func on Reference - 396 -

(c) 2024 imc Test & Measurement GmbH

END

The variable 'MyChannel' is saved in MatLab5 format.

MyChannel = ...
idFile = FileOpenFAS("z:\tmp\export.mat", "#MatlabImportExport.dll|Matlab 5 Format", 1)
IF idFile >= 1
 TxName = FileObjWrite(idFile, MyChannel)
 ret=FileClose(idFile)
END

See also:
FileLoad, FileOpenASCII, FileOpenXLS2, FileXLSColumnRead, FileXLSCellRead

imc FAMOS Func on Reference - 397 -

(c) 2024 imc Test & Measurement GmbH

FileOpenXLS

An Excel table in XLS-format is opened for reading and/or cell-by-cell writing.

Declaration:
FileOpenXLS (TxFile, SvMode) -> SvFileID

Parameter:

TxFile Name of the XLS file. If no complete pathname is specified, the default folder for opening files is used.

SvMode Mode

0 : The file is opened in Read-Only mode.

1 : Opens the file for writing. Any existing file of the same name will be overwritten.

2 : Opens file for writing. If the file already exists, the new content is appended.

SvFileID

SvFileID ID of the opened file, or error code

0 : Error opening the file. The cause of the error can be queried with the functions FileErrCode?() or FileErrText?().

>0 : Identifier for the opened file. This is provided as a parameter to all subsequent functions for editing this file.

Description:
This function enables reading and writing of files in the EXCEL-XLS format. After the file has been opened with this function, it is subsequently
possible to use the functions FileXLSColumnRead(), FileXLSCellRead() or FileXLSCellWrite() to access the table.

The function starts a hidden instance of EXCEL which is instructed by remote control (so-called OLE automation) to load the file. Reading
functions used subsequently import the desired data also by means of EXCEL remote control.

Thus, the function can only be used if a version of EXCEL is installed on the computer (versions Excel95 .. Excel2016).

Every file opened with FileOpenXLS() must be closed subsequently by calling FileClose(). In the process, any file changed is saved and the hidden
instance of the Excel program is closed.

With this function, only one EXCEL file can be open at a time. If any XLS file opened before the call to FileOpenXLS() is still open (meaning: the
function FileClose() has not yet been called), the previously open file is closed automatically.

imc FAMOS can administer a maximum of 10 open files at once. This amount can easily be reached by neglecting to call FileClose. An appropriate
error message will appear in such a case. The function FileResetAll closes all files open at the moment. This can be useful if, for instance, while
testing sequences in the single-step mode, some files whose ID's you've forgotten remain open.

FileXLSColumnRead(), FileXLSCellRead(), FileXLSCellWrite(), FileXLSSelectSheet() and FileClose() are the only functions which can be applied to
files opened with FileOpenXLS().

To write to XLS-files column-by-column, you can use the function FileOpenXLS2().

If no complete filename is entered, the system searches the current loading folder. The current loading folder is set according to the default
defined under "Extra/Options/Folders" when imc FAMOS is started. The default folder can be changed using either the command LDIR or the
function SetOption(). Otherwise the folder last specified when a file was loaded is used.

How the function responds to errors depends on the setting "No Error boxes for file functions" in the dialog "Options"/"Functions" (or the
corresponding function SetOption("Func.ErrorBoxes", ..). When this option is deactivated, an output box with the error message appears and
processing of the sequence is aborted (FAMOS-functions' default response). However, if the option is active, empty text is returned and no error
message is posted.

If desired, the error cause can be queried using either of the functions FileErrText?() or FileErrCode?().

Multithreading:The File-ID returned by the function is only valid for the current execution thread. Files are automatically closed at the end of the
thread (e.g. at the end of a sequence function executed using BEGIN_PARALLEL).

Examples:
An XLS-file is opened. It contains a table with 2 columns each containing a value pair (time, reading). The values begin at the 2nd row. In the 1st
row stands the data set's name alongside the y-unit.

fh = FileOpenXLS("c:\dat\table.xls", 0)
IF (fh > 0)
 x = FileXLSColumnRead(fh, 1, 2, 65336, 0)
 y = FileXLSColumnRead(fh, 2, 2, 65336, 0)
 TxName = FileXLSCellRead(fh, 1, 1, 0)
 TxUnit = FileXLSCellRead(fh, 2, 1, 0)
 err = FileClose(fh)
 data = XYof(x,y)
 ; 1st value of the time track = Trigger time
 first_time = data[1].x
 SetTime(data, first_time)

imc FAMOS Func on Reference - 398 -

(c) 2024 imc Test & Measurement GmbH

 ; scales time track in terms of trigger time
 data.x = data.x-first_time
 ; sets unit and name
 SetUnit(data, TxUnit, 1)
 RENAME data <TxName>
END

A data set is saved in an XLS file as of the 2nd row. Subsequently, the mean value of the saved data is entered in the first row.

signal = ...
fh = FileOpenXLS2("z:\dat\result.xls", "Template #2", 1, 1, 2)
IF (fh > 0)
 err = FileObjWrite(fh, signal)
 err = FileClose(fh)
END
fh = FileOpenXLS("z:\dat\result.xls", 2)
IF (fh > 0)
 err = FileXLSCellWrite(fh, 1, 1, "Mean Value:")
 err = FileXLSCellWrite(fh, 2, 1, Mean(signal))
 err = FileClose(fh)
END

See also:
FileOpenASCII, FileOpenXLS2, FileXLSColumnRead, FileXLSCellRead, FileXLSCellWrite

imc FAMOS Func on Reference - 399 -

(c) 2024 imc Test & Measurement GmbH

FileOpenXLS2

An XLS file is opened in which to export data sets in columns. Specification of the format is performed by means of a pre-defined XLS export
template.

Declaration:
FileOpenXLS2 (TxFile, TxExportTemplate, SvMode, SvColumn, SvRow) -> SvFileID

Parameter:

TxFile Name of the XLS file. If no complete pathname is specified, the default folder for opening files is used.

TxExportTemplate Name of the XLS export template used

SvMode Mode

1 : A file in which to write data is opened. Any existing file having the same name is completely overwritten.

2 : A file to which to write data is opened. Any existing file of the same name is opened and the data sets to add are copied
into the existing table, otherwise the original file is not changed.

SvColumn Column number (1..256). Along with the next parameter, it indicates to which cell data is written first; the top left is [1,1].

SvRow

SvFileID

SvFileID ID of the opened file, or error code

0 : Error opening the file. The cause of the error can be queried with the functions FileErrCode?() or FileErrText?().

>0 : Identifier for the opened file. This is provided as a parameter to all subsequent functions for editing this file.

Description:
This function enables writing to files in the EXCEL-XLS format, in which data sets are saved colmn-by-column. The format specification is
performed by means of a pre-defined XLS-export template.

The function can only be used if a version of EXCEL is installed on the computer (versions Excel95.. Excel2016).

The function starts a hidden instance of EXCEL which is instructed by remote control (so-called OLE automation) to load the file/create a new
table.

Once a file has been opened with this function, the data sets to save can be added using the function FileObjWrite(..).

By default, the first table sheet is always accessed. If a different page is to be written, the function FileXLSSelectSheet() should accordingly be
called beforehand.

Every file opened with FileOpenXLS2 must afterwards be closed by a call to FileClose(). In the process, the file is also saved and the hidden Excel
program instance is closed.

FileObjWrite(), FileXLSSelectSheet() and FileClose() are the only functions which can be applied to files opened with FileOpenXLS2().

Concrete definition of the file format (e.g. column headers, scaling columns, numerical format..) is accomplished by means of the specified XLS
export template. Creation and administration of such templates is performed by means of the menu item "Extra / Options / File-Save / EXCEL"

Tip: Use the Function Assistant for parameterizing the function. It lets you easily select from a list of all XLS export templates.

To import XLS files, you can use the function FileOpenXLS().

If no complete filename is entered, the system searches the current loading folder. The current loading folder is set according to the default
defined under "Extra/Options/Folders" when imc FAMOS is started. The default folder can be changed using either the command LDIR or the
function SetOption(). Otherwise the folder last specified when a file was loaded is used.

This function doesn't check the validity of the filenames and template names passed to it. This is only done later in connection with the
corresponding call of FileClose(), when the file is actually written.

If the template file (extension: "*.aet") is not located in the definitions folder currently set, the complete pathname including the filename
exptension must be specified.

imc FAMOS can administer a maximum of 10 open files at once. This amount can easily be reached by neglecting to call FileClose. An appropriate
error message will appear in such a case. The function FileResetAll closes all files open at the moment. This can be useful if, for instance, while
testing sequences in the single-step mode, some files whose ID's you've forgotten remain open.

How the function behaves at fault condition depends on the setting "No error boxes for file functions" in the "Options"/"Functions" -dialog (or
the corresponding function SetOption("Func.ErrorBoxes", ..). If this option is deactivated, an output box containing the error message is
displayed and execution of the sequence is cancelled (default behavior of FAMOS-functions). On the other hand, if the option is activated, a 0 is
returned and no error message is displayed.

If desired, the error cause can be queried using either of the functions FileErrText?() or FileErrCode?().

Texts/Textarrays: From version 2023, text or textarray variables can also be specified with FileObjWrite(). Texts are truncated to a maximum of
32767 characters when saved.

Multithreading:The File-ID returned by the function is only valid for the current execution thread. Files are automatically closed at the end of the

imc FAMOS Func on Reference - 400 -

(c) 2024 imc Test & Measurement GmbH

thread (e.g. at the end of a sequence function executed using BEGIN_PARALLEL).

Examples:
A data set is filtered and subsequently saved together with the filtering results in an XLS file. The exact format is defined by the export template
"Template #2", which was previously created using the command "Extra / Options / File Saving / EXCEL".

signal = ...
filtered = FiltLP(signal, 0, 0, 6, 100)
fh = FileOpenXLS2("z:\dat\result.xls", "Template #2", 1, 1, 1)
IF (fh > 0)
 err = FileObjWrite(fh, signal)
 err = FileObjWrite(fh, filtered)
 err = FileClose(fh)
END

The following sequence saves the selected variables column-by-column in an XLS-file. The output begins in the 3rd column, 2nd line.

TxFileName = "c:\dat\protocol.xls"

fh = FileOpenXLS2(TxFileName, "Template #2", 1, 3, 2)
IF (fh > 0)
 count = VarGetInit(1)
 n = 1
 WHILE (n <= count)
 TxVarName = VarGetName?(n)
 err = FileObjWrite(fh, <TxVarName>)
 n = n + 1
 END
 err = FileClose(fh)
END

See also:
FileOpenASCII, FileOpenASCII2, FileOpenXLS, FileXLSSelectSheet, FileObjWrite, FileClose

imc FAMOS Func on Reference - 401 -

(c) 2024 imc Test & Measurement GmbH

FileResetAll

Closes all opened files

Declaration:
FileResetAll ()

Parameter:

Description:
All file lists opened with a FileOpen*() function (e.g. FileOpenDSF or FileOpenFAS) are closed. There is no writing from file lists if changes were
made.

These functions should only be used to recreate a defined basic state when testing sequences or programs; the function FileClose() should
always be used.

imc FAMOS can manage a maximum of 10 open files at the same time. If FileClose is not called enough, the maximum number of files can be
reached quickly and an error message is generated.

The function FileRestAll can be used if files, whose identifiers are unknown, remain open while testing imc FAMOS sequences in single-step
mode.

Multithreading: The function only closes files opened in the current execution thread.

See also:
FileClose, FileOpenDSF, FileOpenFAS, FileOpenASCII, FileOpenXLS

imc FAMOS Func on Reference - 402 -

(c) 2024 imc Test & Measurement GmbH

FileSave

Saves the data supplied in a file of selectable format.

Declaration:
FileSave (TxFile, TxFormat, SvOptions, Data [, Data2] [, Data3] [, Data4] [, Data5] [, Data6]) -> SvSuccess

Parameter:

TxFile Name of the file. Unless a full pathname is provided, the pre-set loading folder is used.

TxFormat Specification of the file format

SvOptions Options

0 : Default behavior

1 : Any groups supplied are expanded, i.e. what is saved is the list of the channels contained, without any group association. The
option is helpful when, for instance, a complex analysis generates a large number of resulting variables which you ultimately wish
to save to a file. Add all of these variables right after they are created to a temporary group and then at the end of the analysis,
provide it as the Save parameter here.

10000 : Only taken into account when the "imc/FAMOS"-file format is used. As of FAMOS 7.4, a new and improved file format
(Version 3) is used by default, wheich may not be readable by older imc programs (imc FAMOS 7.3, imc STUDIO 5.x). Add 10000, to
force use of the 'old' file format (Version 2).

Data Data to be saved

Data2 Additional data (optional) (optional)

Data3 Additional data (optional) (optional)

Data4 Additional data (optional) (optional)

Data5 Additional data (optional) (optional)

Data6 Additional data (optional) (optional)

SvSuccess

SvSuccess Success of the function (optional)

0 : Error in saving the file. The error cause can be inquired with either of the functions FileErrCode?() or FileErrText?().

1 : The file has been successfully saved.

Description:
Tip: Use the Function Assistant to parameterize the function. By this means, you are easily able to select any kind of export format from a list.

For specifying the format, multiple different ways are possible:

Saving in the default imc/FAMOS format
For <TxFormat>, either an empty text or the identifier "imc/FAMOS" must be entered.

if the file name supplied has no extension, then ".dat" is appended automatically.

When saving a single element from a group, the group information is lost.

Alternative function: FileOpenDSF().

Saves a text variables to a text file.
In order to save the content of a text- or textarray variable in a text file, enter the format ID "imc/Text". Only one variable can be saved per file,
so the parameters Data2 to Data6 should be omitted.

For a text array, each element is saved as a line in the file. The line break is guaranteed by a 'CarriageReturn' (ASCII 13)/'LineFeed' (ASCII 10)
character combination. No line break is appended after the last line.

if the file name supplied has no extension, then ".txt" is appended automatically.

Export with a corresponding extension library (*.DLL).
The syntax of <TxFormat> is then as follows:

"#DLLName|FormatName|Parameter"

DLLName: specifies the filename of the extension library; the extension ".DLL" can be omitted.
FormatName: specifies the name of the desired format (an extension library may certainly support multiple formats). Can be omitted if the
DLL only provides one single format and does not require any additional parameters.
Parameters: serves for the optional transfer of further parameters to the library. Whether parameters are required and their syntax depends
on the respective extension library. Often not required, can then be omitted. If necessary, look for the name of the format used in the help,
where the format-specific use of the parameter is described.

imc FAMOS Func on Reference - 403 -

(c) 2024 imc Test & Measurement GmbH

The FAMOS product package contains a number of extension libraries for creation of common file formats.

Example: Export of 3 data sets to a MatLab file:

FileSave("1.mat","#MatLabImportExport|Matlab 5 Format", 0, Channel1, Channel2, Channel3)

Alternative function: FileOpenFAS().

Export by means of an ASCII export template
The data sets transferred are each written to a column in an ASCII file. Specification of the format is accomplished by means of a pre-defined
ASCII export template containing concrete file format definitions (e.g. column headers, scaling columns, numerical format). Creation and
management of such templates is accomplished by means of the FAMOS menu item "Extras/Options/Save File/Export/ASCII".

The syntax of <TxFormat> is then as follows:

"[ASC] ExportTemplateName"

Alternative function: FileOpenASCII2().

Export by means of an EXCEL export template
The data sets transferred are each written to a column in an EXCEL file. Specification of the format is accomplished by means of a pre-defined
EXCEL export template containing concrete file format definitions (e.g. column headers, scaling columns). Creation and management of such
templates is accomplished by means of the FAMOS menu item "Extras/Options/Save File/Export / EXCEL".

The syntax of <TxFormat> is then as follows:

"[XLS] ExportTemplateName"

With this function, a hidden EXCEL instance is started and it is requested by means of (the OLE-Automation's) remote control to fill and save a
new table. The function can also only be run if a supported version of EXCEL is installed. The data are always written to the first worksheet,
beginning at the 1st row and 1st column.

Alternative function: FileOpenXLS2().

Special format "ByteBlob": Uninterpreted binary data
The content of the variables (only the actual data) is written to a file in a binary and uninterpreted format. For this, specify the format ID
"imc/ByteBlob".

The format can be used for single-component, unstructured data sets with simple data formats (real, integer, but not digital) or TimeStampASCII.
Normally required only for special applications, e.g. in conjunction with the FAMOS-Database Kit for the purpose of being able to save and
retrieve any file types (e.g. PDF, images, videos) to and from databases jointly with the actual measurement data.

The respective alternative function for saving in a particular format is more complex to use but offers additional possibilities (e.g. any
amounnt of data sets, appended to existing files).
If the template file (extension: "*.aet") is not located in the currently set default definitions folder upon ASCII- or EXCEL-export, the
complete pathname must be specified.
The function's behavior at fault condition depends on the global presetting 'No error boxes with file functions' (which is set in the dialog
"Options/Functions" or by means of the function SetOption). If this option is deactivated, an error message box is displayed and the return
value is not generated. This matches the default behavior of FAMOS functions. On the other hand, if this option is activated, a 0 is returned
and no error message is displayed. If may be possible to inquire the error cause with the functions FileErrText?() or FileErrCode?().

Examples:
The variables 'MyChannel' through 'MyChannel3' are saved in the FAMOS format in file 'result.dat'.

FileSave("z:\tmp\result", "", 0, MyChannel1, MyChannel2, MyChannel3)

The comment belonging to the data set 'MyChannel' is saved in a text file.

FileSave("z:\tmp\comment.txt", "imc/Text", 0, Comm?(MyChannel1))

The group 'result' contains the channels 'c1' through 'c3' and is saved in EXCEL format. The group is expanded, the file contains the channels
c1,c2,c3 without group association.

FileSave("z:\tmp\c.xls", "[XLS] XLSX, individual scaling", 1, result)

Saves a variable in MatLab4 format.

FileSave("z:\tmp\export.mat", "#MatlabImportExport|Matlab 4 Format", 0, MyChannel)

See also:
FileOpenDSF, FileOpenASCII2, FileOpenXLS2, FileLoad

imc FAMOS Func on Reference - 404 -

(c) 2024 imc Test & Measurement GmbH

FileSetComm

4.109 FileSetComm Function The function assigns a specified file comment to an opened file.

Declaration:
FileSetComm (SvFileID, TxComment) -> SvStatus

Parameter:

SvFileID File identifier, received during a previous call of FileOpenDSF, FileOpenXLS2 or FileOpenASCII2

TxComment New comment for the file

SvStatus

SvStatus Success of the function

0 : Function executed successfully

-1 : Error in executing the function

Description:
The function sets the file comment of an open imc FAMOS file. The file must be opened for writing, and the function FileOpenDSF needs to have
been used with option 1 or 2. The new comment is memorized internally, but the changed file is actually written when the function FileClose is
called.

When writing by means of export templates (FileOpenASCII2/FileOpenXLS2), the placeholder %FILECOMMENT% in the template is replaced
accordingly.

The behavior of the function if an error occurs depends on whether the global presetting "No error boxes in file functions" is set in the
"Options"/ "Functions" dialog or with the function SetOption(). If this option is not selected, an output box with the error message is
displayed and the return value is not generated. This corresponds to the standard behavior of imc FAMOS functions. If the option is selected,
a return value of -1 is generated and an error message is not displayed.
If necessary, the cause of error can be inquired using the functions FileErrText? or FileErrCode?.
Querying and evaluating the return value is not absolutely necessary in imc FAMOS, but recommended.

Examples:
A imc FAMOS file "xxx.dat" is opened in imc FAMOS format for reading and writing. An inquiry of the comment is made and if one is not present,
a comment is entered and the file is closed.

fileID = FileOpenDSF("c:\imc\dat\xxx.dat", 2)
TxComm = FileComm?(fileID)
IF TLeng(TxComm) = 0
 status = FileSetComm(fileID, "checked")
END
status = FileClose(fileID)

See also:
FileOpenDSF, FileComm?, FileOpenASCII2, FileOpenXLS2

imc FAMOS Func on Reference - 405 -

(c) 2024 imc Test & Measurement GmbH

FileXLSCellRead

A cell in an EXCEL-table (XLS-format) is imported (as text).

Declaration:
FileXLSCellRead (SvFileID, SvColumn, SvRow, Zero) -> TxContents

Parameter:

SvFileID ID of the opened XLS-file, returned upon execution of the command FileOpenXLS().

SvColumn Number of the column to be read (1..256 or 1..16384 since Excel 2007).

SvRow Row number of the cell to be read. The top row is numbered 1. The last (maximum possible) row has the number 1048576 (since
Excel 2007) or 65536 in older versions.

Zero Reserved parameter. Always set to 0.

TxContents

TxContents Cell content (as text).

Description:
This function reads the content of an EXCEL table's cell in XLS-format and returns it as text.

The file has to have been opened previously using the function FileOpenXLS().

By default, the first table sheet is accessed. If the data are to be written to a different sheet, first call the function FileXLSSelectSheet()
accordingly.

For reading numerical values, the function FileXLSColumnRead() should always be used.

How functions behave at fault condition depends on the setting "No error boxes for file functions" in the "Options"/"Functions" -dialog (or the
corresponding function SetOption("Func.ErrorBoxes", ..). If this option is deactivated, an output box containing the error message is displayed
and execution of the sequence is cancelled (default behavior of FAMOS-functions). On the other hand, if the option is activated, an empty string
is returned and no error message is displayed.

If desired, the error cause can be queried using either of the functions FileErrText?() or FileErrCode?().

Examples:
An XLS-file is opened. It contains a table with 2 columns each containing a value pair (time, reading). The values begin at the 2nd row. In the 1st
row stands the data set's name alongside the y-unit.

fh = FileOpenXLS("c:\dat\table.xls", 0)
IF (fh > 0)
 x = FileXLSColumnRead(fh, 1, 2, 1048575, 0)
 y = FileXLSColumnRead(fh, 2, 2, 1048575, 0)
 TxName = FileXLSCellRead(fh, 1, 1, 0)
 TxUnit = FileXLSCellRead(fh, 2, 1, 0)
 err = FileClose(fh)
 data = XYof(x,y)
 ; 1st value of the time track = Trigger time
 first_time = data[1].x
 SetTime(data, first_time)
 ; scales time track in terms of trigger time
 data.x = data.x-first_time
 ; sets unit and name
 SetUnit(data, TxUnit, 1)
 RENAME data <TxName>
END

See also:
FileOpenXLS, FileXLSColumnRead, FileClose

imc FAMOS Func on Reference - 406 -

(c) 2024 imc Test & Measurement GmbH

FileXLSCellWrite

Write data to a cell in an EXCEL table (XLS-format).

Declaration:
FileXLSCellWrite (SvFileID, SvColumn, SvRow, Content) -> SvStatus

Parameter:

SvFileID ID of the opened XLS-file, returned upon execution of the command FileOpenXLS().

SvColumn Column number of the cell to fill (1..256).

SvRow Row number of the cell to fill. he top row is numbered 1.

Content Content to write. Either a numerical single value (or data set of length 1) or text is allowed.

SvStatus

SvStatus Success of the function

0 : Function has been carried out successfully

-1 : Function failed. The cause can be queried using the function FileErrCode?() or FileErrText?().

Description:
This function sets the content of an EXCEL table cell in XLS format. Either a text or a single numerical value can be entered.

The file must previously have been opened with the function FileOpenXLS() in Write Mode.

For writing longer series of data to a table column, the functions FileOpenXLS2()/FileObjWrite() are preferable to repeated calling of this
function.

By default, the first table sheet is accessed. If the data are to be written to a different sheet, first call the function FileXLSSelectSheet()
accordingly.

How the function behaves at fault condition depends on the setting "No error boxes for file functions" in the "Options"/"Functions" -dialog (or
the corresponding function SetOption("Func.ErrorBoxes", ..). If this option is deactivated, an output box containing the error message is
displayed and execution of the sequence is cancelled (default behavior of FAMOS-functions). On the other hand, if the option is activated, -1 is
returned and no error message is displayed.

If desired, the error cause can be queried using either of the functions FileErrText?() or FileErrCode?().

Examples:
A data set is saved in an XLS file as of the 2nd row. Subsequently, the mean value of the saved data is entered in the first row.

data = ...
fh = FileOpenXLS2("z:\dat\result.xls", "Template #2", 1, 1, 2)
IF (fh > 0)
 err = FileObjWrite(fh, data)
 err = FileClose(fh)
END
fh = FileOpenXLS("z:\dat\result.xls", 2)
IF (fh > 0)
 err = FileXLSCellWrite(fh, 1, 1, "Mean Value:")
 err = FileXLSCellWrite(fh, 2, 1, Mean(data))
 err = FileClose(fh)
END

See also:
FileOpenXLS, FileXLSCellRead, FileClose

imc FAMOS Func on Reference - 407 -

(c) 2024 imc Test & Measurement GmbH

FileXLSColumnRead

One column of an EXCEL-table (XLS-Format) is read out.

Declaration:
FileXLSColumnRead (SvFileID, SvColumn, SvRow, SvMaxCount, Zero) -> Data

Parameter:

SvFileID ID of the opened XLS-file, returned upon execution of the command FileOpenXLS().

SvColumn Number of the column to be read (1..256 or 1..16384 since Excel 2007).

SvRow Row number at which to begin reading. The top row is numbered 1. The last (maximum possible) row has the number 1048576
(since Excel 2007), or 65536 in older versions.

SvMaxCount Maximum amount of values to be read.

Zero Reserved parameter. Always set to 0.

Data

Data Column contents (as data set).

Description:
This functions reads out columns of EXCEL-table data in XLS-format.

The file has to have been opened previously using the function FileOpenXLS().

The first value of the created data set is read out from the cell specified by the parameters [Column] and [Row]. Then, read-out continues down
the column, until either the first cell not having a numerical value is found, or the maximum number of values to read (corresponding to the
parameter [MaxAmount]) is reached.

By default, the first table sheet is accessed. If the data are to be written to a different sheet, first call the function FileXLSSelectSheet()
accordingly.

If the column to be read is formatted as Date/Time, the values are converted from EXCEL time format to imc time format. The values can be
converted to legible text using the function TimeInText(), for example, or be assigned directly as the X-component of an XY-data set.

The result's data format is always 8Byte Real, (Double).

To read text, the function FileXLSCellRead can be used.

How the function responds to errors depends on the setting "No Error boxes for file functions" in the dialog "Options"/"Functions" (or the
corresponding function SetOption("Func.ErrorBoxes", ..). When this option is deactivated, an output box with the error message appears and
processing of the sequence is aborted (FAMOS-functions' default response). However, if the option is active, empty text is returned and no error
message is posted.

If desired, the error cause can be queried using either of the functions FileErrText?() or FileErrCode?().

Examples:
An XLS-file is opened. It contains a table with 2 columns each containing a value pair (time, reading). The values begin at the 2nd row. In the 1st
row stands the data set's name alongside the y-unit.

fh = FileOpenXLS("c:\dat\table.xls", 0)
IF (fh > 0)
 x = FileXLSColumnRead(fh, 1, 2, 1048575, 0)
 y = FileXLSColumnRead(fh, 2, 2, 1048575, 0)
 TxName = FileXLSCellRead(fh, 1, 1, 0)
 TxUnit = FileXLSCellRead(fh, 2, 1, 0)
 err = FileClose(fh)
 data = XYof(x,y)
 ; 1st value of the time track = Trigger time
 first_time = data[1].x
 SetTime(data, first_time)
 ; scales time track in terms of trigger time
 data.x = data.x - first_time
 ; sets unit and name
 SetUnit(data, TxUnit, 1)
 RENAME data <TxName>
END

See also:
FileOpenXLS, FileXLSCellRead, FileClose

imc FAMOS Func on Reference - 408 -

(c) 2024 imc Test & Measurement GmbH

FileXLSSelectSheet

A table sheet in an EXCEL spreadsheet (XLS-format) is selected for subsequent read/write access.

Declaration:
FileXLSSelectSheet (SvFileID, SvTableIndex) -> SvStatus

Parameter:

SvFileID ID of the opened XLS file, which was returned when opening the file with the command FileOpenXLS() or FileOpenXLS2().

SvTableIndex Index of the table sheet to be selected (1..).

SvStatus

SvStatus Success of the function

0 : Function has been carried out successfully

-1 : Function failed. The cause can be queried using the function FileErrCode?() or FileErrText?().

Description:
Reading and cell-by-cell writing:

This function selects the worksheet to be subsequently accessed for reading by FileXLSCellRead(), FileXLSColumnRead() or FileXLSCellWrite().
The file needs to have been previously opened using the function FileOpenXLS() with the mode 'Read Only' or 'Write/Append'.

Column-by-column writing:

This function selects the table sheet in which values written with FileObjWrite() are to be saved. The file must previously be opened using the
function FileOpenXLS2() with the option 'Combine' (parameter 'Mode' = 2). The table worksheet specified here must already exist in the opened
file, so no new worksheet is created.

Only one call of FileXLSSelectSheet() is allowed for each FileOpenXLS2()/FileClose()-block. If multiple sheets are to be written in an EXCEL file,
then a separate Open/Close-block is necessary for each sheet.

Examples:
An XLS-file with 3 table sheets is opened. Each table sheet contains 2 columns containing respective counterparts of value pairs (time, measured
value). The values begin in the 2nd row. In the 1st row, the data set's name is noted.

fh = FileOpenXLS("c:\dat\table.xls", 0)
IF (fh > 0)
 I = 1
 WHILE I <= 3
 FileXLSSelectSheet(fh, I)
 x = FileXLSColumnRead(fh, 1, 2, 65336, 0)
 y = FileXLSColumnRead(fh, 2, 2, 65336, 0)
 TxName = FileXLSCellRead(fh, 1, 1, 0)
 <TxName> = XYof(x,y)
 I = I + 1
 END
 err = FileClose(fh)
END

A prepared EXCEL file contains 3 table sheets. In the 2nd sheet, the values of the data set "Channel1" are to be entered, and in the 3rd sheet the
results of the data set's FFT. The template is first copied to the output folder and then filled out accordingly.

TxOutputFileName = "c:\out\result1.xls"
Channel1= ...
FFT_Channel1 = FFT(Channel1)
res = FsCopyFile("c:\templates\result.xls", TxOutputFileName, 2, 0)
fh = FileOpenXLS2(TxOutputFileName, "XLS Template Data", 2, 1, 1)
IF (fh > 0)
 err = FileXLSSelectSheet(fh, 2)
 err = FileObjWrite(fh, Channel1)
 err = FileClose(fh)
END
fh = FileOpenXLS2(TxOutputFileName, "XLS Template FFT", 2, 1, 1)
IF (fh > 0)
 err = FileXLSSelectSheet(fh, 3)
 err = FileObjWrite(fh, FFT_Channel1)
 err = FileClose(fh)
END

See also:

imc FAMOS Func on Reference - 409 -

(c) 2024 imc Test & Measurement GmbH

FileOpenXLS, FileXLSColumnRead, FileClose

imc FAMOS Func on Reference - 410 -

(c) 2024 imc Test & Measurement GmbH

FiltBP

Band-pass filter

Declaration:
FiltBP (Data, SvCharacter, SvParameter, SvOrder, SvFreqLower, SvFreqUpper) -> Filtrate

Parameter:

Data Data set to be filtered [NW].

SvCharacter Filter characteristic

0 : Butterworth

1 : Bessel

2 : Chebychev

3 : Critical damping

SvParameter In Chebychev characteristic, the desired ripple (0..3) is set in dB. Otherwise set to 0.

SvOrder Filter order. Bessel: Range 1..40, other 1..100.

SvFreqLower Desired lower cut-off frequency in Hz.

SvFreqUpper Desired upper cut-off frequency in Hz.

Filtrate

Filtrate Filtered data set

Description:
The transferred data set is filtered by a band-pass filter.

The filter coefficients are calculated from the transferred parameters using bilinear transformation.

For accurate filtering, both cut-off frequencies should lie below half of the sampling frequency of the output signal. When the frequencies are
too near to the sampling frequency, the amplitude response of the filter becomes more inaccurate.

Examples:

BandPassFiltered = FiltBP(signal, 2, 1, 10, 100, 10000)

The data set is filtered with a band-pass filter with Chebychev characteristic. The ripple should be 1dB. A filter of the tenth order is used and the
cut-off frequencies are 100Hz and 10kHz.

See also:
FiltBS, FiltHP, FiltLP, DFilt, FiltBpZ

imc FAMOS Func on Reference - 411 -

(c) 2024 imc Test & Measurement GmbH

FiltBpZ

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Band-pass filter without phase shift

Declaration:
FiltBpZ (InputChannel, Characteristic, Parameter, Order, Lower cutoff frequency, Upper cutoff frequency) ->
Result

Parameter:

InputChannel The waveform to be filtered, time scaled in seconds.

Characteristic Filter characteristic

0 : Butterworth

1 : Bessel

2 : Tschebyschew

3 : Critical damping

Parameter With Tschebyschew characteristics, the ripple in dB (0..3). Otherwise set to 0.

Order Filter order: 4, 8, 12, 16, 20

Lower cutoff frequency Lower cutoff frequency in Hz

Upper cutoff frequency Upper cutoff frequency in Hz

Result

Result Filtered waveform

Description:
The waveform is filtered once forwards and once backwards. But for this purpose a filter is used which has the characteristics specified but whose
order is only one-half of that stated.

The amplitude-frequency response is standardized so that the damping is 3dB at the cutoff frequency.

The filter coefficients are computed from the parameters specified with bilinear transformation.

For filtering to be useful, the cutoff frequency should be significantly below one-half of the output signal's sampling frequency. The nearer the
frequency is to the sampling frequency, the more precise the filter's amplitude response.

The filter is not causal. For this reason, the chronological order between cause and effect no longer applies.

Transisnt effects in both directions exist, in particular not only at the beginning, but also at the end of the waveform.

Ideally, the value of the phase is zero. In practice, however, this only applies to the state after all transients have subsided, not to border areas.

Examples:

f = FiltBpZ (Vibration, 0, 0, 4, 45, 55)

A 4th order Butterworth band-pass filter with a frequency of 45Hz to 55Hz is calculated.

See also:
FiltLpZ, FiltBp

imc FAMOS Func on Reference - 412 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

FiltBS

Band-stop filter

Declaration:
FiltBS (Data, SvCharacter, SvParameter, SvOrder, SvFreqLower, SvFreqUpper) -> Filtrate

Parameter:

Data Data set to be filtered [NW].

SvCharacter Filter characteristic

0 : Butterworth

1 : Bessel

2 : Chebychev

3 : Critical damping

SvParameter In Chebychev characteristic, the desired ripple (0..3) is set in dB. Otherwise set to 0.

SvOrder Filter order. Bessel: Range 1..40, other 1..100.

SvFreqLower Desired lower cut-off frequency in Hz.

SvFreqUpper Desired upper cut-off frequency in Hz.

Filtrate

Filtrate Filtered data set

Description:
The transferred data set is filtered with a band-stop filter

The filter coefficients are calculated from the transferred parameters using bilinear transformation.

For accurate filtering, both cut-off frequencies should lie below half of the sampling frequency of the output signal. When the frequencies are
too near to the sampling frequency, the amplitude response of the filter becomes more inaccurate.

Examples:

BandStopFiltered = FiltBS(signal, 2, 1, 10, 100, 10000)

The data set is filtered with a band-stop filter with Chebychev characteristic. The ripple should be 1dB. A filter of tenth order is used and the cut-
off frequencies should be 100Hz and 10kHz.

See also:
FiltBP, FiltHP, FiltLP, DFilt, FiltBsZ

imc FAMOS Func on Reference - 413 -

(c) 2024 imc Test & Measurement GmbH

FiltBsZ

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Band-stop filter without phase shift

Declaration:
FiltBsZ (InputChannel, Characteristic, Parameter, Order, Lower cutoff frequency, Upper cutoff frequency) ->
Result

Parameter:

InputChannel The waveform to be filtered, time scaled in seconds.

Characteristic Filter characteristic

0 : Butterworth

1 : Bessel

2 : Tschebyschew

3 : Critical damping

Parameter With Tschebyschew characteristics, the ripple in dB (0..3). Otherwise set to 0.

Order Filter order: 4, 8, 12, 16, 20

Lower cutoff frequency Lower cutoff frequency in Hz

Upper cutoff frequency Upper cutoff frequency in Hz

Result

Result Filtered waveform

Description:
The waveform is filtered once forwards and once backwards. But for this purpose a filter is used which has the characteristics specified but whose
order is only one-half of that stated.

The amplitude-frequency response is standardized so that the damping is 3dB at the cutoff frequency.

The filter coefficients are computed from the parameters specified with bilinear transformation.

For filtering to be useful, the cutoff frequency should be significantly below one-half of the output signal's sampling frequency. The nearer the
frequency is to the sampling frequency, the more precise the filter's amplitude response.

The filter is not causal. For this reason, the chronological order between cause and effect no longer applies.

Transisnt effects in both directions exist, in particular not only at the beginning, but also at the end of the waveform.

Ideally, the value of the phase is zero. In practice, however, this only applies to the state after all transients have subsided, not to border areas.

Examples:

f = FiltBsZ (Vibration, 0, 0, 4, 45, 55)

A 4th order Butterworth band-stop filter with a frequency of 45Hz to 55Hz is calculated.

See also:
FiltLpZ, FiltBp

imc FAMOS Func on Reference - 414 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

FilterAnalog

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

A waveform is processed with a filter whose analog coefficients must be supplied to the transfer function H(s).

Declaration:
FilterAnalog (InputChannel, Coefficients) -> Result

Parameter:

InputChannel The waveform to be filtered, time scaled in seconds.

Coefficients A waveform in which the coefficients appear in a set order. See below.

Result

Result Filtered waveform

Description:
The sampling time must be small enough so that the relevant bends or resonances of the frequency responce will be reflected.

The analog coefficients are used to design a digital filter by means of bilinear transformation. The digital filter is usually only a moderately good
approximation of an analog filter's actual behaviour.

The largest discrepancies result for the highest frequencies (those near half the sampling rate). Thus differentiators cannot be realized.

The digital filter used always is recursive, which generally tends to distort the phase slightly.

The function is only suited to stable filters.

Order of coefficients:

The transfer function is represented as the product of 2nd order terms (biquads). There are 6 coefficients for each biquad.

Let:

p = i * 2 * PI * f, f frequency, i = sqrt(-1).

Then the transfer function (here 2nd order) is given by:

A (p) = (d0 + d1 * p + d2 * p^2) / (c0 + c1 * p + c2 * p^2)

Note the differences between the exponents of p in both equations!

Alternative expression:

A (p) = (d0 * p^-2 + d1 * p^-1 + d2) / (c0 * p^-2 + c1 * p^-1 + c2)

The coefficients are entered in the following order:

d0, d1, d2, c0, c1, c2

If there is more than one biquad, the process is repeated, and the coefficient list is continued accordingly:

d0_1, d1_1, d2_1, c0_1, c1_1, c2_1, d0_2, d1_2, d2_2, c0_2, c1_2, c2_2, ...

Up to 1000 biquads can be applied.

Examples:

d0 = 1
d1 = 0.08
d2 = 0
c0 = 1
c1 = 0.125
c2 = 0.08 * 0.08
acoeff = leng(0, 6)
acoeff[1] = d0
acoeff[2] = d1
acoeff[3] = d2

imc FAMOS Func on Reference - 415 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

acoeff[4] = c0
acoeff[5] = c1
acoeff[6] = c2
Filtered = FilterAnalog (Acceleration, acoeff)

The acceleration has a sampling time of 1ms. The transfer function takes the form:

A(p) = (1 + 0.08 * p) / (1 + 0.125 * p + (0.08 * p)^2)

See also:
FiltLP, VibrationFilter, dFilt, ExpoRms

imc FAMOS Func on Reference - 416 -

(c) 2024 imc Test & Measurement GmbH

FiltHP

High-pass filter

Declaration:
FiltHP (Data, SvCharacter, SvParameter, SvOrder, SvCutOffFreq) -> Filtrate

Parameter:

Data Data set to be filtered [NW].

SvCharacter Filter characteristic

0 : Butterworth

1 : Bessel

2 : Chebychev

3 : Critical damping

SvParameter In Chebychev characteristic, the desired ripple (0..3) is set in dB. Otherwise set to 0.

SvOrder Filter order. Bessel: Range 1..20, Chebychev 1..50, others 1..100.

SvCutOffFreq Desired cut-off frequency in Hz.

Filtrate

Filtrate Filtered data set

Description:
The transferred data set is filtered with a high-pass filter.

The filter coefficients are calculated from the transferred parameters using bilinear transformation.

For accurate filtering, the cut-off frequency should lie below half of the sampling frequency of the output signal. When the frequency is too near
to the sampling frequency, the amplitude response of the filter becomes more inaccurate.

Examples:

HighPassFiltered = FiltHP(signal, 2, 1, 10, 100)

The data set is filtered with a high-pass filter with Chebychev characteristic. The ripple should be 1dB. A filter of tenth order is used and the cut-
off frequency should be 100Hz.

See also:
FiltBS, FiltBP, FiltLP, DFilt, FiltHpZ

imc FAMOS Func on Reference - 417 -

(c) 2024 imc Test & Measurement GmbH

FiltHpZ

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

High-pass filter without phase shift

Declaration:
FiltHpZ (InputChannel, Characteristic, Parameter, Order, Cutoff frequency) -> Result

Parameter:

InputChannel The waveform to be filtered, time scaled in seconds.

Characteristic Filter characteristic

0 : Butterworth

1 : Bessel

2 : Tschebyschew

3 : Critical damping

Parameter With Tschebyschew characteristics, the ripple in dB (0..3). Otherwise set to 0.

Order Filter order: 2, 4, 6, ... 20

Cutoff frequency Lower cutoff frequency in Hz

Result

Result Filtered waveform

Description:
The waveform is filtered once forwards and once backwards. But for this purpose a filter is used which has the characteristics specified but whose
order is only one-half of that stated.

The amplitude-frequency response is standardized so that the damping is 3dB at the cutoff frequency.

The filter coefficients are computed from the parameters specified with bilinear transformation.

For filtering to be useful, the cutoff frequency should be significantly below one-half of the output signal's sampling frequency. The nearer the
frequency is to the sampling frequency, the more precise the filter's amplitude response.

The filter is not causal. For this reason, the chronological order between cause and effect no longer applies.

Transisnt effects in both directions exist, in particular not only at the beginning, but also at the end of the waveform.

Ideally, the value of the phase is zero. In practice, however, this only applies to the state after all transients have subsided, not to border areas.

Examples:

f = FiltHpZ (Vibration, 0, 0, 2, 5)

A 2nd order Butterworth high-pass filter with a lower cutoff frequency of 5Hz is calculated.

See also:
FiltLpZ, FiltHp

imc FAMOS Func on Reference - 418 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

FiltLP

Low-pass filter

Declaration:
FiltLP (Data, SvCharacter, SvParameter, SvOrder, SvCutOffFreq) -> Filtrate

Parameter:

Data Data set to be filtered [NW].

SvCharacter Filter characteristic

0 : Butterworth

1 : Bessel

2 : Chebychev

3 : Critical damping

SvParameter In Chebychev characteristic, the desired ripple (0..3) is set in dB. Otherwise set to 0.

SvOrder Filter order. Bessel: Range 1..20, Chebychev 1..50, others 1..100.

SvCutOffFreq Desired cut-off frequency in Hz.

Filtrate

Filtrate Filtered data set

Description:
The transferred data set is filtered with a low-pass filter.

The filter coefficients are calculated from the transferred parameters using bilinear transformation.

For accurate filtering, the cut-off frequency should lie below half of the sampling frequency of the output signal. When the frequency is too near
to the sampling frequency, the amplitude response of the filter becomes more inaccurate.

Examples:

LowPassFiltered = FiltLP(signal, 2, 1, 10, 100)

The data set is filtered with a low-pass filter with Chebychev characteristic. The ripple should be 1dB. A filter of tenth order is used and the cut-
off frequency should be 100Hz.

See also:
FiltBS, FiltBP, FiltHP, DFilt, FiltLpZ, SavitzkyGolay

imc FAMOS Func on Reference - 419 -

(c) 2024 imc Test & Measurement GmbH

FiltLpZ

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Low-pass filter without phase shift

Declaration:
FiltLpZ (InputChannel, Characteristic, Parameter, Order, Cutoff frequency) -> Result

Parameter:

InputChannel The waveform to be filtered, time scaled in seconds.

Characteristic Filter characteristic

0 : Butterworth

1 : Bessel

2 : Tschebyschew

3 : Critical damping

Parameter With Tschebyschew characteristics, the ripple in dB (0..3). Otherwise set to 0.

Order Filter order: 2, 4, 6, ... 20

Cutoff frequency Upper cutoff frequency in Hz

Result

Result Filtered waveform

Description:
The waveform is filtered once forwards and once backwards. But for this purpose a filter is used which has the characteristics specified but whose
order is only one-half of that stated.

The amplitude-frequency response is standardized so that the damping is 3dB at the cutoff frequency.

The filter coefficients are computed from the parameters specified with bilinear transformation.

For filtering to be useful, the cutoff frequency should be significantly below one-half of the output signal's sampling frequency. The nearer the
frequency is to the sampling frequency, the more precise the filter's amplitude response.

The filter is not causal. For this reason, the chronological order between cause and effect no longer applies.

Transisnt effects in both directions exist, in particular not only at the beginning, but also at the end of the waveform.

Ideally, the value of the phase is zero. In practice, however, this only applies to the state after all transients have subsided, not to border areas.

Examples:

f = FiltLpZ (Vibration, 0, 0, 2, 150)

A 2nd order Butterworth low-pass filter with an upper frequency of 150Hz is calculated.

See also:
FiltHpZ, FiltLP, SavitzkyGolay

imc FAMOS Func on Reference - 420 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

Flag?

This function queries the status (on/off) of special waveform attributes.

Declaration:
Flag? (Data, SvFlag) -> SvOnOrOff

Parameter:

Data Waveform whose attributes are to be queried.

SvFlag Attribute selection

0 : The current data format of the waveform is fixed, meaning that in subsequent processing, the data format (and for integer-
formats, the scaling information) is retained if at all possible.

1 : The values of the data set can be interpreted as color information for 1 pixel of an image. Only allowed for data formats '4 byte
unsigned' (color information is encoded as RGB-value) or '1 byte unsigned' (color information is encoded as grey scale value in the
range 0..255). By default, the attribute is only set by import filters for image files or special functions such as VpGetImages(). It is
used by the curve window to optimize the display of image data.

SvOnOrOff

SvOnOrOff OnOrOff

0 : Off

1 : On

Description:
This function gets certain data set attributes, which can only take the boolean values [On] (or "True") or [Off] (or "False").

Examples:
A data set is loaded and smoothed. If the data set is recorded in an integer format and this format is fixed, the user is prompted to revoke the
established data format before smoothing begins. Otherwise, the smoothing results would be recorded in an integer format whose resolution
often isn't sufficient for the purpose.

FileLoad("test.dat", "", 0)
IF DataFormat?(test) > 1
 IF Flag?(test,0)
 IF BoxMessage("Question", "Cancel fixed data format?", "?4")
 SetFlag(test, 0, 0)
 END
 END
END
test = Smo5(test)

See also:
SetFlag, SetDataFormat, RGB, VpGetImages

imc FAMOS Func on Reference - 421 -

(c) 2024 imc Test & Measurement GmbH

Flipflop

Available in: Professional Edition and above

FlipFlop

Declaration:
Flipflop (RJ, SK, Type) -> Result

Parameter:

RJ Input data R/J

SK Input data S/K

Type Type of Flip Flop

"RS" : RS Flip Flop

"JK" : JK Flip Flop

Result

Result Result

Description:
If the input data are zero, it is interpreted as logically zero (false, low). Else as logically 1 (true, high).

Both input channels must have the same time base, length and structure (segments and events).

RS Flip Flop
Returns a 1 for the state H and a 0 for the state L. Beginning with the state L, the state H is adopted if S is nonzero and R equals zero. If S equals
zero and R is nonzero, then the state L is adopted. For the other two combinations of input values, the state remains intact.

JK Flip Flop
Returns a 1 for the state H and a 0 for the state L. Beginning with the state L, the state H is adopted if J is nonzero and K equals zero. If J equals
zero and K is nonzero, the state L is adopted. If both J and K equal zero, the state remains intact. If both J and K are nonzero, then the state is
switched.

Examples:
RS Flip Flop

RS = Flipflop (R, S, "RS")
; R = 0 1 1 0 1 0 1 0 1 0 1 0
; S = 0 0 1 1 1 0 0 0 1 1 1 0
;RS = 0 0 0 1 1 1 0 0 0 1 1 1

The LED is switched on if the signal exits the range from 0 to 8 and is only switched off again if the signal is within the range from 1 to 6.

LED = Flipflop((K1 < 6) AND (K1 > 1), (K1 > 8) OR (K1 < 0), "RS")

JK Flip Flop

JK = Flipflop (J, K, "JK")
; J = 0 0 1 1 1 0 1 1 0
; K = 0 1 1 1 0 0 1 1 1
;JK = 0 0 1 0 1 1 0 1 0

The LED blinks as long as the signal is greater than 9.

GT = (Signal > 9)
LED = Flipflop(GT, GT, "JK")

See also:
Monoflop

imc FAMOS Func on Reference - 422 -

(c) 2024 imc Test & Measurement GmbH

Floor

Next lower or equal integer

Declaration:
Floor (Parameter) -> Result

Parameter:

Parameter Parameter. Allowed types: [ND],[XY].

Result

Result Integer potion of the parameter

Description:
The integer part of a number is the next smaller or equal integer. For example, 1.0, 1.1, 1.9 this would be the integer 1.0; for -3.1, -3.4, -4.0, this
would be -4.0.

Remarks

The x-coordinate(s) of the parameter and the result are the same.
The parameter may be structured (events/segments).
The unit remains unchanged.
Please note that rounding errors may occur during calculations with real numbers. For example, Floor (Sqr (Sqrt (2))) returns the value 1, not
2 as expected. For more reliable (but not as exact!) use of the Floor function, add a small value to the parameter of Floor, e.g. Floor (1e-6 +
Sqr (Sqrt (2))).
The Floor() function is especially useful for various rounding operations. However these can often be more conveniently performed with the
function Round().

Examples:
A number is rounded to the next higher integer:

rounded = Floor(number + 0.5)
Here, the values of a data set oare rounded to 2 decimal places:
NDrounded = 0.01 * Floor(0.5 + 100 * NDdata)

Simulates the discrete levels of an 8-bit AD-converter: 8-bits correspond to 256 levels; the converter has an analog input range of 10V:

NDdiscrete = Floor(NDdata* 256 / 10) * 10 / 256

See also:
Round

imc FAMOS Func on Reference - 423 -

(c) 2024 imc Test & Measurement GmbH

FOR

Counter-controlled loop

Declaration:
FOR SvCounter = SvStart TO SvEnd STEP SvStep

Parameter:

SvCounter Counter variable

SvStart The counter variable is set to this value when the loop is first entered.

SvEnd The loop is aborted if the counter variable exceeds this value (counting forwards) or falls below it (counting backwards).

SvStep After each iteration of the loop, the counter variable is changed by this amount. This specification is optional; the default is +1, i.e.
the counter variable is increased by 1 upon each iteration.

Description
The end of the loop is denoted using the command END.

The increment can also be negative (backwards counting loop). The initial value must then be greater than or equal to the end value.

In the loop, it is possible to use the commands BREAK and CONTINUE in order to interrupt execution of the instructions prematurely.

The counter variable may be changed within the loop, but not deleted, nor have its type changed.

The construct

FOR i = start TO end STEP add
 ;...instructions
END

is equivalent to:

i = start
WHILE i <= end
 ;...instructions
 i = i + add
END

Examples:
Calculating the factorial of 5:

F = 1
FOR i = 2 TO 5
 F = F * i
END

In a data group, all channels are deleted whose maximum is less than 0.

n = GrChanNum?(group)
FOR i = n TO 1 STEP -1
 IF max(group:[i]) < 0
 GrChanDel(group, i)
 END
END

All files having the extension "*.dat" in a specified folder are identified and enumerated in a loop. If the file time is after a fixed cutoff date, the
file is loaded and processed. After a maximum of 10 loaded files, processing is cancelled.

list = FsFileListNew("c:\imc\dat", "*.dat", 0, 0, 0)
count = FsFileListGetCount(list)
loaded = 0
deadline = TimeJoin(1, 1, 2012, 0, 0, 0)
FOR i = 1 TO count
 time = FsFileListGetTime(list, i)
 IF time < deadline
 CONTINUE
 END
 ; load and process file
 TxName = FsFileListGetName(list, i)
 fh = FileOpenDSF(TxName, 0)
 ; ...
 loaded = loaded +1
 IF loaded = 10

imc FAMOS Func on Reference - 424 -

(c) 2024 imc Test & Measurement GmbH

 BREAK
 END
END
FsFileListClose(list)

See also:
FOREACH, WHILE, BREAK, CONTINUE

imc FAMOS Func on Reference - 425 -

(c) 2024 imc Test & Measurement GmbH

FOREACH

This command initializes a loop in which a data object's elements are enumerated. For each iteration, the respective current element is assigned
to an iteration variable.

Declaration:
FOREACH ElementType IterationVariable IN EnumerationVariable

Parameter:

ElementType Specifies the type of elements to be enumerated.

SAMPLE : Enumerates all values belonging to a data set

VALUE : Enumerates all numerical values belonging to a data set (unit and other characteristics are omitted). Faster than
"SAMPLE". The loop variable may not be changed in the loop.

SEGMENT : Enumerates all segments belonging to a data set

EVENT : Enumerates all events belonging to a data set

CHANNEL : Enumerates the data sets and text variables contained in a data group.

ELEMENT : The text elements contained in a text array are enumerated.

IterationVariable
Upon each iteration, the current enumeration variable element is added to the iteration variable. Depending on the
enumeration type, this can be either a single value, a segment or event of the enumeration variable, or a complete
channel belonging to a data group.

EnumerationVariable Variable whose elements are to be enumerated.

Description
The end of a FOREACH-loop is denoted by the command END.

The run through a FOREACH-loop can be interrupted prematurely by the command BREAK or CONTINUE.

The iteration variable may not be changed within the loop body.

The iteration variable may be changed within the loop body (except for "VALUE"), but the type must remain unchanged.

If the content of the iteration variable has changed, then at the end of a run of the loop (END/BREAK/CONTINUE), the new content is written back
into the enumeration variable.
For a read-only enumeration of the numerical values of a data set, "VALUE" is more efficient than "SAMPLE".

The construct

FOREACH SAMPLE s IN data
 ; instructions
END

is equivalent to

i = 1
WHILE i<= Leng?(data)
 s = data[i]
 ; instructions
 data[i] = s ; only if s has changed
 i = i+1
END

The construct

FOREACH CHANNEL c IN group
 ; instructions
END

is equivalent to

i = 1
WHILE i<= GrChanNum?(group)
 c = group:[i]
 ; instructions
 group:[i] = c ; Only if c has been changed.
 i = i+1
END

The enumeration variable type must be compatible with the enumeration type. For instance, if EVENT is specified as the type, the enumeration
variable must be an event-based data set. The enumeration type CHANNEL, by contrast, requires a data group.

imc FAMOS Func on Reference - 426 -

(c) 2024 imc Test & Measurement GmbH

The enumeration can not be conducted across segment- or event boundaries. For instance, if SAMPLE is used and the enumeration variable is a
segmented data set, then the segment desired must additionally be selected:

FOREACH SAMPLE s IN SegmentedData[12]

In order to enumerate all of a data set's values with events and segments, it is also possible to nest multiple loops:

FOREACH EVENT ev IN data
 FOREACH SEGMENT seg IN ev
 FOREACH SAMPLE s IN seg
 ; instructions
 END
 END
END

Use loops with caution. Many tasks for which the use of FOREACH SAMPLE enumerations would be convenient (e.g. searching the data set for
particular criteria and possibly editing of located points of interest) can be handled much more efficiently by means of skillful application of
mathematical and analytical functions in FAMOS.

Examples:
In a data set [data], interference is to beeliminated. These are identified by a value > 1000. These peaks are replaced by the respectively valid
predecessor value.

lastValid = 0
FOREACH SAMPLE s in data
 IF s > 1000
 s = lastValid
 ELSE
 lastValid = s
 END
END

In an event-based data set, all events are identified whose maximum is > 0 , and these are copied to a new data set.

newdata = EMPTY
FOREACH EVENT ev IN data
 IF max(ev) > 0
 EventAppend(newData, ev, 0)
 END
END

All of a data group's channels whose standard deviation is higher than 2 are subjected to smoothing:

FOREACH CHANNEL c in group
 IF StDev(c) > 2
 c = Smo5(c)
 END
END

A text array [AllPathNames] contains the complete path name of files to be loaded:

FOREACH ELEMENT path in AllPathNames
 FileLoad(path,"", 0)
END

See also:
FOR, WHILE

imc FAMOS Func on Reference - 427 -

(c) 2024 imc Test & Measurement GmbH

FrequencyResponse

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

FRF, Frequency response function. Calculated by means of FFT.

Declaration:
FrequencyResponse (InputChannel, OutputChannel, WindowWidth, WindowType, Overlapping, Type [, Base2]) ->
Result

Parameter:

InputChannel The reference channel. A system excitation. Input channel, scaled in seconds.

OutputChannel The (delayed) output channel. A system response. InputChannel and OutputChannel have the same time base and are scaled
in seconds.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Type Method of calculating the frequency response function. (x: InputChannel, y: OutputChannel, G: PowerSpectrum, F: Spectrum)

0 : H1: Gxy / Gxx: Measurement with noisy output signal, calculation by means of autospectrum or cross spectrum

1 : H2: Gyy / Gyx: Measurement with noisy input signal, calculation by means of autospectrum or cross spectrum

2 : HV: (Gxy / |Gxy |) * sqrt (Gyy / Gxx): Geometric mean of H1 and H2. Noisy input and output.

3 : H: Fy / Fx: Not recommended!, OutputSpectrum / InputSpectrum.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result The result is complex, i.e., it has a magnitude and a phase. The phase is given as being in the range -180 ... + 180.

Description:
The frequency response function is calculated by linear averaging of the power spectra.

The averaging is performed on the real and imaginary parts separately.

This calculation becomes significant only if there are many values to be averaged.

Examples:

FRF = FrequencyResponse (Force, Movement, 1000, 0, 50, 0, 0)

This calculates a sequence of 1000 point-power-spectra, which each overlap their neighbors by 50%. A force operates on a mechanical part. The
part's movement is measured on the opposite end. The FRF of Type H1 is determined from the averaged power spectra.

See also:
CrossPowerDS, Coherence, PhaseContinuous

imc FAMOS Func on Reference - 428 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

FsCopyFile

Copy files or folders

Declaration:
FsCopyFile (TxSourceFile, TxTargetFile, Option, Depth) -> Status

Parameter:

TxSourceFile Source file name

TxTargetFile Target file name

Option Option

0 : Don't overwrite existing files

1 : Only copy newer files

2 : Always overwrite existing files

Depth Copy only folder contents or also subordinate folders?

0 : Copy only specified folder

1 : Include subordinate folders

Status

Status Function result status

0 : Function was successful

-1 : An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Description:
This function copies files or folders. The parameter Depth can be used to set whether to copy subordinate folders also.

Declaration of source file name

The name may not be a relative path location.
The name may contan filecards, if desired.
If a unique folder or filename is specified, it must already exist.
If a unique name designates a file, the parameter Depth doesn't matter.

Declaration of target filename

The name may not be a relative path location.
The name may not contain wildcards.
If wildcards are used in the source name, the target name must be an already existing folder.
If the source is a unique fileame and the target is an existing folder, the filename is adopted by the target.

Examples:
All files of the directory 'H:\new' having the extension *.raw are to be copied to the directory 'd:\archive\0003'. Only newer files are copied.

erg=FsCopyFile("H:\new*.raw","d:\a\0003",1,0)
IF erg=-1
 error$=FsGetLastError()
END

The folder "c:\temdat\00001" and all its contents are copied to "g:\archiv\".

erg=FsCopyFile("c:\temdat\00001","g:\archiv\",1,1)
IF erg=-1
 error$=FsGetLastError()
END

See also:
FsMoveFile, FsGetLastError

imc FAMOS Func on Reference - 429 -

(c) 2024 imc Test & Measurement GmbH

FsCreateDirectory

Create folder

Declaration:
FsCreateDirectory (TxDirName) -> Status

Parameter:

TxDirName Folder name

Status

Status Function result status

0 : Function was successful

-1 : An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Description:
This function creates folders, including folders with multiple subordinate folders. A complete path location must be supplied.

The declaration in TxDirName may not contain the wildcards '*' or '?'

The function can return the following values:

0 Folder creation successful
-1 An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Examples:
In the existing folder 'L:\Temp', the subordinate folders 'Dat' and '00001' are to be created.

dir$="l:/temp/dat/00001"
result=FsCreateDirectory(dir$)
IF result<>0
 error$=FsGetLastError()
END

See also:
FsRemoveDirectory

imc FAMOS Func on Reference - 430 -

(c) 2024 imc Test & Measurement GmbH

FsDeleteFile

Delete file(s)

Declaration:
FsDeleteFile (TxFileName) -> Amount

Parameter:

TxFileName Filename

Amount

Amount Amount of deleted files

>=0 : Amount of deleted files

-1 : Error. Use FsGetLastError() to obtain description.

Description:
The function deletes one or more files. The filename may contain the widcards '*' and '?' if desired.

Read-only files cannot be deleted using this function.

The fnction returns the numbr of files deleted.

The complete path location must be specified.

Any errors occurring can be investigated using the function FsGetLastError().

Examples:
All files from the folder c:\test having the extension .raw are deleted.

file$="c:\test*.raw"
n=FsDeleteFile(file$)
error$=FsGetLastError()

See also:
FsMoveFile, FsGetLastError

imc FAMOS Func on Reference - 431 -

(c) 2024 imc Test & Measurement GmbH

FsDlgSelectDirectory

Folder selection dialog

Declaration:
FsDlgSelectDirectory (TxTitle, TxStartDir, Option) -> TxDirname

Parameter:

TxTitle Dialog title bar

TxStartDir Starting folders

Option Option

0 : Standard

1 : With edit field for directory name

TxDirname

TxDirname Complete folder name

Description:
This function allows a folder to be selected via a dialog.

If TxTitle is empty, "Choose folder" is used as the title.
If the starting folder specified doesn't actually exist, the FAMOS data folder serves as the starting folder.
The function returns the path location of the selected folder.
If the dialog is aborted, the return value is empty.
Position and size of the dialog can be set with the function SetBoxPos().

Examples:

dir$ = FsDlgSelectDirectory("Folder", "c:\copy", 0)
IF TLeng(dir$) > 0
 FileListID = FsFileListNew(dir$, "*.*", 2, 1, 0)
 n=FsFileListGetCount(FileListID)
 i=1
 WHILE i <= n
 file$=FsFileListGetName(FileListID,i)
 ;
 i=i+1
 END
 FsFileListClose(FileListID)
END

See also:
FsFileListNew, FsFileListGetCount, FsFileListGetName, FsFileListClose, FsGetLastError

imc FAMOS Func on Reference - 432 -

(c) 2024 imc Test & Measurement GmbH

FsDlgSelectFiles

File selection dialog

Declaration:
FsDlgSelectFiles (TxTitle, TxStartDir, TxPattern, Reserved) -> FileListID

Parameter:

TxTitle Dialog title bar

TxStartDir Starting folder

TxPattern File filter

Reserved Reserved parameter, always 0

FileListID

FileListID File list ID value

>=1 : File list ID value

-1 : Error. Use FsGetLastError() to obtain description.

-2 : Dialog aborted.

Description:
This function allows multiple files to be selected via a dialog.

If no string is entered for TxTitel, the dialog has a default title bar.
If the entry TxStartDir for the starting folder is invalid or empty, the FAMOS data folder is used.
If the parameter TxPattern is empty, then the filename is *.* and the file type is "All files" (*.*).
If the TxPattern value is "*.raw", the filename is *.raw and the option for the file type control is "All files(*.*)".
If the TxPattern value is "Measurement file | *.dat", the filename is *.raw and the option for the file type control is"Measurement data
(*.dat)" of "All files(*.*)".

Examples:

FileListID=FsDlgSelectFiles("Auswahl","c:\copy","*.*",0)
n=FsFileListGetCount(FileListID)
i=1
WHILE i <= n
 file$=FsFileListGetName(FileListID,i)
 ;
 i=i+1
END

See also:
FsFileListNew, FsFileListGetCount, FsFileListGetName, FsFileListClose, FsGetLastError

imc FAMOS Func on Reference - 433 -

(c) 2024 imc Test & Measurement GmbH

FsFileExists

Verifies whether the file or the folder exists

Declaration:
FsFileExists (TxPathName) -> Result

Parameter:

TxPathName Pathname

Result

Result Result

-1 : Error

0 : File or folder does not exist

1 : The pathname matches an existing file

2 : The pathname matches an existing folder

Description:
With this function it is possible to test whether a file or a folder exists.

The specification in TxPathName may not contain global characers such as '*' or '?'

In case of error, the function returns the value -1. The error cause can be determined using the function FsGetLastError().

imc FAMOS Func on Reference - 434 -

(c) 2024 imc Test & Measurement GmbH

FsFileListClose

Deletes file list

Declaration:
FsFileListClose (FileListID)

Parameter:

FileListID File list ID

Description:
The function deletes either all file lists or a particular one. Any file lists no longer required should be disposed of using this function.

The File-Kit can administer a maximum of 20 file lists.

If -1 is entered as the FileListID parameter, all existing file lists are deleted.

Examples:
The example shows a typical application of the function FsFileListClose().

A file list is created using the function FsDlgSelectFiles().

An evaluation of the contents is performed in the program loop.

In the end, the file list is deleted.

FileListID = FsDlgSelectFiles("Select file", "c:\copy", "*.*", 0)
IF FileListID>0
 n=FsFileListGetCount(FileListID)
 i=1
 WHILE i <= n
 ro = FsFileListGetAttribute(FileListID, i, 1)
 :
 i=i+1
 END
 FsFileListClose(FileListID)
END

See also:
FsFileListNew, FsFileListGetCount, FsFileListGetName, FsFileListGetSize, FsFileListGetTime, FsFileListGetAttribute, FsDlgSelectFiles,
FsGetLastError

imc FAMOS Func on Reference - 435 -

(c) 2024 imc Test & Measurement GmbH

FsFileListGetAttribute

Determines a file attribute of a file from the file list

Declaration:
FsFileListGetAttribute (FileListID, Index, Attribute) -> OnOff

Parameter:

FileListID File list ID value

Index Index of a file list entry. The index begins at 1 and ends with the number determined by the function FsFileListGetCount().

Attribute Desired file attribute

1 : Read-only

2 : Hidden

3 : Archive

OnOff

OnOff File attribute

-1 : Error. Use FsGetLastError() to obtain description.

0 : File attribute is not set

1 : File attribute is set

Description:
This function can be used to determine individual file attributes of a file or folder from the file list.

If the list's ID value is invalid or if the entry's index is outside of the present range, -1 is returned. The function FsGetLastError() can be used to
determine the error cause.

Examples:
In this example, the read-only attribute of all files and folders from the file list is polled.

Multiple files can be selected in a selection dialog. These files are internally read in to a file list and subsequently read out.

In this casem the read-only attribute is determined using the function FsFileListGetAttribute().

FileListID = FsDlgSelectFiles("Select file", "c:\copy", "*.*", 0)
IF FileListID>0
 n=FsFileListGetCount(FileListID)
 i=1
 WHILE i <= n
 ro = FsFileListGetAttribute(FileListID, i, 1)
 :
 i=i+1
 END
 FsFileListClose(FileListID)
END

See also:
FsFileListNew, FsFileListGetCount, FsFileListGetName, FsFileListGetSize, FsFileListGetTime, FsFileListClose, FsDlgSelectFiles, FsGetLastError

imc FAMOS Func on Reference - 436 -

(c) 2024 imc Test & Measurement GmbH

FsFileListGetCount

Determines number of file list entries

Declaration:
FsFileListGetCount (FileListID) -> Amount

Parameter:

FileListID File list ID-value

Amount

Amount Amount of entries in file list

>=0 : Number of entries in file list

-1 : Error. Use FsGetLastError() to obtain description.

Description:
The function determies the number of entries in a file list. The file list was previously created by the function FsFileListNew(). The ID value
returned by the function FsFileListNew() must be provided as the parameter. If the function value is -1, an error has occurred. The error cause can
be determined using the function FsGetLastError().

Examples:
Read out and determine the amount of all files with the extension DAT from the folder 'c:\data'

 FileListID= FsFileListNew("c:\data\", "*.dat", 2, 1, 1)
 n=FsFileListGetCount(FileListID)

See also:
FsFileListNew, FsFileListGetName, FsFileListGetSize, FsFileListGetTime, FsFileListGetAttribute, FsFileListClose, FsGetLastError

imc FAMOS Func on Reference - 437 -

(c) 2024 imc Test & Measurement GmbH

FsFileListGetName

Determines file names in a file list

Declaration:
FsFileListGetName (FileListID, Index) -> TxPathname

Parameter:

FileListID File list ID value

Index Index of a file list entry. The index begins at 1 and ends with the number determined by the function FsFileListGetCount().

TxPathname

TxPathname Complete filename. The string is empty if an error occurs.

Description:
This function reads filenames out of a file list. The file list must previously be created using the function FsFileListNew() or FsDlgSelectFiles().

If the list's ID value is invalid or the entry's index is outside of the present range, an empty string is returned. The error cause can be determned
with the help of the function FsGetLastError().

Examples:
Multiple files can be selected in a selection dialog.

These files are read in to a file list internally and subsequently read out.

The function FsFileListGetName() finds the filenames.

FileListID = FsDlgSelectFiles("Select file", "c:\copy", "*.*", 0)
IF FileListID>0
 n=FsFileListGetCount(FileListID)
 i=1
 WHILE i <= n
 file$=FsFileListGetName(FileListID,i)
 ;
 i=i+1
 END
 FsFileListClose(FileListID)
END

See also:
FsFileListNew, FsFileListGetCount, FsFileListGetSize, FsFileListGetTime, FsFileListGetAttribute, FsFileListClose, FsDlgSelectFiles, FsGetLastError

imc FAMOS Func on Reference - 438 -

(c) 2024 imc Test & Measurement GmbH

FsFileListGetSize

Return the size of a file from a file list

Declaration:
FsFileListGetSize (FileListID, Index) -> Size

Parameter:

FileListID File list ID value

Index Index of a file list entry. The index begins at 1 and ends with the number determined by the function FsFileListGetCount().

Size

Size File size in Bytes

>=0 : GFile size in Bytes

-1 : Error. Use FsGetLastError() to obtain description.

-2 : The entry is a folder.

Description:
This function finds the size of a file from the file list. The file list must previously be created using either of the functions FsFileListNew() or
FsDlgSelectFiles().

If the list ID value is invalid of if the entry's index is outside of the present range, -1 is returned. The function FsGetLastError() can be used to
determne the error cause.

If the entry is for a folder, the return value is -2.

Examples:
Multiple files can be selected in a selection dialog.

These files are read in to a file list internally and subsequently read out.

The file size is found by the function FsFileListGetSize().

FileListID = FsDlgSelectFiles("Select file", "c:\copy", "*.*", 0)
IF FileListID>0
 n=FsFileListGetCount(FileListID)
 i=1
 WHILE i <= n
 size=FsFileListGetSize(FileListID,i)
 ;
 i=i+1
 END
 FsFileListClose(FileListID)
END

See also:
FsFileListNew, FsFileListGetCount, FsFileListGetName, FsFileListGetTime, FsFileListGetAttribute, FsFileListClose, FsDlgSelectFiles, FsGetLastError

imc FAMOS Func on Reference - 439 -

(c) 2024 imc Test & Measurement GmbH

FsFileListGetTime

Returns the time last modified for a file from the file list

Declaration:
FsFileListGetTime (FileListID, Index) -> Time

Parameter:

FileListID File list ID value

Index Index of a file list entry. The index begins at 1 and ends with the number determined by the function FsFileListGetCount().

Time

Time Time of last modification in FAMOS-format

>=0 : File time

-1 : Error. Use FsGetLastError() to obtain description.

Description:
The function returns the time a file from the file list was last modified. The file list must previously have been created using either of the
functions FsFileListNew() or FsDlgSelectFiles().

If the list's ID value is invalid or if the entry's index is outside of the present range, -1 is returned. The function FsGetLastError() can be used to
determine the error cause.

If the entry is for a folder, the folder's time of creation is returned.

Examples:
Multiple files can be selected in a selection dialog. These files are internally read in to a file list and subsequently read out.

The file time is determined using the function FsFileListGetTime(). This is available in FAMOS-format.

FileListID = FsDlgSelectFiles("Select file", "c:\copy", "*.*", 0)
IF FileListID>0
 n=FsFileListGetCount(FileListID)
 i=1
 WHILE i <= n
 time=FsFileListGetTime(FileListID,i)
 time$=TimeInText(time,3)
 ;
 i=i+1
 END
 FsFileListClose(FileListID)
END

See also:
FsFileListNew, FsFileListGetCount, FsFileListGetName, FsFileListGetSize, FsFileListGetAttribute, FsFileListClose, FsDlgSelectFiles, FsGetLastError

imc FAMOS Func on Reference - 440 -

(c) 2024 imc Test & Measurement GmbH

FsFileListNew

Read-in of files and folders

Declaration:
FsFileListNew (TxPathname, TxFilePattern, Selection, Depth, Sort) -> FileListID

Parameter:

TxPathname Folder

TxFilePattern File mask for read-in of files and folders

Selection Selection of data to read in.

0 : Only files

1 : Only folders

2 : Files and folders

Depth Read-in folder only or also subordinate folders

0 : Only specified folder

1 : Include subordinate folders

Sort Sorting criterion

0 : Unsorted

1 : Name (alphabetically)

2 : Time

3 : Size

4 : Name (natural sort order)

FileListID

FileListID File list ID-value

>=1 : Valid file list ID-value

-1 : Error. Use FsGetLastError() to obtain description.

Description:
This function determines the files and/or subordinate folders belonging to a specified folder. The file and folder names are gathered into a file
list. In this list, the entries are sorted by a variety of criteria. The function FsFileList* can be used to read out the list contents. If executed
sucessfully, the function returns an ID-value for the file list. This value must be provided as the parameter to the FsFileList* functions.

The file kit can manage a maximum of 20 file lists at the same time. File lists that are no longer required should be closed with the
FsFileListClose() function.

With the TxFilemask, special files can be read in. If, for instance, "*.raw" is specified, only files with this extension are included. If folders
are also to be included, enter "*.*" here.
If the character "|" is added to the file mask, then all files and folders are returned, which do not match the mask.
The depth is used to define whether only the files and folders belonging to the specified folder are to be found, or also those of all folders
below it are to be included.
Sorting can be performed according to name, size, or age. No matter which criterion is used, folders are listed first. If sorted by size, the files
are listed from largest to smallest. If sorted by age, the files are listed from the most recent to the oldest.
With 'natural sort order' (Sort = 4), digits in the names are considered as numerical value rather than text. E.g. 'Channel2' is ordered before
'Channel10'. The Windows Explorer (since Windows 7) uses the same sort order.
Multithreading: The Filelist-ID returned by the function is valid globally (for all execution threads).

Examples:
The function FsDlgSelectDirectory() is used to set a folder in which all files and folders are to be registered. This also includes the subordinate
folders. The entries found are ordered in the list alphabetically.

dir$ = FsDlgSelectDirectory("Folder", "c:\copy",0)
IF TLeng(dir$) > 0
 FileListID= FsFileListNew(dir$, "*.*", 2, 1, 1)
 n=FsFileListGetCount(FileListID)
 i=1
 WHILE i <= n

imc FAMOS Func on Reference - 441 -

(c) 2024 imc Test & Measurement GmbH

 file$=FsFileListGetName(FileListID,i)
 ;
 i=i+1
 END
 FsFileListClose(FileListID)
END

See also:
FsFileListGetCount, FsFileListGetName, FsFileListGetSize, FsFileListGetTime, FsFileListGetAttribute, FsFileListClose, FsGetLastError

imc FAMOS Func on Reference - 442 -

(c) 2024 imc Test & Measurement GmbH

FsGetDiskFreeSpace

Determine free space on a drive

Declaration:
FsGetDiskFreeSpace (TxDrive) -> SvFreeSpace

Parameter:

TxDrive Specification of drive

SvFreeSpace

SvFreeSpace Free space on drive

Description:
The functin determnes how much space is free on a drive.

Examples of valid declarations for the parameter TxDrive would be 'c', 'c:', 'c:\', 'c:\test', 'c:\test\file.dat'.

The function returns the following values:

-1 An error has occurred. The function FsGetLastError() can be used to determine the error cause.
>=0 Free space in Bytes

Examples:
The free space on drive 'D:' is determined.

Freespace = FsGetDiskFreeSpace("d:")
IF Freespace=-1
 error$=FsGetLastError()
END

See also:
FsGetLogicalDrives, FsGetDriveType

imc FAMOS Func on Reference - 443 -

(c) 2024 imc Test & Measurement GmbH

FsGetDriveType

Determine a logical drive's type

Declaration:
FsGetDriveType (TxDrive) -> SvType

Parameter:

TxDrive Declaration of drive

SvType

SvType Drive type

-1 : Error

2 : Floppy or ZIP drive

3 : Hard drive

4 : Network drive

5 : CD-ROM drive

6 : RAM drive

Description:
The function determinesa drive's type.

Examples of valid declarations for the parameter TxDrive would be: 'c', 'c:', 'c:\', 'c:\test', 'c:\test\file.dat'.

The function returns the following values:

-1 An error has occurred. The function FsGetLastError() can be used to determine the error cause.
2 Floppy or ZIP drive
3 Hard drive
4 Network drive
5 CD-ROM drive
6 RAM-drive

Examples:
The drive type of the logical drive 'F' is determined.

drivetyp = FsGetDriveType("f:\")
IF drivetyp=-1
 error$=FsGetLastError()
END

See also:
FsGetLogicalDrives, FsGetDiskFreeSpace

imc FAMOS Func on Reference - 444 -

(c) 2024 imc Test & Measurement GmbH

FsGetFileAttributes

Determine file attributes

Declaration:
FsGetFileAttributes (TxFileName, Attribute) -> OnOff

Parameter:

TxFileName Filename

Attribute File attribute

1 : Read-only

2 : Hidden

3 : Archive

OnOff

OnOff File attribute

-1 : Error

0 : File attribute not set

1 : File attribute is set

Description:
The function discloses whether certain file attributes are set.

The declaration in TxFileName may not contain the wildcards '*' or '?'

In case of error, the function returns -1. The function FsGetLastError() can be used to determine the error cause.

Examples:
The "Read-only" status of a file is determined and switched.

file$="\\server\copy\dirwal.h"
ro=FsGetFileAttributes(file$,1)
IF ro=1
 ro=0
ELSE
 ro=1
END
ok=FsSetFileAttributes(file$,1,ro)

imc FAMOS Func on Reference - 445 -

(c) 2024 imc Test & Measurement GmbH

FsGetFileNames

Read-in of files and folders.

Declaration:
FsGetFileNames (TxPathname, TxFilePattern, Selection, Depth, Sort) -> TxArrayFileNames

Parameter:

TxPathname Folder

TxFilePattern File mask for read-in of files and folders

Selection Selection of data to read in.

0 : Only files

1 : Only folders

2 : Files and folders

Depth Read-in folder only or also subordinate folders

0 : Only specified folder

1 : Include subordinate folders

Sort Sorting criterion

0 : Unsorted

1 : Name (alphabetically)

2 : Time

3 : Size

4 : Name (natural sort order)

TxArrayFileNames

TxArrayFileNames Text-Array with the filenames and folder names identified

Description:
This function determines the files and/or subordinate folders belonging to a specified folder. The file and folder names are gathered into a file
list. In this list, the entries are sorted by a variety of criteria. The return value is of the type text-array.

In case of error, an empty text-array is returned.

With the TxFilemask, special files can be read in. If, for instance, "*.raw" is specified, only files with this extension are included. If folders
are also to be included, enter "*.*" here.
If the character "|" to the file mask, then all files and folders are returned, which do not match the mask.
The depth is used to define whether only the files and folders belonging to the specified folder are to be found, or also those of all folders
below it are to be included.
Sorting can be performed according to name, size, or age. No matter which criterion is used, folders are listed first. If sorted by size, the files
are listed from largest to smallest. If sorted by age, the files are listed from the most recent to the oldest.
With 'natural sort order' (Sort = 4), digits in the names are considered as numerical value rather than text. E.g. 'Channel2' is ordered before
'Channel10'. The Windows Explorer (since Windows 7) uses the same sort order.

Examples:
From a given folder all files matching "*.dat" are loaded:

fileNames = FsGetFileNames("c:\imc\dat","a*.dat", 0, 0, 0)
FOREACH ELEMENT name in fileNames
 FileLoad(name, "", 0)
END

See also:
FsGetFileSize, FsGetFileTime, FsGetFileAttributes, FsGetLastError

imc FAMOS Func on Reference - 446 -

(c) 2024 imc Test & Measurement GmbH

FsGetFileSize

Determines the size of a file

Declaration:
FsGetFileSize (TxFileName) -> Size

Parameter:

TxFileName Filename

Size

Size File size in Bytes

Description:
The function returns a file's size in Bytes.

The declaration in TxFileName may not contain the wildcards '*' or '?'

In case of error, the function returns the follwoing results:

-1 Error. Use FsGetLastError() to obtain description.
-2 Error. Object is folder, not file.

Examples:
The size of the file round.raw is determined.

file$="l:\temp\00284\round.raw"
size=FsGetFileSize(file$)
IF size=-1
 error$=FsGetLastError()
ELSE
 IF size=-2
 error$="Object is a folder"
 END
END

See also:
FsFileListGetSize

imc FAMOS Func on Reference - 447 -

(c) 2024 imc Test & Measurement GmbH

FsGetFileTime

Determines time of last modification of file, or time of creation of folder

Declaration:
FsGetFileTime (TxFileName) -> Time

Parameter:

TxFileName Filename

Time

Time Time in FAMOS-format

Description:
If a file is concerned, the time of last modification is returned.

If TxFileName is a folder, the time it was created is returned.

The return value representing the time is in FAMOS-format.

The function returns -1 if an error occurs. The error cause can be determined using the function FsGetLastError().

The declaration in TxFileName may not contain the wildcards '*' or '?'

Examples:
The data of creation of the folder '00284' is determined and expressed as a text.

file$="l:\temp\00284\"
time=FsGetFileTime(file$)
time$=TimeInText(time,3)

The date last modified for the file 'sparn01.raw' is determined and expressed as a text.

file$="l:\temp\00284\sparn01.raw"
time=FsGetFileTime(file$)
IF time=-1
 error$=FsGetLastError()
ELSE
 time$=TimeInText(time,3)
END

imc FAMOS Func on Reference - 448 -

(c) 2024 imc Test & Measurement GmbH

FsGetLastError

Determines the last error occurring in an Fs*-function

Declaration:
FsGetLastError () -> TxError

Parameter:

TxError

TxError Error text

Description:
The function returns an error text about the last error to occur.

All Fs*-functions returning the function value -1 indicate that an error occurred during execution. The exact error cause can be queried by this
function.

The last error to occur is deleted upon calling an Fs*-function. The exceptions are the functions FsGetLastError() and FsGetLastErrorNumber().

For an error evaluation according to programming aspects, the function FsGetLastErrorNumber() is better adapted. It returns an error number.

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Examples:

See also:
FsGetLastErrorNumber

imc FAMOS Func on Reference - 449 -

(c) 2024 imc Test & Measurement GmbH

FsGetLastErrorNumber

Determine last error number of an Fs*-function

Declaration:
FsGetLastErrorNumber () -> SvError Number

Parameter:

SvError Number

SvError Number Error number

10001 : No filename specified

10002 : Invalid file attribute

10003 : Invalid time specification

10004 : Invalid option

10005 : Invalid selection

10006 : Invalid sorting criterion

10007 : Invalid file list ID

10008 : Invalid file list index

10010 : Too many file lists

10011 : Cannot create new file list

10012 : Folder is not empty

10013 : Folder does not exist

10014 : The current folder cannot be deleted

10015 : For security reasons, root-folders cannot be deleted with this function.

10016 : Relative path location not allowed

10020 : File or folder name contains '*' or '?'

10021 : File or folder doesn't exist

10022 : Invalid specification for file or folder name

10023 : Access to file denied (folder is read-only)

10024 : Drive not ready

10025 : Drive is full

10026 : Invalid path location

10027 : File exists already

10028 : Drive doesn't exist

10029 : Target name must be an existing folder.

Description:
The function returns the error number of last error to occur.

All Fs*-functions returning the function value -1 indicate that an error occurred during execution. The exact error cause can be queried by this
function.

The last error to occur is deleted upon calling an Fs*-function. The exceptions are the functions FsGetLastError() and FsGetLastErrorNumber().

If a text is needed as an error desription, use the function FsGetLastError().

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Examples:

See also:
FsGetLastError

imc FAMOS Func on Reference - 450 -

(c) 2024 imc Test & Measurement GmbH

FsGetLogicalDrives

Determine logical drive

Declaration:
FsGetLogicalDrives () -> TxDrives

Parameter:

TxDrives

TxDrives Listing of lettered drives

Description:
The function finds all logical drives present in the computer.

The corresponding letters denoting the drives are returned as strings.

Examples:
After carrying out the instruction, drives has the following content: 'ACDEFGHIJKLMN'.

drives = FsGetLogicalDrives()

See also:
FsGetDriveType, FsGetDiskFreeSpace

imc FAMOS Func on Reference - 451 -

(c) 2024 imc Test & Measurement GmbH

FsGetLongPathName

Conversion of a short filenam to long form

Declaration:
FsGetLongPathName (TxShortName) -> TxLongName

Parameter:

TxShortName Short filename

TxLongName

TxLongName Long filename

Description:
The function converts a short file or folder name to the long form.

The function can only work if the file or folder actually exists.

The function returns an empty string if an error occurs. The function FsGetLastError() can be used to determine the error cause.

The declaration of the short filename may not contain the wildcards '*' or '?'.

A complete filename must be supplied.

Examples:
A short filename is converted to a long name.

Result: "e:\kit32\Filekit\filemanager.h".

file$="e:\kit32\filekit/filema~1.h"
longname$=FsGetLongPathName(file$)

See also:
FsGetShortPathName

imc FAMOS Func on Reference - 452 -

(c) 2024 imc Test & Measurement GmbH

FsGetParentDirectoryName

Determines a folder's parent folder

Declaration:
FsGetParentDirectoryName (TxDirName) -> TxParentDirName

Parameter:

TxDirName Folder name

TxParentDirName

TxParentDirName Name of the parent folder

Description:
The function finds the parent folder of the folder whose name is specified.

The folder must already exist. In case of an error, an empty string is returned.

Examples:
The parent folder of the folder "d:\imc\dat\" is to be found.

parentdir$=FsGetParentDirectoryName("d:\imc\dat\")

The variable parentdir$ contains the string "d:\imc". The next call returns "d:\"

parentdir$=FsGetParentDirectoryName(parentdir$)

All further calls at this point would return "d:\".

See also:
FsGetShortPathName

imc FAMOS Func on Reference - 453 -

(c) 2024 imc Test & Measurement GmbH

FsGetShortPathName

Conversion of a long filename to a short one

Declaration:
FsGetShortPathName (TxLongFilename) -> TxShortFilename

Parameter:

TxLongFilename Long filename

TxShortFilename

TxShortFilename Short filename

Description:
The function converts a long file or folder name to the corresponding short form of the name.

The short filename is in MSDOS 8.3 - format.

The function returns an empty string if an error occurs. The function FsGetLastError() can be used to determine the error cause.

The declaration of the long filename may not contain the wildcards '*' or '?'.

A complete filename must be supplied

Examples:
The long folder name "c:\multimedia files\music\" appears after conversion as "c:\multim~1\music\".

dir$="c:\multimedia files\music\"
short$=FsGetShortPathName(dir$)

imc FAMOS Func on Reference - 454 -

(c) 2024 imc Test & Measurement GmbH

FsMakePath

Compose complete filename

Declaration:
FsMakePath (TxDrive, TxDirectory, TxName, TxExtension) -> TxFilename

Parameter:

TxDrive Specification of drive

TxDirectory Specification of directory

TxName Filename

TxExtension File extension

TxFilename

TxFilename Complete filename

Description:
This function constructs a complete filename from filename components.

The following parameters in TxDrive produce the same result:

'c:\'
'c:'
'c'

In TxDirectory, it doesn't matter if the string begins or ends with a backslash.

The file extension can be entered with or without a preceding period.

Examples:
The filename 'c:\imc\bin\famos.exe' is to be constructed:

drive$="c:"
dir$="\mc\bin"
name$="famos"
ext$="exe"
file$=FsMakePath(drive$,dir$,name$,ext$)

See also:
FsSplitPath

imc FAMOS Func on Reference - 455 -

(c) 2024 imc Test & Measurement GmbH

FsMoveFile

Move files and folders

Declaration:
FsMoveFile (TxSourceFile, TxtargetFile, Option, Depth) -> Status

Parameter:

TxSourceFile Source file name

TxtargetFile Target file name

Option Option

0 : Don't overwrite existing files

1 : Only move newer files

2 : Always overwrite existing files

Depth Move only folder contents or also subordinate folders?

0 : Only move folder's contents

1 : Include subordinate folders

Status

Status Function result status

0 : Function was successful

-1 : An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Description:
This function moves files or folders. The parameter Depth determines whether all subordinate folders are also to be moved.

Declaration of source file name

The name may not be a relative path location.
The name may contain wildcards.
If a unique folder or filename is specified, it must be an existing one.
If the unique name designates a file, the depth parameter doesn't matter.

Declaration of target file name

The name may not be a relative path location.
The name may not contain wildcards.
If wildcards are used in the source name, the target name must be an already existing folder.
If the source is a unique fileame and the target is an existing folder, the filename is adopted by the target.

Examples:
A file 'H:\Temp\2001.dat' is to be moved to 'c:\archiv\2001.raw' and renamed. If the file 'c:\archiv\2001.raw' already exists, no moving takes place.

erg=FsMoveFile("H:\Temp\2001.dat","c:\archiv\2001.raw",0,0)
IF erg=-1
 error$=FsGetLastError()
END

All files from the folder 'H:\new' with the extension *.raw are to be moved to the folder d:\a\0003. In this case, only relatively new files are
moved.

erg=FsMoveFile("H:\new*.raw","d:\a\0003",1,0)
IF erg=-1
 error$=FsGetLastError()
END

The folder 'H:\Temp\' including all its subordinate folders and files is moved to the folder e:\dat\0003.

erg=FsMoveFile("H:\Temp\","e:\dat\0003",0,1)
IF erg=-1
 error$=FsGetLastError()
END

imc FAMOS Func on Reference - 456 -

(c) 2024 imc Test & Measurement GmbH

See also:
FsCopyFile, FsRenameFile, FsGetLastError

imc FAMOS Func on Reference - 457 -

(c) 2024 imc Test & Measurement GmbH

FsPathCombine

Combines two strings to a file path

Declaration:
FsPathCombine (TxPathName1, TxPathName2) -> TxPathName

Parameter:

TxPathName1 First pathname to be combined

TxPathName2 Second pathname to be combined

TxPathName

TxPathName The composite pathname

Description:
This function joins two path designations to one pathname.

If one of the two specified pathnames is an empty string, the function returns the other pathname.

If TxPathName2 contains an absolute pathname, the function returns TxPathName2.

TxPathName2 as relative path can start with an ".." or ".":

FsPathCombine("c:\folder1\folder2", ".\folder3") => "c:\folder1\folder2\folder3"
FsPathCombine("c:\folder1\folder2", "..\folder3") => "c:\folder1\folder3"

If TxPathName2 starts with a "\", it is interpreted as root folder of the current drive (given by TxPathName1):

FsPathCombine("c:\folder1\folder2", "folder3") => "c:\folder1\folder2\folder3"
FsPathCombine("c:\folder1\folder2", "\folder3") => "c:\folder3"

In case of error, the returned string is empty.

Examples:
FsPathCombine("","") => \

FsPathCombine("abc", "") => "abc"

FsPathCombine("", "abc") => "abc"

FsPathCombine("c:\abc\", "data\file.xml") => "c:\abc\data\file.xml"

FsPathCombine("c:\abc", ".xml") => "c:\abc\.xml"

FsPathCombine("\\ww\copy\", "\lib") => "\\ww\copy\lib"

FsPathCombine("\\ww\copy\something\else", "\lib") => "\\ww\copy\lib"

FsPathCombine("\\ww\copy\", "\\lib") => "\\lib"

FsPathCombine("lib","c:\ab\datei.exe")=> "c:\ab\datei.exe

See also:
FsMakePath

imc FAMOS Func on Reference - 458 -

(c) 2024 imc Test & Measurement GmbH

FsRemoveDirectory

Delete folder

Declaration:
FsRemoveDirectory (TxDirName, Option) -> Status

Parameter:

TxDirName Folder name

Option Option

0 : Empty folder only

1 : Folder complete with files and subordinate folders

Status

Status Function result status

0 : Function was successful

-1 : An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Description:
The specified folder is deleted.

The declaration in TxFileName may not contain the wildcards '*' or '?'.

The current folder may not be deleted.

Root-directories ("c:\") cannot be deleted on grounds of security.

With the option 0, the folder is only deleted if it is empty.

Option 1 deletes the folder contents including its subordinate folders and files. Even read-only files in this folder will be deleted. Finally, the
folder itself is deleted.

The function returns the following values:

0 Folder deletion successful
-1 An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Examples:
The folder '00110' is to be deleted. With Option 0 active, this only happens if this folder is empty.

dir$="\\server\imcan\temp\00110"
result=FsRemoveDirectory(dir$,0)
IF result<>0
 error$=FsGetLastError()
END

The folder '00110' and its entire contents are to be deleted. With Option 1 active, this happens even if the folder contains read-only files.

dir$="\\server\imcan\temp\00110"
result=FsRemoveDirectory(dir$,1)
IF result<>0
 error$=FsGetLastError()
END

See also:
FsCreateDirectory, FsGetLastError

imc FAMOS Func on Reference - 459 -

(c) 2024 imc Test & Measurement GmbH

FsRenameFile

REnames file or folder

Declaration:
FsRenameFile (TxFileName, TxNewName) -> Status

Parameter:

TxFileName Current filename

TxNewName New filename

Status

Status Function result status

Description:
An existing file or folder is renamed.

Folders can only be renamed.

Files can be moved at the same time.

The declaration of either may not contain the wildcards '*' or '?'.

The following rules apply to TxFileName:

The file or folder must exist already.
The path olcation may not be relative.

The following rule applies to TxNewName:

A file or folder with this name may not already exist.
If a filename is specified without a path location, the new file is created in the old file's folder.

The function returns the following values:

0 Renaming was successful
-1 An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Examples:
Renaming a file in the FAMOS data folder.

existfile$="d:\imc\dat\b.dat"
newfile$="a.dat"
result=FsRenameFile(existfile$,newfile$)
IF result=-1
 error$=FsGetLastError()
END

Renaming and moving a file.

existfile$="c:\test\b.dat"
newfile$="e:\histroy\file28.dat"
result=FsRenameFile(existfile$,newfile$)
IF result=-1
 error$=FsGetLastError()
END

Renaming a folder.

dir$="c:\test"
newdir$="c:\histroy"
result=FsRenameFile(dir$,newdir$)
IF result=-1
 error$=FsGetLastError()
END

See also:
FsMoveFile, FsGetLastError

imc FAMOS Func on Reference - 460 -

(c) 2024 imc Test & Measurement GmbH

FsSetFileAttributes

Change file attributes

Declaration:
FsSetFileAttributes (TxFileName, Attribute, OnOff) -> Status

Parameter:

TxFileName Filename

Attribute File attribute

1 : Read-only

2 : Hidden

OnOff Set or delete attribute

0 : Delete

1 : Set

Status

Status Function result status

0 : Function was successful

-1 : An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Description:
This function allows changing of the file attributes read-only and hidden.

The declaration in TxFileName may not contain the wildcards '*' or '?'.

The function returns the followinig values:

0 Attribute change successful
-1 An error has occurred. The function FsGetLastError() can be used to determine the error cause.

Examples:
The "Read-only" status of a file is determined and switched.

file$="\\server\copy\dirwal.h"
ro=FsGetFileAttributes(file$,1)
IF ro=1
 ro=0
ELSE
 ro=1
END
ok=FsSetFileAttributes(file$,1,ro)

imc FAMOS Func on Reference - 461 -

(c) 2024 imc Test & Measurement GmbH

FsSetFileTime

Change file date and time

Declaration:
FsSetFileTime (TxFileName, Time) -> Status

Parameter:

TxFileName Filename

Time Time in FAMOS-format

Status

Status Function result status

0 : Function successful

-1 : An error has occurred. The function FsGetLastError() can be used to determine the error cause.

-2 : Specified object is a folder.

Description:
This function allows the time of a file's last modification to be altered.

The file age is changed, even if the file is write-protected.

The function can not be applied to folders.

The declaration in TxFileName may not contain the wildcards '*' or '?'

The function returns the following values:

0 Change of file age successful
-1 An error has occurred. The function FsGetLastError() can be used to determine the error cause.
-2 Specified object is a folder.

Examples:
The time last modification of the file 'bisch01.raw' is changed by one hour.

file$="l:\temp\00284\bisch01.raw"
time=FsGetFileTime(file$)
time=time+3600
ok=FsSetFileTime(file$,time)
IF ok<>0
 error$=FsGetLastError()
END

imc FAMOS Func on Reference - 462 -

(c) 2024 imc Test & Measurement GmbH

FsSplitPath

Decompose entire filename

Declaration:
FsSplitPath (TxPathname, Option) -> TxNamePart

Parameter:

TxPathname Complete filename

Option Part of name to determine.

0 : Drive

1 : Folder

2 : Filename without extension

3 : Extension

4 : Filename + extension

5 : Folder + filename + extension

6 : Last part of folder entry

7 : UNC-Share-Name

8 : Drive + Folder

TxNamePart

TxNamePart Part of name

Description:
This function lets you extract particular parts of a string which represents a complete path location (comprising drive, folder and filename).

As an example, for 'c:\imc\bin\famos.exe' the various options return:

0 c:
1 \imc\bin\
2 famos
3 .exe
4 famos.exe
5 \imc\bin\famos.exe
6 bin
8 c:\imc\bin\

With Option 7, the UNC-Pfad of a local drive can be generated. So-called "UNC-Pfade" always are involved wherever resources in the network (on
a "File-Server") are to be used. To keep things simple, a drive is often assigned to a Server-folder which gets lots of use (e.g. as a "workgroup-
drive", in Example N:). Thus, one can access a logical drive N:\ instead of \\SERVER\TEMP\, as per UNC notation.

unc_name = FsSplitPath("n:\temp", 7)
unc_name contains \\SERVER\TEMP\TEMP\

Examples:
The following commands decompose the filename file$. The results are as shown above.

file$="c:\imc\bin\famos.exe"
drive$=FsSplitPath(file$,0)
dir$=FsSplitPath(file$,1)
name$=FsSplitPath(file$,2)
ext$=FsSplitPath(file$,3)
nameext$=FsSplitPath(file$,4)
path$=FsSplitPath(file$,5)
subdir$=FsSplitPath(file$,6)

See also:
FsMakePath

imc FAMOS Func on Reference - 463 -

(c) 2024 imc Test & Measurement GmbH

FsTempFileName

Composes temporary filename

Declaration:
FsTempFileName (Option) -> TxFileName

Parameter:

Option Option

0 : Complete path location

1 : Filename + extension

2 : Folder only

TxFileName

TxFileName Filename or folder name

Description:
This function generates temporary file or folder names. The examples show the results of the individual options.

With Option 0, a unique temporary filename is generated in the Windows Temporary folder.

Option 1 is identical to Option 0. But only the filename without path location is returned.

With option 0 or 1, the function creates an empty file by that name. This file will not be deleted automatically when the program ends; delete
this file with FsDeleteFile() as necessary.

Option 2 returns the path location of the Windows Temporary folder.

If the returned string is empty, an error has occurred. The function FsGetLastError() can be used to determine the error cause.

Examples:
The options returned the following results:

tempfile$=FsTempFileName(0)

Result: C:\WINDOWS\TEMP\FAM2062.TMP

tempname$=FsTempFileName(1)

Result: FAM2063.TMP

tempdir$=FsTempFileName(2)

Result: C:\WINDOWS\TEMP\

See also:

imc FAMOS Func on Reference - 464 -

(c) 2024 imc Test & Measurement GmbH

GetLastError

Query last error

Declaration:
GetLastError () -> TxError

Parameter:

TxError

TxError Last error

Description:
By using the command OnError(), the error handling in sequences can be configured so that execution of the sequence initially continues in spite
of an error occurring. In that case the error cause is recorded and can be retrieved using this function.

Some functions, especially such which come from extension libraries (Kits), return a special return value to indicate non-critical errors. The
associated error text can also be found using this function.

After GetLastError() has been called, the internal error memory is deleted.

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Examples:
The sequence 'DoSomething' is configured by an OnError("Return")-command in such a way that when an error occurs, the system skips to the
end of the sequence. The calling sequence verifies whether an error has occurred and if so displays it in a message box.

OnError("ResumeNext")
SEQUENCE DoSomething
err = GetLastError()
IF err <> ""
 BoxMessage("Error in DoSomething", err, "!1")
END

A Panel-page is loaded by means of a Kit-function. If the file can not be loaded, a message appears which states the error cause.

ok = PnLoad("d:\templates\result.panel")
IF ok <> 0
 BoxMessage("Error", GetLastError(), "!1")
END

See also:
OnError, ThrowError

imc FAMOS Func on Reference - 465 -

(c) 2024 imc Test & Measurement GmbH

GetOption

Queries various current default settings, such as default folders and settings for math functions.

Declaration:
GetOption (TxOptionName) -> TxOptionValue

Parameter:

TxOptionName Name of the desired option, see list.

"Dir.DataFiles" : Default folder for loading/saving measurement data files. Used by the commands LOAD, SAVE and the like, as
well as the functions FileOpenDSF() and FileOpenFAS().

"Dir.Sequences" : Current sequence standard folder. Used by the command SEQUENCE. Upon starting FAMOS, initially set to
the folder specified under "Options"/ "Folders". It can be modified using either the command MDIR or the function
SetOption(). Otherwise it is the folder from which the last sequence has been loaded.

"Dir.CurrentProject" : If a project is active, the associated project folder is returned, otherwise an empty text.

"Dir.CurrentSequence" : While a sequence or dialog is running, contains the folder from which the sequence or dialog,
respectively, was loaded. This corresponds to the current FAMOS working folder. Otherwise, an empty text is returned.

"Dir.DefinitionFiles" : Returns the default folder for definitions files. These include, for example, ASCII-/EXCEL-export
templates (*.aet), import filters created with the File-Assistant (*.fas) and definitions files for external DLL-functions (*.def).

"Func.WarnLevel" : Determines which warning messages triggered during the execution of functions are displayed

"Func.NoInfoMessages" : Some functions (Stat, LFit) print their results by default in the output window. Output can be
suppressed with this option.

"Func.FFT.Window" : Determines the FFT window function. Used by functions FFT(), Spec() and the like.

"Func.FFT.Mode" : The FFT algorithm implemented requires the length of the input data set to be a power of 2. This option
determines how to deal with other data set lengths.

"Func.ResultFormat" : Determines the data format in which the functions return their results by default.

"Func.ErrorBoxes" : Some functions have the choice of responding to an error by posting an error box or by indicating the error
(silently) by their return values. To date only pertains to the file function group including FileOpenDSF() and the like.

"DLLImport.DefinitionFile" : Filename with definitions for external DLL-functions. The functions listed here are imported to
FAMOS via the general-purpose DLL-interface and can be used in sequences. The file needs to have been generated by means
of the dialog 'Options'/'Register DLL-functions'.

"Display.DecimalSeparator" : Sets the character displayed for separating real numbers' decimal places.

"DDE.Text.NumFormat" : Determines the numerical format for sending data in text format by DDE.

"DDE.Text.Delimeter" : Determines the separator(s) used between 2 numbers when sending data in text-format by DDE.

"DDE.TimeOut" : Sets the maximum amount of time FAMOS waits for an answer in DDE communication with another
application.

"Units.Ctrl.Compatible" :

"Units.Display.Greek" :

"Units.Display.Ohm" :

"Units.Create.Delim" :

"Units.Create.Nm" :

"Units.Create.Pow.1/2" :

"Units.Create.Pow.2" :

"Units.Create.Pow.3" :

"Units.Create.Pow.Neg" :

"Units.Create.u" :

"Units.Create.Num.Space" :

"Units.Create.1e3" :

"Units.Create.1e-3" :

"Units.Create./s" :

imc FAMOS Func on Reference - 466 -

(c) 2024 imc Test & Measurement GmbH

"Units.Read.cal" :

"Units.Read.Exp" :

"Units.Read.g" :

"Units.Read.Gs" :

"Units.Read.hp" :

"Units.Read.kt" :

"Units.Read.L" :

"Units.Read.lb" :

"Units.Read.oz" :

"Units.Read.pt" :

"Units.Read.quot" :

"Units.Read.s" :

"Units.Read.ton" :

"Units.Read.u" :

"Units.Reduce.C" :

"Units.Reduce.F" :

"Units.Reduce.H" :

"Units.Reduce.J" :

"Units.Reduce.Ohm" :

"Units.Reduce.Pa" :

"Units.Reduce.S" :

"Units.Reduce.T" :

"Units.Reduce.Wb" :

TxOptionValue

TxOptionValue Value of the current setting. A list of the possible text constants, referenced to the respective specified parameter, is found in
the description of the function SetOption().

Description:
This function enables querying of various default settings' values which are applied in the execution of commands and math functions.

If the setting wasn't made explicitly using the command SetOption(), the global default is used (dialogs "Options/Folders",
"Options/Functions",...).

Examples:
The default data folder currently used is determined. A sub-folder "Results" of this folder is set as the default and files are saved to this folder.

folder = GetOption("Dir.DataFiles")
SetOption("Dir.DataFiles", folder + "\results")
;...saving results
SAVE result "result.dat"

See also:
SetOption, FFTOPTION, MDIR, LDIR, SDIR

imc FAMOS Func on Reference - 467 -

(c) 2024 imc Test & Measurement GmbH

GetScale

Available in: Professional Edition and above

Requests the scaling

Declaration:
GetScale (Variable, Property) -> Value

Parameter:

Variable Variable

Property Which property?

"factor" : Scaling factor

"offset" : Scaling offset

"max" : Maximum displayable value

"min" : Minimum displayable value

"minEx" : Extended minimum displayable value

Value

Value Value

Description:
The scaling factor and scaling offset are governed by this formula:

[Physical value] = [integer number] * scaling factor + scaling offset

The scaling factor and scaling offset are only available with integer formats.

Minimum and Maximum are not values which are actually present in the data set, but represent the minimum/maximum which can be displayed
by the data format used.

The scaling factor represents the value of 1 LSB (least significant bit). This is also referred to as the resolution.

To calculate the Minimum for signed integers, the negative of the maximum integer is used, so for example -127 for 1 Byte signed. Compatible
with SetDatFormat().

To calculate the extended Minimum for signed integers, the negative of the maximum integer, minus 1 is used, so for example -128 for 1 Byte
signed.

If a data set consisting of tqo components is specified, then for an XY data set, .Y is used, for RI accordingly .R and for BP accordingly .B. The user is
able to personally select the component in the call, for example by appending .Y.

The numerical value is returned without any unit.

With Timestamp ASCII data, the information on the time stamps is issued.

For real numbers, -1e35 and 1e35 are returned as the minimum and maximum values.

There are data sets having multiple events in which the properties may differ for each event. E.g. the X values of XY data from imc DEVICES and
imc STUDIO. In such cases, you can request the property for only one specific event (index).

Examples:
LSB of a measured channel whose format is 2 Byte signed integer

LSB = GetScale (Channel_01, "factor")

Offset (shifted midpoint) of an XY-channel's Y-track

Offset = GetScale (data.y, "offset")

See also:
SetDataFormat, DataFormat?

imc FAMOS Func on Reference - 468 -

(c) 2024 imc Test & Measurement GmbH

GetSystemInfo

Inquiry for information on the program and operating system.

Declaration:
GetSystemInfo (TxInfo, TxParameter) -> CurrentValue

Parameter:

TxInfo Name of the information desired; see list.

"Famos.Version" : Returns the current program version of FAMOS as an integer, where the major release is denoted by the
hundreds decimal position and the minor release forms the last digits (with prefixed zero if needed), e.g. 603 for FAMOS 6.3.
The revision number is not taken into account.

"Famos.VersionString" : Returns the current FAMOS program version as text in the form "MAJORRELEASE.MINORRELEASE Rev.
REVISIONNUMBER"; for instance "6.3 Rev. 2".

"Famos.Edition" : Returns a number characterizing the edition currently being run. -1: Runtime, 0: Reader, 1: Standard, 2:
Professional, 3: Enterprise.

"Famos.IsX64" : Returns a 1 if the version is FAMOS x64. A 0 indicates that the version is x86 (32 bits).

"Famos.IsKitAvailable" : Returns 1 when the FAMOS expansion library specified in the 2nd parameter is present and can be
used; else 0. The search for the Kit can reference either its filename (without folder) or according to the following
abbreviations: "CLS": Class-counting Kit. "SPC"; Spectral Analysis Kit. "OTR": Order-tracking Kit. "VPL": Video Player Kit. "ODS":
ODS-Browser-Kit. "RKT": R-Kit. "RWY": Railway-Kit.

"Famos.IsDLLFunctionAvailable" : Returns 1 if the function name specified in the 2nd parameter is an external DLL-function
currently registered in FAMOS; else 0. Functions embedded in FAMOS via the general-purpose DLL-interface are registed by
means of the dialog 'Options'/'Register DLL-Functions' or by means of the function SetOption("DLLImport.DefinitionFile",...).

"Famos.IsSeqFunctionAvailable" : Returns 1 when the function name specified as the 2nd parameter is a sequence function
currently registered in FAMOS; else 0. The complete function name (including a preceding '!') must be specified. See example
#2. FAMOS looks for sequence libraries (file extension .sqf) in the folders specified under 'Options'/'Libraries' and registers all
sequence functions it contains (these are displayed in the Functions list in the 'Libraries' folder).

"Famos.Path.SampleProjects" : Provides the directory for the example projects supplied with the FAMOS installation. With a
standard installation, this is the directory "C:\Users\Public\Documents\imc\imc FAMOS_Demo Projects". [Supported from
V2023]

"Famos.Path.SampleData" : Provides the directory for the sample measurement files supplied with the FAMOS installation.
With a standard installation, this is the directory "C:\Users\Public\Documents\imc\imc FAMOS_Demo Projects_Demo
Files\dat". [Supported from V2023]

"System.Path.AppData" : Returns the Windows default folder for program-specific data. A typical path is "C:\Documents and
Settings\USERNAME\Application Data" (Windows XP) or "C:\Users\USERNAME\AppData\Roaming" (Windows 7).

"System.Path.CommonAppData" : Returns the Windows default folder for program-specific data which are available to all users.
A typical path is "C:\Documents and Settings\All Users\Application Data" (Windows XP) or "C:\ProgramData" (Windows 7).

"System.Path.Documents" : Returns the Windows default folder for user documents. A typical path is "C:\Documents and
Settings\USERNAME\My Documents" (Windows XP) or "C:\Users\USERNAME\Documents" (Windows 7).

"System.Path.CommonDocuments" : Returns the Windows default folder for documents which are shared with all users. A
typical path is "C:\Documents and Settings\All Users\Documents" (Windows XP) or "C:\Users\Public\Documents" (Windows 7).

"System.Net.HostName" : Returns the computer's default hostname

"System.Net.IPAddr1" : Returns the computer's primary local IPv4-address

"System.Net.IPAddr*" : Returns all of the computer's local IPv4-addresses, separated by '|'.You can use the function TxSplit() in
order to isolate the individual addresses.

"System.Path.TempFiles" : Returns the Windows default folder for temp files. A typical path is "C:\Documents and
Settings\USERNAME\Local Settings\Temp" (Windows XP) or "C:\Users\USERNAME\AppData\Local\Temp" (Windows 7).

"System.EnvVariable" : Returns the value of a Windows environment variable as text. Specify the name of the desired variable
in the 2nd parameter of this function. Up to 256 characters are returned, longer text will be truncated. When the variable does
not exist, an empty text is returned.

"Device.LogicalProcessors" : Returns the count of logical processors (cores) in the system.

"Screen.VirtualArea" : Returns the size of the virtual screen. This virtual screen is calculated as the cumulative size of all
monitors present. For the second parameter, the text-constants "left", "top", "width" and "height" can be specified; the
function then calculates the corresponding coordinate/dimension.

"Screen.MonitorCount" : Returns the number of monitors present

imc FAMOS Func on Reference - 469 -

(c) 2024 imc Test & Measurement GmbH

"Screen.PrimaryWorkArea" : Returns the coordinates of the primary display monitor's work area. The work area consists of the
screen size minus the area required for the Windows taskbar (if displayed). For the second parameter, the text constants "left",
"top", "width" 7 "height" can be specified; the function then calculates the resulting coordinates/dimension.

"Screen.WorkArea#1" : Returns the coordinates of the 1st monitor's work area. The work area consists of the screen size minus
the area required for the Windows taskbar (if displayed). For the second parameter, the text constants "left", "top", "width" 7
"height" can be specified; the function then calculates the resulting coordinates/dimension.

"Screen.WorkArea#2" : Returns the coordinates of the 2nd monitor's work area. The work area consists of the screen size minus
the area required for the Windows taskbar (if displayed). For the second parameter, the text constants "left", "top", "width" 7
"height" can be specified; the function then calculates the resulting coordinates/dimension.

"Screen.WorkArea#3" : Returns the coordinates of the 3rd monitor's work area.

TxParameter For "System.EnvVariable", the name of the desired variable; for "Screen.*", the designation of the desired quantity; else an
empty text.

CurrentValue

CurrentValue Value of the requested information. Number or text.

Description:
The query of the system folder paths returns the actual names in the file system. In Windows-Explorer, these folders may either not be visible
(hidden by default settings) or they are shown with a different (localized) name. E.g. Windows 7 (German): the folder "c:\Users" will be displayed
with the localized name "c:\Anwender".

Examples:
Get the default folder for user documents:

MyDocFolder = GetSystemInfo("System.Path.Documents", "")

Get the content of the environment variable USERNAME, which contains the name of the current user account.

CurrentUser = GetSystemInfo("System.EnvVariable", "USERNAME")

A test of whether the Order-Tracking Kit functions can be used. Both calls are equivalent:

ok = GetSystemInfo("FAMOS.IsKitAvailable","OTR")
ok = GetSystemInfo("FAMOS.IsKitAvailable","im7otrk1.dll")

A sequence uses multiple sequence functions from the sequence library "MyFilters". At the beginning of the sequence, the system checks
whether the functions are actually available at runtime, otherwise an appropriate error message is posted. Without this check, the formula
interpreter would return a generic error message at the call line, taking the form "unknown object", which would not be helpful to the user.

ok = GetSystemInfo("Famos.IsSeqFunctionAvailable", "!MyFilters.HP_200Hz")
ok = ok AND GetSystemInfo("Famos.IsSeqFunctionAvailable", "!MyFilters.LP_100Hz")
IF NOT(ok)
 BoxMessage("Error", "The Sequence library 'MyFilters.sqf' is either not available or too old!", "!1")
 EXITSEQUENCE
END

See also:
GetOption

imc FAMOS Func on Reference - 470 -

(c) 2024 imc Test & Measurement GmbH

GrChanAppend

Add new channel to a group

Declaration:
GrChanAppend (Group, NewChannel)

Parameter:

Group Data group to which a channel is to be added

NewChannel Data set or text which is to be added to the group

Description:
This function adds a copy of the specified data set or text to the given data group. The data set or text is duplicated and entered in the content list
of the group.

In many cases, a direct assignment can be used instead of this function:

ExistingGroup:NewChannel

Examples:
A new data group is generated and a data set and a text are added:

newGroup = GrNew()
d1 = Ramp(0,1,100)
t1 = "Date: 1.1.1995")
GrChanAppend(newGroup, d1)
GrChanAppend(newGroup, t1)
; or also:
; newGroup:d1 = Ramp(0,1,100)
; newGroup:t1 = "Date: 1.1.1995"

See also:
GrChanDel, GrNew, GrChanNum?, GrChanName?, GrChanFind

imc FAMOS Func on Reference - 471 -

(c) 2024 imc Test & Measurement GmbH

GrChanDel

Deletes a channel belonging to a data group

Declaration:
GrChanDel (Group, ChannelIdent)

Parameter:

Group Data group from which a channel is to be deleted

ChannelIdent Index (1..) or name of the channel to be deleted

Description:
The specified channel is deleted from the group. If the channel does not exist (invalid index, name not available), a warning message is
generated.

The command DELETE can be used instead of this function.

Examples:
The data group Measurement_01 contains at its second position the channel c2 which is to be deleted. The following calls are equivalent:

GrChanDel(Measurement_01, 2)
GrChanDel(Measurement_01, "c2")
DELETE Measurement_01:c2
DELETE Measurement_01:[2]

All channels whose maximum is less than 100 are deleted from a data group.

i = GrChanNum?(MEASUREMENT_01)
WHILE i >= 1
 channelMax= max(MEASUREMENT_01:[i])
 IF channelMax < 100
 GrChanDel(MEASUREMENT_01, i)
 END
 i = i - 1
END

See also:
GrChanAppend, GrNew, GrChanNum?, GrChanName?, GrChanFind, DELETE

imc FAMOS Func on Reference - 472 -

(c) 2024 imc Test & Measurement GmbH

GrChanFind

Searches for a channel in a data group with a specified name

Declaration:
GrChanFind (Group, TxChannelname) -> SvChannelIndex

Parameter:

Group Data group whose channels are to be searched

TxChannelname Name of the data set or text to find

SvChannelIndex

SvChannelIndex Index of the channel in the group (1..) or 0, if not found

Description:
A data set or text with a specified name is searched for in a group. If the text or data set is found, its index is returned, otherwise a 0 is returned.

The index becomes invalid when the group structure is changed by inserting or deleting channels; the assignment channel name <-> index must
be redefined.

Examples:
A channel with the name "MeasChan_123" is searched for in a data group. If found, the channel is displayed, otherwise an error message is
generated.

Index = GrChanFind(Measurement011_A, "MeasChan_123")
IF Index = 0
 BoxMessage("Attention", "Channel does not exist!", "!1")
ELSE
 SHOW Measurement011_A:[Index]
 ;oder auch: SHOW Measurement011_A:MeasChan_123
END

See also:
GrChanAppend, GrChanDel, GrNew, GrChanNum?, GrChanName?

imc FAMOS Func on Reference - 473 -

(c) 2024 imc Test & Measurement GmbH

GrChanName?

Gets the name of a channel belonging to a data group

Declaration:
GrChanName? (Group, SvChannelIndex) -> TxChannelName

Parameter:

Group Data group from which a channel's name is to be determined

SvChannelIndex Index of the desired channel (1..).

TxChannelName

TxChannelName Name of the channel

Description:
The function returns the name of the specified data set or text in the group.

The first channel in the group is addressed by the index 1.

Alternatively, the more powerful function Name?() can be used.

Examples:
A data group is composed from an existing data group, in which the original channels as well as the data sets resulting from smoothing are added.
The name of the smoothed data set is formed by adding a fixed ending to the original name.

channelCount = GrChanNum?(MEASUREMENT_01)
RESULT_01 = GrNew()
FOR i = 1 TO channelCount
 TxName = GrChanName?(MEASUREMENT_01, i)
 TxName2 = TxName + "_SMO"
 RESULT_01:<TxName> = MEASUREMENT_01:[i]
 ; oder auch GrChanAppend(RESULT_01, MEASUREMENT_01:[i])
 RESULT_01:<TxName2> = Smo(MEASUREMENT_01:[i], 10)
END

See also:
Name?, GrChanAppend, GrChanDel, GrNew, GrChanNum?, GrChanFind

imc FAMOS Func on Reference - 474 -

(c) 2024 imc Test & Measurement GmbH

GrChanNum?

Gets a data group's channel count

Declaration:
GrChanNum? (Group) -> SvChannelCount

Parameter:

Group Data group whose channel count is to be determined

SvChannelCount

SvChannelCount Number of channels included

Description:
This function returns the number of channels is a data group; all data sets and text contained in the group are counted.

If the parameter does not represent a group the value -1 is returned.

A typical application is determining the channel count for subsequent enumeration (by means of FOR, WHILE) of the channels. Here, FOREACH
CHANNEL-instruction can alternatively be used.

Examples:
All data sets with a maximum greater than 100 are displayed in a loop over all data groups.

channelCount = GrChanNum?(MEASUREMENT_01)
i = 1
WHILE i <= channelCount
 channelMax= max(MEASUREMENT_01:[i])
 IF channelMax > 100
 SHOW MEASUREMENT_01:[i]
 END
 i = i + 1
END

See also:
GrChanAppend, GrChanDel, GrNew, GrChanName?, GrChanFind, FOREACH

imc FAMOS Func on Reference - 475 -

(c) 2024 imc Test & Measurement GmbH

GrConcat

Joins the specified parameter variables to a new data group.

Declaration:
GrConcat (P1 [, P2] [, P3] [, P4] [, P5] [, P6] [, P7] [, P8] [, P9] [, P10] [, P11] [, P12] [, P13] [, P14] [,
P15]) -> Group

Parameter:

P1 Parameter #1

P2 Parameter #2 (optional)

P3 Parameter #3 (optional)

P4 Parameter #4 (optional)

P5 Parameter #5 (optional)

P6 Parameter #6 (optional)

P7 Parameter #7 (optional)

P8 Parameter #8 (optional)

P9 Parameter #9 (optional)

P10 Parameter #10 (optional)

P11 Parameter #11 (optional)

P12 Parameter #12 (optional)

P13 Parameter #13 (optional)

P14 Parameter #14 (optional)

P15 Parameter #15 (optional)

Group

Group New group. The elements it contains are copies of the specified parameters.

Description:
This function joins the parameters specified to a new data group. The new data group contains copies of the specified parameter variables; the
respective variable-name is applies as the element-name.

As the parameters, any desired data types are allowed; the exception is data groups, where only directly specified variables are allowed (no
indexing, no intermediate results). With data groups, the elements they contain are expanded and copies of them are adopted in the results
group.

The order of the elements in the group created matches the oder of the parameters.

If the name of a variable to be appended already exists in the resulting group, that element of the resulting group will be overwritten while its
position is retained. Thus, in case of duplicate names, the last parameter specified "wins". This means that this function can also be used in order
to replace multiple elements of an existing group; see Example #3.

Examples:
Three additional channels are to be appended to an existing group:

a_fft = FFT(gr:a)
b_fft = FFT(gr:b)
c_fft = FFT(gr:c)
grNew = GrConcat(gr, a_fft, b_fft, c_fft)

For a group consisting of many channels, the FFT of each channel is to be calculated.

GrFFTs = FFT(GrInput, 0, 0)

This calculation is to be accelerated by means of parallel execution. For this purpose, the data group is subdivided into 4 parts which are
computed in parallel. The 4 partial results are then re-joined into a data group of results.

count = GrChanNum?(GrInput)
chunksize = floor(count/4)
BEGIN_PARALLEL
 GrFFT1 = !MyFFT(GrPart(GrInput, 1, chunksize))
 GrFFT2 = !MyFFT(GrPart(GrInput, 1+ chunksize, chunksize))
 GrFFT3 = !MyFFT(GrPart(GrInput, 1+ chunksize*2, chunksize))

imc FAMOS Func on Reference - 476 -

(c) 2024 imc Test & Measurement GmbH

 GrFFT4 = !MyFFT(GrPart(GrInput, 1+ chunksize*3, count-3*chunksize))
END_PARALLEL
GrFFTs = GrConcat(GrFFT1, GrFFT2, GrFFT3, GrFFT4)

For this purpose, the sequence function !MyFFT is defined as follows:

; declaration:
; !MyFFT(Par [Data type: Normal]) => Result [Data type: Complex]
Result = FFT(Par, 0, 0)

Attention when parameters have duplicate names: the "last" one wins:

a = 1
g = GrConcat(a, a)
; the resulting group has only one channel: "a".
g:b = 1
b = 2
g2 = GrConcat(g, b)
; the resulting group has the channels "a" and "b", where "b" takes the value 2.
g3 = GrConcat(b, g)
; The resulting group has the channels "b" and "a", where "b" takes the value 1.

; exchange of multiple channels in an existing group:
g4:a = 2
g4:b = 1
g4:c = 1
g5:b = 2
g5:c = 2
g = GrConcat(g4, g5)
; the results group now contains three channels, all having the value 2.

See also:
GrNew, GrChanAppend, GrPart

Supported since:
Version 2022

imc FAMOS Func on Reference - 477 -

(c) 2024 imc Test & Measurement GmbH

GrExpand

The channels belonging to this data group are expanded.

Declaration:
GrExpand (Group)

Parameter:

Group Data group to be expanded

Description:
The channels belonging to a data group are expanded into individual variables and the group variable is subsequently deleted.

If variables with the same name already exist, they are overwritten.

The function's behavior is identical to that of the menu item "Variable"/"Expand".

Examples:
Multiple variables are to be subjected to similar calculations. To save writing effort, these variables are initially grouped together to a data group,
then processed as desired and the group is subsequently dissolved.

Temp:channel1 = channel1
Temp:channel2 = channel2
Temp:channel3 = channel3
Temp = CutIndex(Temp, 100, 300)
Temp = Smo(Temp, 0.2)
; additional calculations...
GrExpand(Temp)

See also:
GrChanAppend, GrChanDel, GrChanName?, GrChanFind

imc FAMOS Func on Reference - 478 -

(c) 2024 imc Test & Measurement GmbH

GrJoin

Joins together the channels of a group

Declaration:
GrJoin (Group, Zero) -> Dataset

Parameter:

Group Data group whose channels are to be joined

Zero Reserved parameter. Always 0.

Dataset

Dataset Data set which consists of the joined channels in a group

Description:
Individual channels in a group are joined to form a new data set. Texts are skipped in concatenation. Characteristics and the data format of the
result conform with the first data set in the group. All data sets in the group must have the same data type.

Examples:
Determining the absolute maximum across all of a group's channels:

AbsMaximum = max(GrJoin(max(myGroup), 0))

See also:
GrNew, GrChanAppend, GrChanNum?, GrChanName?, GrChanFind

imc FAMOS Func on Reference - 479 -

(c) 2024 imc Test & Measurement GmbH

GrNew

Creates an empty data group

Declaration:
GrNew () -> NewGroup

Parameter:

NewGroup

NewGroup Empty data group

Description:
This function generates an empty group; additional channels can be assigned to this group.

It is also possible to generate a new group and the first channel at the same time using the following assignment:

NewGroup:FirstChannel = ...

Examples:
A new group is created and two channels are added to the group:

Measurement1 = GrNew()
GrChanAppend(Measurement1, Channel_1)
GrChanAppend(Measurement1, Channel_2)

The following formulas produce the same result:

Measurement1:Channel1_1 = Channel1_1
Measurement1:Channel1_2 = Channel1_2

See also:
GrChanAppend, GrChanDel, GrChanNum?, GrChanName?, GrChanFind

imc FAMOS Func on Reference - 480 -

(c) 2024 imc Test & Measurement GmbH

GrPart

One section of a data group is copied to a new data group.

Declaration:
GrPart (GrSource, SvIndex, SvCount) -> GrPartCopy

Parameter:

GrSource Data group whose elements are to be copied

SvIndex Index of the first element to be copied. The first element has the index 1.

SvCount Count of elements to be copied. -1, if all elements down to the last are to be copied.

GrPartCopy

GrPartCopy Newly created group with copies of the specified elements

Description:
This function generates a new data group which is a section of the parameter data group.

When a -1 is specified for [SvIndex], or when ([SvIndex]+[SvCount]) is greater than the count of elements in the source data group, all elements
are copied all the way to the end.

Examples:
From adata group having more than 4 elements, the two first and two last elements are copied to a new data group.

n = GrChanNum?(grSource)

grNew = GrConcat(GrPart(grSource, 1, 2), GrPart(grSource, n-1, 2))

For a group consisting of many channels, the FFT of each channel is to be calculated.

GrFFTs = FFT(GrInput, 0, 0)

This calculation is to be accelerated by means of parallel execution. For this purpose, the data group is subdivided into 4 parts which are
computed in parallel. The 4 partial results are then re-joined into a data group of results.

count = GrChanNum?(GrInput)
chunksize = floor(count/4)
BEGIN_PARALLEL
 GrFFT1 = !MyFFT(GrPart(GrInput, 1, chunksize))
 GrFFT2 = !MyFFT(GrPart(GrInput, 1+ chunksize, chunksize))
 GrFFT3 = !MyFFT(GrPart(GrInput, 1+ chunksize*2, chunksize))
 GrFFT4 = !MyFFT(GrPart(GrInput, 1+ chunksize*3, count-3*chunksize))
END_PARALLEL
GrFFTs = GrConcat(GrFFT1, GrFFT2, GrFFT3, GrFFT4)

For this purpose, the sequence function !MyFFT is defined as follows:

; declaration:
; !MyFFT(Par [Data type: Normal]) => Result [Data type: Complex]
Result = FFT(Par, 0, 0)

See also:
GrConcat

Supported since:
Version 2022

imc FAMOS Func on Reference - 481 -

(c) 2024 imc Test & Measurement GmbH

Histo

Histogram with definable number of bars and bar width

Declaration:
Histo (Data, SvWidth, SvCount) -> Histogram

Parameter:

Data Data set from which the histogram is to be calculated. Allowed data types: [ND],[XY]

SvWidth Width of a histogram bin

SvCount Number of histogram bins

Histogram

Histogram Histogram determined

Description:
The histogram function determines the number of occurrences of amplitude values (values of a data set). The possible range of values is divided
into a number of bins with a specified width. Each value of the data set is sorted into one of these bins. The histogram indicates how many values
were sorted into each bin.

The second parameter specifies the width of a bin. If the value is equal to zero, the width of the bins is determined automatically.

The third parameter specifies the number of bins. If a value is equal to zero, the number of bins is determined automatically.

Parameters specified as zero are determined automatically by selecting values appropriate for the range of the data set.

The edges of a bin are always an integer multiple of the bin width.

The created data set has no y-unit and its x-unit corresponds to the y-unit of the specified data set.
For completely automatic calculation of the histogram, the number of bins is generally set to approximately 100.
The number of bins is theoretically limited to 10000. Usually values between ten and 100 are selected.
When the bin width and number are specified manually, it may occur that some of the values in the data set cannot be sorted into any bins.
The total number of values in the histogram will thus be less than the length of the given data set. To sort even these values beyond the
normal range of the data set in the histogram, use the Clip function to limit the y-value range before applying the Histo function. With the
Min and Max functions, the value range of the function can be determined; then the Floor function can be used to round these values. The
bin width can be derived from this result.

Examples:

NDhisto = Histo(NDdata, 0, 0)

Fully automatic histogram calculation

NDhisto1 = Histo(NDcurrent1, 0.1 'A', 0)
NDhisto2 = Histo(NDcurrent2, 0.1 'A', 0)

The data sets NwCurr1 and NwCurr2 are given, with current values exhibiting maximum peaks of approximately 10A. The histograms of both data
sets are to be compared. A bin width is selected to create approximately 100 bins; the exact number of bins should be determined automatically.
The histograms can be compared directly where the value ranges of the data sets for current overlap.

NDhisto = Histo(NDdata, 1 'V', 200)

The data set's value range is known; it extends from approx. -50V to approx. +130V. A histogram is to be generated with 200 bins of width 1V.

See also:
ClsTimeAtLevel, Clip, Min, Max

imc FAMOS Func on Reference - 482 -

(c) 2024 imc Test & Measurement GmbH

HttpGetFile

Downloads the requested resource and saves it to a local file.

Declaration:
HttpGetFile (TxURL, TxFileName) -> EwStatus

Parameter:

TxURL Identifier of the desired web resource

TxFileName Complete filename under whch the resource is to be saved

EwStatus

EwStatus Status. 1 for success, 0 for error

Description:
This function retrieves the resource specified via its URL (Uniform Resource Locator) and saves it to a local file.

The URL generally consists of the following portions:

Protocol (supported types: "http://" or "https://")
Server address (e.g. "www.testserver.com")
(Optional) path to the resource (e.g. "/weather")
(Optional) query parameter ('query', typically specified as a list of value pairs taking the form "?Value1=Content@Value2=Content2@...")

To the specified server, an 'HTTP GET'-command is sent, which contains as its parameter the path and the query parameters.

The data received as the answer are saved unchanged in the file specified.

In case of error (return value = 0), the error cause can be queried using the function GetLastError().

Examples:
Downloads the current "Microsoft News"-page on Twitter and saves it as a local HTML-file:

uri ="https://twitter.com/MSFTnews"
status = HttpGetFile(uri, "c:\temp\LatestMSNews.html")

Downloads an image from the Hubble Telescope image archive:

uri = "https://cdn.spacetelescope.org/archives/images/screen/heic1501a.jpg"
status = HttpGetFile(uri, "c:\temp_nebula.jpg")

See also:
HttpGetText, HttpOption

imc FAMOS Func on Reference - 483 -

(c) 2024 imc Test & Measurement GmbH

HttpGetText

Downloads the requested resource as a text.

Declaration:
HttpGetText (TxURL) -> TxReturn

Parameter:

TxURL Identifier of the desired web resource

TxReturn

TxReturn Received text

Description:
This function retrieves the resource specified via its URL (Uniform Resource Locator).

The URL generally consists of the following portions:

Protocol (supported types: "http://" or "https://")
Server address (e.g. "www.testserver.com")
(Optional) path to the resource (e.g. "/weather")
(Optional) query parameter ('query', typically specified as a list of value pairs taking the form "?Value1=Content@Value2=Content2@...")

To the specified server, an 'HTTP GET'-command is sent, which contains as its parameter the path and the query parameters.

After downloading, the data received are converted to a text.

In case of error, an empty text is returned; the error cause can be queried using the function GetLastError().

Examples:
By means of the call below, the specified longitude and latitude values are used to return the associated address (reverse geocoding).

For this purpose, the search machine of OpenStreetMap is used. The parameter 'format' specifies the desired format for the answer (here XML;
an alternative would be JSON); the parameters 'lat' (latitude) and 'lon' (longitude) specify the latitude and longitude.

answer = HttpGetText("http://nominatim.openstreetmap.org/reverse?format=xml&lat=52.541861&lon=13.3869693")

The text returned includes the following section:

<road>Voltastraße</road>
<suburb>Gesundbrunnen</suburb>
<city_district>Mitte</city_district>
<state>Berlin></state>
<postcode>13355></postcode>

In order to extract individual fields from such answers, the function TxRegExMatch() can be recommended:

NameOfTheRoad = TxRegExMatch(answer, "<road>(.*?)</road>", ",", 0, 1)
; NameOfTheRoad now has the content 'Voltastraße'.

If the response is returned in JSON-format instead:

answer = HttpGetText("http://nominatim.openstreetmap.org/reverse?format=json&lat=52.541861&lon=13.3869693")
;answer contains (besides other items): ...{... "road":"Voltastraße","suburb":"Gesundbrunnen", ...}
NameOfTheRoad = TxRegExMatch(answer, "~034road~034:~034(.*?)~034", ",", 0, 1)

See also:
HttpGetFile, HttpOption

imc FAMOS Func on Reference - 484 -

(c) 2024 imc Test & Measurement GmbH

HttpOption

This function sets options for subsequent calls of HttpGetText() or HttpGetFile().

Declaration:
HttpOption (TxName, TxValue) -> EwStatus

Parameter:

TxName Option name

"" : All options are reset to their default state. The 2nd parameter must also be empty.

"Timeout" : Timeout for connection. The text specified for the 2nd parameter contains the value stated as a number of milliseconds.
For "0", the default value, which is 20s, is restored.

"User" : User name for web services with HTTP Basic access Authentication (RFC 2016)

"Password" : Password for web services with HTTP Basic access Authentication (RFC 2016)

"HEAD:???" : Sets a field in the HTTP Request header. '???' stands for the name of a field. The fields and their meanings are defined
in accordace with RFC 2616. If the 2nd parameter is an empty text, the associated field is deleted.

TxValue Value of the option. What content is permitted depends on the first parameter.

EwStatus

EwStatus Status. 1 for success, 0 for error

Description:
The settings made here remain in force until:

explicit change by means of a new call of the function HttpOption()
next new start of a top-level sequence
Menu item 'Restart'

In case of error (return value = 0), the error cause can be queried using the function GetLastError().

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Examples:
The following command instructs the server on subsequent calls to HttpGetText() or HttpGetFile() to update the data or files before sending
them, if necessary, and not to use server-side cached and potentially outdated data.

status = HttpOption("HEAD:Cache-Control", "no-store, max-age=0")

See also:
HttpGetText, HttpGetFile

imc FAMOS Func on Reference - 485 -

(c) 2024 imc Test & Measurement GmbH

Hyst

Applies a hysteresis to a data set

Declaration:
Hyst (Data, SvWidth) -> Filtrate

Parameter:

Data Data set to be filtered [NW].

SvWidth Hysteresis width (>= 0)

Filtrate

Filtrate Filtered data set

Description:
This function applies a hysteresis filter to the data set [Data]. The hysteresis filters is suited for removing small oscillations from a data set. The
parameter SvWidth specifies the hysteresis width. The procedure used to apply the hysteresis is explained below:

The start value and the next function value of the data set [Data] are saved in the data set [Filtrate].

If the second value is greater/less than the previous value, the data has positive/negative slope, respectively. If the function values are equal,
the next function value in [Data] is savedin the data set [Filtrate] and if appropriate the trend is determined, etc.

If the function is in an upward trend, then depending on the current function value of the data set [Data], one of the three following possibilities
is implemented:

The current function value of the data set [Data] is greater than the previous value of the data set [Filtrate]. So the current function value of
[Data] is saved as the current function value in the data set [Filtrate].
The current function value of the data set [Data] is less than or equal to the previous function value of the data set [Filtrate],but not less than
the previous function value of the data set [Filtrate] minus the hysteresis width. The previous function value of the data set [Filtrate] is also
saved as the current function value of the data set [Filtrate].
The current function value of the data set [Data] is less than the previous function value of the data set [Filtrate] minus the hysteresis width.
The current function value of the data set [Data] is saved as the current function value of the data set [Filtrate]. The trend is changed to an
upward trend.

If the function is in an downward trend, then depending on the current function value of the data set [Data], one of the three following
possibilities is implemented:

The current function value of the data set [Data] is less than the previous function value of the data set [Filtrate]. So the current function
value of [Data] is saved as the current function value in the data set [Filtrate].
The current function value of the data set [Data] is greater than or equal to the previous function value of the data set [Filtrate],but not
greater than the previous function value of the data set [Filtrate] plus the hysteresis width. The previous function value of the data set
[Filtrate] is also saved as the current function value of the data set [Filtrate].
The current function value of the data set [Data] is greater than the previous function value of the data set [Filtrate] plus the hysteresis
width. The current function value of the data set [Data] is saved as the current function value of the data set [Filtrate]. The trend is changed
to a downward trend.

A hysteresis width of 0 returns the source data set [Data] as the target data set [Filtrate]. In contrast to the smoothing functions Smo(), Smo3()...,
no frequency-dependent noise suppression is performed in this case but rather purely amplitude-dependent noise suppression.

Examples:

NDhyst = Hyst(NDdata, 10)

A hysteresis with width 10 is to be applied to the data set NDData in the left graph. The data set NDData consists of 118 values. The result of
applying the hysteresis in imc FAMOS is outputted in the graph of the data set NDHyst, appearing on the right side. All oscillations smaller than
the hysteresis width 10 have been filtered out:

imc FAMOS Func on Reference - 486 -

(c) 2024 imc Test & Measurement GmbH

See also:
Smo, Smo3, SlClip, STri, MInt

imc FAMOS Func on Reference - 487 -

(c) 2024 imc Test & Measurement GmbH

idB

Inverse function to dB

Declaration:
idB (InputData) -> Transformed

Parameter:

InputData Data to be converted from dB the linear measure

Transformed

Transformed Resulting data set

Description:
This function is the inverse of the dB function, i.e. it makes a dB calculation retroactive. Complex data sets whose magnitude is expressed in dB
are converted back to linear values.

Decibels (dB) mean twenty times the base 10 logarithm of a number. An reciprocal calculation to dB is thus equivalent to the term:

InverseDB = 10 ^ (number / 20)

In calculating the reciprocal of dB, the unit is always erased.
Complex data sets not of the type Dp cannot be processed with this function.
The parameter may be structured (events/segments).
With normal or XY-data sets the x-coordinate(s) of the parameter and the result are the same.
The idB function cannot generate any negative values.

Examples:

linear = idB(dataInDB)
; This formula is equivalent to the formula:
linear = 10 ^ (dataInDB / 20)
; only the unit may be different.

See also:
dB, log

imc FAMOS Func on Reference - 488 -

(c) 2024 imc Test & Measurement GmbH

IF

Initializes a conditional branching. The subsequent instructions are only carried out if the expression here has a value > 0.

Declaration:
IF Condition

Parameter:

Condition The following block's instructions are only carried out if the condition is met (evaluation returns a value >0).

Description
The end of the instructions belonging to this block is denoted by a subsequent ELSEIF, ELSE or END.

As the condition, it is possible to specify, for example, a single value variable or a complex expression using logical operators (AND, OR..) and/or
comparison operators (<, =, ...).

An IF-block may contain any arbitrary amount of ELSEIF-branchings. If any ELSE-branching is also specified, it must appear at the last position of
the chain.

Instead of IF/ELSEIF/ELSE, for many applications it is easier to use the SWITCH/CASE/DEFAULT-instruction.

Examples:
If a variable's maximum is greater than 0, it is displayed in a curve window.

Maxi = Max(data)
IF Maxi
 SHOW data
END

When a file is loaded, its return value is checked and an error message posted if appropriate.

fh = FileOpenDSF("Channel1.dat", 0)
IF fh = 0
 Pause ==> Can't load file <==
ELSE
 ; ...
 FileClose(fh)
END

A portion of an equidistantly sample data set [data] is to be cut out. The two boundaries [xmin] and [xmax] have previously been entered by the
user and are now being checked for validity:

IF xmin < xoff?(data) OR xmin <= 0
 txError = "Illegal lower limit"
ELSEIF xmax > (xoff?(data)+(leng?(data)-1)*xdel?(data))
 txError = "Illegal upper limit"
ELSEIF xmin >= xmax
 txError = "Illegal limit relation"
ELSE
 result = Cut(data, xmin, xmax)
END

See also:
ELSEIF, ELSE, SWITCH

imc FAMOS Func on Reference - 489 -

(c) 2024 imc Test & Measurement GmbH

iFFT

Inverse FFT, transformation of a spectrum into a time function

Declaration:
iFFT (Spectrum) -> TimeData

Parameter:

Spectrum Spectrum to be transformed. Allowed data types: [BP],[DP],[RI]

TimeData

TimeData Result of inverse FFT.

Description:
The iFFT function is the inverse of the Fast Fourier Transformation and negates the FFT function. The time function is reconstructed from the
spectrum.

The spectrum may be present in any complex data type. The spectrum is expected in a form as the function FFT() would return using the Radix-2-
procedure. Only one side of the spectrum is present. The first complex value of the spectrum represents the DC component, so it has zero
imaginary component. Next come a power of 2 of complex spectral lines of which the last is real. Internally, this one side of the spectrum is
extended into conjugated complex space so that the inverse FFT-algorithm can be used. A set of time domain data is generated, which always is a
power of 2 in length.

If the complex data set has 2^n + 1 points, then the time domain data set generated has 2^(n+1) points. If the complex data set's length is
greater, then it is truncated to the next lower possible value.
The maximum length which can be processed is 67108865 (2^26+1) points, which corresponds to 134.217.728 (2^27) time data. If the data set
is too long, use the Leng function to shorten it.
The iFFT function does not apply any window functions. To reverse the effects of a window function used for the FFT, perform the iFFT,
create a new data set with the window function (see example in the FFT section) and divide the time data set by the new data set. Note that
the values at the edges of the data set often will be fairly inaccurate.
The x-unit of the time data set is always set to "s"; the y-unit is the y-unit of the magnitude or the real part of the complex data set.
The iFFT requires temporary space in working memory for execution. If insufficient memory is available (especially in long data sets), an
error message is generated.
The x-offset of the transferred complex data set should be equal to zero; an error message is generated if it is not equal to zero. The x-offset
is assumed to be zero. A positive x-offset can be considered by using the Cut function to extend the spectrum down to a frequency of zero.
The iFFT() function inverses any FFT() function performed with a rectangular window. A spectrum created with the Spec() function cannot be
inversed using iFFT().
An FFT which was calculated with the Mixed-Radix-procedure can also generally not be reversed using iFFT(), since the procedure used here
always returns a data set length which is a power of 2.

Examples:

NDdata = iFFT(BPspektr)

MpSpectr is a complex data set with 513 points; a time function with 1024 points is generated. The iFFT of a transfer function returns the
weighting function of a transfer system.

NDdata = iFFT(Compl(BPspektr.M, 0))

The phase of the spectrum is set to zero; then the corresponding time function is calculated.

See also:
FFT, Spec

imc FAMOS Func on Reference - 490 -

(c) 2024 imc Test & Measurement GmbH

InDegr

Radians-to-degrees conversion factor = 57,297...

Description
Unit: "Deg"/"Rad"

Examples:
The constant PI as the measure of an angle in radians corresponds to 180 degrees:

Degree180 = PI * INDEGR

See also:
InRad, PI, PI2

imc FAMOS Func on Reference - 491 -

(c) 2024 imc Test & Measurement GmbH

InRad

Degrees-to-radians conversion factor = 0.01745...

Description
Unit: "Rad"/"Deg"

Examples:
An angle of 180 degrees corresponds to the circle constant PI (3.1415..) in radians:

_PI = 180'°' * INRAD

See also:
InDegr, PI, PI2

imc FAMOS Func on Reference - 492 -

(c) 2024 imc Test & Measurement GmbH

Int

Formation of the integral

Declaration:
Int (Data) -> Result

Parameter:

Data Data set to be integrated. Permitted data types: [ND],[XY]

Result

Result Integration results

Description:
The transferred data set is integrated value for value using a simple, effective algorithm:

For normal, real data sets:

The sum of all sampling values of the data set is calculated up to (but not including) the current point and then multiplied by the sampling rate.
Thus, integration can be reversed by differentiation.

For XY-data sets:

The product of the distance between two consecutive points and the mean of their y-values is summed up to the current point.

The integral indicates the area under the data set from the beginning up to the current point. Note that integration smoothes a curve.

According to the algorithm used for integration, the first value of the generated data set is always zero. Thus, the generated data set will
always be one value longer.
The unit of the integrated data set is the product of the x- and y-units of the transferred data set.
In contrast to the moving integral function mInt, the integration interval will grow from zero to the length of the data set.

Examples:

NDarea = Int(NDdata)

Simple calculation of the surface

NDarea = Red(Int(IPol(NDdata, 3)), 3)

Spline interpolation must be performed before integrating strongly curved data sets or data sets containing discontinuous "jumps. After
integration, the amount of data can be reduced using the RSamp function.

NDint = Int(NDdata)
definiteInt = Value(NDint, 10) - Value(NDint, 5)

The definite integral of the data set NwData is to be calculated between the points x = 5 and x = 10. First the integration function NwInt is
determined; the difference between the points yields the definite integral. Note that the definite integral can be interpreted as an area only if
no zeros are present in this interval of the integration function.

See also:
IntEx, Diff, MInt, Sum, MvSum

imc FAMOS Func on Reference - 493 -

(c) 2024 imc Test & Measurement GmbH

IntervalFrom2Levels

Available in: Professional Edition and above

Intervals are derived from a signal, where the signal's crossing points through specified thresholds are given.

Declaration:
IntervalFrom2Levels (input data, LevelBegin, SlopeBegin, LevelEnd, SlopeEnd [, Rounding] [, ResultFormat]) ->
Result

Parameter:

input data input data

LevelBegin The signal must pass through this threshold, which represents a y-value or amplitude, in order to define the beginning of an
interval.

SlopeBegin Which type of slope is to mark the beginning of the interval, rising (positive) or falling (negative)?

1 : Positive slope (departing from the point). At the transition, this formula applies: y[k] <= Level < y[k+1]

2 : Positive slope (towards the point). At the transition, this formula applies: y[k] < Level <= y[k+1]

3 : Negative slope (departing from the slope). At the transition, this formula applies: y[k] >= Level > y[k+1]

4 : Negative slope (towards the point). At the transition, this formula applies: y[k] > Level >= y[k+1]

LevelEnd The signal must pass through this threshold, which represents a y-value or amplitude, in order to define the end of an interval.

SlopeEnd Which type of slope is to mark the end of the interval, rising (positive) or falling (negative)?

1 : Positive slope (departing from the point). At the transition, this formula applies: y[k] <= Level < y[k+1]

2 : Positive slope (towards the point). At the transition, this formula applies: y[k] < Level <= y[k+1]

3 : Negative slope (departing from the slope). At the transition, this formula applies: y[k] >= Level > y[k+1]

4 : Negative slope (towards the point). At the transition, this formula applies: y[k] > Level >= y[k+1]

Rounding Do you wish to round the positions found? (optional , Default value: 0)

0 : Automatic: Use precise value, but round up for digital signals.

1 : Use precise value; the signal can be considered linearly interpolated between the sampling points.

2 : The position found is rounded to the signal's sampling point lying closest to the interpolated x-value. For signals with
discrete values.

3 : The position found is rounded down to the signal's next sampling point which is <= the interpolated x-value.

4 : The position found is rounded up to the signal's next sampling point which is >= the interpolated x-value. For digital signals.

ResultFormat Format of the result (optional , Default value: "")

"" : automatic: Generates an equidistant result for equidistant input data; an XY-result for XY-input data with a monotonic time
track; else an interval code over parameter.

"equi" : equidistant. Only for equidistant input data. Also for segmented data sets.

"xy" : XY-pairs, interval-code with time stamp. Only for equidistant input data or XY-input data with monotonic time track. Not
for data with segments. If the data have stair-steps, be aware that when retrieving a value later based on its time stamp (if it is
at the sampling point), either the previous sample or the sample at the sampling point itself can accidently be used due to
rounding errors.

"para equi" : Equidistant data set with interval-code plotted over the parameter of the two-component data

"para xy" : XY-data set with interval-code and value of the parameter of the two-component data. Not for data having segments.

Result

Result Interval data set

Description:
This function can be applied to input data having events or segments.

With XY-data which can take sometimes monotonic and sometimes non-monotonic forms, the automatic result format should be avoided.

If the input data are superimposed with noise, the function may find unintended level-crossings in the signal. The function Hyst() prevents small
fluctuations and should be called beforehand. Smoothing generally does not provide a comprehensive solution for small fluctuations.
Nevertheless, smoothing is still useful. But subsequently, the residual interfering fluctuations are eliminated with Hyst().

Both slope conditions can also be fulfilled by the same measured value. This leads to a point-shaped interval whose position is the first slope.

imc FAMOS Func on Reference - 494 -

(c) 2024 imc Test & Measurement GmbH

This function always searches for alternating slope conditions.

Interval format equidistant
A series of codes which indicate at which locations intervals begin and end

0: outside of an interval

1: within an interval

2+decimal digits: End of an interval. The decimal digits denote the relative position within the sampling interval

3+decimal digits: Beginning of an interval. The decimal digits denote the relative position within the sampling interval.

4+decimal digits: Transition between 2 adjacent intervals. The decimal digits denote the relative position within the sampling interval.

5+decimal digits: Point-shaped interval. The decimal digits denote the relative position within the sampling interval.

Interval format XY
The x-coordinate indicates the position; the y-coordinate has the following meaning:

2: End of an interval

3: Beginning of an interval

4: Transition between 2 adjacent intervals

5: Point-shaped interval

Examples:
Determines all intervals in which a signal rises to over 2.0 and at the end falls below 8.0. The signal is heavily distorted with noise.

input = 10*sin (Ramp(0,1e-3,400)*PI2*10+1.1) + Random (400, 2, 0, 0, 33) ; test data
input_smooth = Hyst(Smo(input,0.01), 0.1)
ivl = IntervalFrom2Levels (input_smooth, 2.0, 1, 8.0, 3, 0, "equi")

Determines all intervals in which a signal increases from 2.0 to 8.0. The signal is slightly distorted with noise.

input = 10*sin (Ramp(0,1e-4,4000)*PI2*10+1.1) + 0.2 * Random (4000, 2, 0, 0, 0) ; test data
input_smooth = Smo(input, 0.001)
input_smooth = Hyst (input_smooth, 0.05)
ivl = IntervalFrom2Levels (input_smooth, 2.0, 1, 8.0, 1, 0, "equi")

See also:
IntervalFromLevel, IntervalGetStatist, Hyst

imc FAMOS Func on Reference - 495 -

(c) 2024 imc Test & Measurement GmbH

IntervalFromLevel

Available in: Professional Edition and above

Intervals with immediately adjacent boundaries are generated from a signal; where the boundaries are defined as the points where the signal
crosses a threshold. Only if the intervals do not meet the secondary conditions regarding amplitude and width, they are discarded so that there
are gaps.

Declaration:
IntervalFromLevel (input data, Level, LowerLevel, UpperLevel, Slope, MinWidth, MaxWidth [, Rounding] [,
ResultFormat]) -> Result

Parameter:

input data input data

Level The signal must pass through this threshold, which represents a y-value or amplitude, in order to determine the beginning or
end of an interval.

LowerLevel An interval is only recognized as valid, if at least one value within the interval is equally low or lower than this value. It is set to
Level, if it is not to be checked.

UpperLevel An interval is only recognized as valid, if at least one value within the interval is equally high or higher than this value. It is set to
Level, if it is not to be checked.

Slope Which slope does the system watch for; the rising (positive) or falling (negative)?

1 : Positive slope (departing from the point). At the transition, this formula applies: y[k] <= Level < y[k+1]

2 : Positive slope (towards the point). At the transition, this formula applies: y[k] < Level <= y[k+1]

3 : Negative slope (departing from the slope). At the transition, this formula applies: y[k] >= Level > y[k+1]

4 : Negative slope (towards the point). At the transition, this formula applies: y[k] > Level >= y[k+1]

5 : Any slope (departing from the point). At the transition, the formula is: y[k] <= Level < y[k+1] or y[k] >= Level > y[k+1]

6 : Any slope (towards the point). At the transition, the formula is: y[k] <= Level < y[k+1] or y[k] >= Level > y[k+1]

MinWidth Minimum width of the interval in x-units. Shorter intervals are rejected. 0, if not to be checked.

MaxWidth Maximum width of the interval in x-units. Longer intervals are rejected. 0, if not to be checked.

Rounding Do you wish to round the positions found? (optional , Default value: 0)

0 : Automatic: Use precise value, but round up for digital signals.

1 : Use precise value; the signal can be considered linearly interpolated between the sampling points.

2 : The position found is rounded to the signal's sampling point lying closest to the interpolated x-value. For signals with
discrete values.

3 : The position found is rounded down to the signal's next sampling point which is <= the interpolated x-value.

4 : The position found is rounded up to the signal's next sampling point which is >= the interpolated x-value. For digital signals.

ResultFormat Format of the result (optional , Default value: "")

"" : automatic: Generates an equidistant result for equidistant input data; an XY-result for XY-input data with a monotonic time
track; else an interval code over parameter.

"equi" : equidistant. Only for equidistant input data. Also for segmented data sets.

"xy" : XY-pairs, interval-code with time stamp. Only for equidistant input data or XY-input data with monotonic time track. Not
for data with segments. If the data have stair-steps, be aware that when retrieving a value later based on its time stamp (if it is
at the sampling point), either the previous sample or the sample at the sampling point itself can accidently be used due to
rounding errors.

"para equi" : Equidistant data set with interval-code plotted over the parameter of the two-component data

"para xy" : XY-data set with interval-code and value of the parameter of the two-component data. Not for data having segments.

Result

Result Interval data set

Description:
This function can be applied to input data having events or segments.

With XY-data which can take sometimes monotonic and sometimes non-monotonic forms, the automatic result format should be avoided.

imc FAMOS Func on Reference - 496 -

(c) 2024 imc Test & Measurement GmbH

With general XY-data as well, the width is always determined as positive. The width is the absolute value of the difference between x at the end
of and at the start of an interval.

With noisy signals, it can be useful to perform smoothing beforehand.

Behavior
This function detects the start and end of recurring cycles or transitions between cycles.

The underlying assumption is that noise of a known height is superimposed on the signals. The parameters UpperLevel and LowerLevel should
have a distance from the level which is substantially greater than the noise.

When a positive slope is set, the signal is expected to rise to at least UpperLevel, and then fall back to at least LowerLevel, before there is once
again a level-crossing of the respective slope set. The opposite applies accordingly for a negative slope setting.

A valid interval only is realized if the specified amplitude conditions are met as well as the specified time conditions regarding the interval
width.

Signal periods which do not meet the conditions cause gaps between the intervals.

Algorithm
Initially the system looks for a first level crossing through the specified threshold, in the specified direction (slope). Next it looks for a second
level-crossing.

The difference in the x-direction between the two is checked against both the minimum and maximum width. If it is outside of these bounds, the
first level-crossing is discarded.

When a positive slope is set, then the signal must first reach UpperLevel, and only subsequently LowerLevel, otherwise the first leve-crossing is
discarded. The opposite applies accordingly for a negative slope setting.

If the first level-crossing is not discarded, but both LowerLevel and UpperLevel have been reached, the second level-crossing is discarded. This
prevents a premature end at the wrong slope.

If both level-crossings exist, they form an interval.

If the second level-crossing is not discarded, it is declared to be the first, otherwise the first remains intact. Next, the procedure is repeated from
the beginning.

Interval format equidistant
A series of codes which indicate at which locations intervals begin and end

0: outside of an interval

1: within an interval

2+decimal digits: End of an interval. The decimal digits denote the relative position within the sampling interval

3+decimal digits: Beginning of an interval. The decimal digits denote the relative position within the sampling interval.

4+decimal digits: Transition between 2 adjacent intervals. The decimal digits denote the relative position within the sampling interval.

5+decimal digits: Point-shaped interval. The decimal digits denote the relative position within the sampling interval.

Interval format XY
The x-coordinate indicates the position; the y-coordinate has the following meaning:

2: End of an interval

3: Beginning of an interval

4: Transition between 2 adjacent intervals

5: Point-shaped interval

Examples:
Determines periodic intervals. Zero-crossing of a periodic signal whose measured value exceed -2.0 and +2.0 and whose period lies between
0.001 and 0.2.

ivl = IntervalFromLevel(input, 0.0, -2.0, 2.0, 1, 0.001, 0.2, 0, "equi")

Determines periodic intervals. The input signal is noisy.

input = 10*sin (Ramp(0,1e-3,400)*PI2*10+1.1) + Random (400, 2, 0, 0, 35)
input_smooth = Smo(input, 0.01)
ivl = IntervalFromLevel(input_smooth, 0.0, -3.0, 3.0, 1, 0.01, 0.3, 0, "equi")

See also:
IntervalFrom2Levels, IntervalGetStatist

imc FAMOS Func on Reference - 497 -

(c) 2024 imc Test & Measurement GmbH

IntervalGetStatist

Available in: Professional Edition and above

For each interval within a data set, statistics such as Min, Max etc. are found.

Declaration:
IntervalGetStatist (input data, Interval data, Interval format, Calculation [, Interpolation] [, ResultFormat]
) -> Result

Parameter:

input data Input data; equidistant or XY with X monotonic

Interval data Interval data

Interval
format

Interpretation of the interval data: Are the intervals to be interpreted as X-positions or as parameters? The latter is important if
the input data are of the type XY.

"" : automatic: With equidistant input data and with XY-input data having a monotonic X-track, the interval data represent X-
positions. Otherwise they are interpreted as parameters. Not recommended when the input data are XY, while the X-track can
be sometimes monotonic and sometimes not.

"equi" : equidistant. Only for equidistant input data

"xy" : XY-pairs, interval-code with time stamp. Only for equidistante input data or XY-input data with monotonic time track.

"para equi" : Equidistant data set with interval-code plotted over the parameter of the two-component data

"para xy" : XY-data set with interval code and value of the 2-component-data's parameter

Calculation Calculation

"len" : Number of samples making up the width of the interval

"width" : Width of the interval in x-units; difference between x at the end and x at the beginning

"1/width" : Reciprocal of the interval width. If the interval represents a period, this is the frequency.

"min" : Minimum

"max" : Maximum

"mean" : Mean value. In linear interpolation, the true mean value of the polygonal chain.

"sum" : Sum of the y-values. Added proportionally at the interval edge. Signal always interpreted as stair-steps.

"int" : Total integral of y over x

"rms" : RMS-value, based on squared sum of y-values. Weighted according to distance between the samples. Edge values are
counted proportionally. The signal is always interpreted as stair-steps.

"stdev" : Standard deviation. All samples are weighted equally (as if equidistant). Edge values shorter than the sample distance
are not counted. Signal always interpreted as stair-steps.

"minposF" : Position of the minimum value. If the same value appears multiple times, the first occurrence is determined.

"maxposF" : Position of the maximum value. If the same value appears multiple times, the first occurrence is determined.

"minposL" : Position of the minimum value. If the same value appears multiple times, the last occurrence is determined.

"maxposL" : Position of the maximum value. If the same value appears multiple times, the last occurrence is determined.

"x begin" : x-value at beginning of the interval

"x end" : x-value at end of the interval

"y begin" : y-value at beginning of the interval

"y end" : y-value at end of the interval

Interpolation Interpolation (optional , Default value: 0)

0 : Automatic: Linear interpolation, but like stair-steps for digital signals

1 : The signal is imagined as linearly interpolated between the sampling points.

2 : The signal is imagined as continuing at a constant value between the sampling points. Each value is retained as a stair step up
to the next sampling point.

ResultFormat Format of data set with results (optional , Default value: "list")

imc FAMOS Func on Reference - 498 -

(c) 2024 imc Test & Measurement GmbH

"list" : List: Generates a simple list of result values; one result value per interval. Without time stamp and without any time
information

"equi" : equidistant. The result has the same length as the input data. Also for data having segments. The result value for each
interval is outputted (i.e. repeated) during the entire interval. For the interval format "para", plotted equidistantly over the
parameter of the two-component data.

"xy" : XY-pairs; result value with time stamp. Not for data having segments. For the interval format "para", pairings of result
value and parameter of the two-component data.

Result

Result Result

Description:
This function can be applied to input data having events or segments.

The input data and interval data do not need to have the same sampling interval. Instead the sampling interval and the x-offset are observed. The
interval data determine the times at which the input data are applied. Any differing absolute time is ignored.

For incomplete intervals and intervals which lie (partially) outside of the input data, no result value is generated.

With equidistant results or intervals, only 1 beginning or end of an interval per sampling step can be specified.

The calculations extend from the interval begining to its end. If the beginning and the end do not exactly coincide with the positions of samples,
partial samples are taken into account.

if the result contains a time track, the interval beginning is stated.

If the signal is interpolated in stair-step form and the interval booundaries lie at the signal's measurement points, then the smallest imprecision
in calculation can cause unstable behavior: The measured reading is sometimes to the left and sometimes to the right of the interval boundary.
For this reason, it sometimes belongs to the interval and sometimes not. This can have a pronounced effect in a Min/Max-search, for example.
One remedy is to locate the interval boundaries significantly away from the measurement points beforehand, e.g. in the middle between the
measurement points.

Examples:
Determines RMS-values of a signal's individual oscillations. The input signal is noisy.

input = 10*sin (Ramp(0,1e-3,400)*PI2*10+1.1) + Random (400, 2, 0, 0, 35) ; test data
input_smooth = Smo(input, 0.01)
ivl = IntervalFromLevel(input_smooth, 0.0, -3.0, 3.0, 1, 0.01, 0.3, 0, "equi")
st = IntervalGetStatist (input, ivl, "", "rms", 1, "list")

See also:
IntervalFrom2Levels, IntervalFromLevel

imc FAMOS Func on Reference - 499 -

(c) 2024 imc Test & Measurement GmbH

IntEx

Available in: Professional Edition and above

Integration, formation of the integral

Declaration:
IntEx (Dataset [, Calculation] [, Format] [, Resetoption] [, ResetChannel]) -> Integral

Parameter:

Dataset Data set to be integrated

Calculation Rule to be applied for calculating the integral (optional , Default value: "rect")

"rect" : Rectangle rule. Each sample is considered to be a rectangle with the width of a sampling interval.

"trapez" : Trapezoid rule. The samples are considered to be interpolated linearly. Thus N samples will give N-1 trapezoids with
a width of a sampling interval. The result is 1 sample shorter than with the rectangle rule.

"trapez+" : Trapezoid rule. The samples are considered to be interpolated linearly. Thus N samples will give N-1 trapezoids with
the width of a sampling interval. Additionally the last sample is interpreted as a rectangle with the width of a sampling interval.
The result is the same size as with the rectangle rule.

Format Format of result (optional , Default value: "zero")

"zero" : Preceeding zero. The first value of the integral is a zero. This expresses that up to the beginning of measurement, there
is no area yet. The resulting plot of the integral is delayed. It is 1 sample longer.

"nozero" : No preceeding zero. The zero value that results from a starting integration is skipped. The result is no longer
delayed. The result is distorted, which must be taken into account when interpreting the result.

"total" : Total integral. Only the last value of the integral is returned. The result's size is 1.

Resetoption Execute a reset? (optional , Default value: "no")

"no" : Never reset. The parameter ResetChannel is not specified or is set to 0.

"reset" : Hard reset. The integral is set to zero at defined positions. The ResetChannel must be specified.

"soft" : Soft reset. The integral tapers smoothly toward zero at defined positions. The ResetChannel must be specified.

ResetChannel ResetChannel. Usage depends on "Resetoption" (optional)

Integral

Integral Integral

Description:
The data set is integrated point by point.

The data set may contain events and segments, it must be equidistant.

The unit of the integrated data set is the product of the x- and y-units of the transferred data set.

The function Int() is used with XY data.

ResetChannel
If value = 0: Continue integration. If value <> 0: Reset of the integral to zero.

The resulting dataset is set to zero at those positions where the ResetChannel is <> 0. Depending to whether a preceeding zero is used, the result
may have a different shape.

Both the data set and the ResetChannel must have the same structure regarding segments and events.

The ResetChannel has the same length as the resulting integral. E.g. with the rectangle rule and a preceeding zero, the calculated signal is 1
sample longer than the data set specified. The ResetChannel shall be able to reset any of the resulting samples. Thus it is 1 sample longer, too.

If the ResetChannel is too short, zeroes will be appended at the end to fill up the gap.

If both total integral and ResetChannel are used, then internal integration follows the algorithm without a preceeding zero.

Hard and soft reset
With the strong reset, the integral will be set to zero no matter what its value is. The result will show a jump to zero.

With soft reset a straight line will be calculated. That line connects the preceeding reset with the current value of the integral. That line will be
subtracted from the integral. This leads to a smooth run toward zero. If there is no preceeding reset, the start of the data is used.

As an example, consider the sequence of values following the last reset: Input data=[7,3,17], ResetChannel=[0,0,1]. That results in a sum of input
values: 7+3+17=27. With those 3 values, the mean is 27/3=9. The modified input sequence after subtraction of the mean value is [7-9,3-9,17-9] = [-
2,-6,8]. Summing up leads to [-2,-8,0]. The last value is zero, in accordance with the last value of the ResetChannel.

The integral behind the last reset remains unchanged upon resetting.

imc FAMOS Func on Reference - 500 -

(c) 2024 imc Test & Measurement GmbH

The soft reset leads to an integration of a signal whose mean value has been subtracted from all values following the last reset until the current
one.

All reset methods counteract interfering offset which cause the integral to drift away.

Examples:
Integration of acceleration a to get speed v.

v = IntEx (a, "trapez")

Numerical examples to illustrate the effects of different calculations and formats

A=[3,5,9]
B=IntEx(A)
;B=[0,3,8,17]

B=IntEx(A,"rect", "zero")
;B=[0,3,8,17]

B=IntEx(A,"rect", "nozero")
;B=[3,8,17]

B=IntEx(A,"rect", "total")
;B=17

B=IntEx(A,"trapez", "zero")
;B=[0,4,11]

B=IntEx(A,"trapez", "nozero")
;B=[4,11]

B=IntEx(A,"trapez", "total")
;B=11

B=IntEx(A,"trapez+", "zero")
;B=[0,4,11,20]

B=IntEx(A,"trapez+", "nozero")
;B=[4,11,20]

B=IntEx(A,"trapez+", "total")
;B=20

Numerical examples illustrating effect of reset

A= [7, 3,17, 9,11, 7, 3, 9]
Reset=[0, 0, 0, 1, 0, 0, 1, 0]
B=IntEx(A,"rect", "zero", "reset", Reset)
;B= [0, 7,10, 0, 9,20, 0, 3,12]

B=IntEx(A,"rect", "nozero", "reset", Reset)
;B= [7,10,27, 0,11,18, 0, 9]

B=IntEx(A,"rect", "zero", "soft", Reset)
;B= [0,-2,-8, 0, 0, 2, 0, 3,12]

B=IntEx(A,"rect", "nozero", "soft", Reset)
;B= [-2,-8, 0, 0, 4, 4, 0, 9]

See also:
Int, MInt

imc FAMOS Func on Reference - 501 -

(c) 2024 imc Test & Measurement GmbH

IPol

Interpolation with cubic splines

Declaration:
IPol (Data, SvFactor) -> Interpolated

Parameter:

Data Data set to be interpolated with cubic splines. Allowed data types: [ND], [XY]

SvFactor Factor by which to enlarge the data set

Interpolated

Interpolated Spline-interpolated data set

Description:
The transferred data set is interpolated with cubic splines. The second parameter specifies the factor by which the data set is to be enlarged.

This function lays a natural cubic spline through each point in theda ta set. A high interpolation factor yields a data set with correspondingly high
point density. Interpolation with cubic splines produces a very smooth, rounded curve and no sharp angles. Cubic splines are designed to prepare
curves with low point densities for high-quality graphic displays

Note that cubic splines tend to overshoot slightly.

Only intermediate values are calculated during interpolation; no extrapolation is performed.

With XY-data, the X-track must be strictly monotonically increasing.
The units remain unchanged.
The sampling rate of the generated data set is reduced by the given factor.
The transferred factor may only be an integer greater than 1 and less or equal then 8192.
Since extrapolation is not performed, the resulting data set length will not be exactly equal to the product of the original length and the
given factor. It will be shorter by (factor -1) values.
In rectangular jumps, the overshoot of cubic splines will have a particularly distorting effect. Smooth the signal or divide it into sections,
which are then interpolated.
The interpolation of signals with high-frequency noise generally yield unsatisfactory results. It is then useful to suppress the noise by
smoothing the curve before executing interpolation.
With equidistantly sampled data, the function Red() reverses interpolation.

Examples:
The point density of a data set is increased by a factor of 10, to reconstruct the probable signal path with greater detail. The graphic display will
have better results and subsequent mathematical operations, such as differentiation, will be more reliable.

data2 = IPol(data, 10)

See also:
Lip, MatrixIPol, Red, Leng

imc FAMOS Func on Reference - 502 -

(c) 2024 imc Test & Measurement GmbH

IsCplx

The function inquires whether the data set passed to it is complex.

Declaration:
IsCplx (Data) -> SvResult

Parameter:

Data Data set to examine

SvResult

SvResult Result

0 : Not a complex data set

1 : Complex data set in Real-/Imaginary-part representation [RI]

2 : Complex data set in Magnitude-/Phase-representation [BP].

3 : Complex data set in Magnitude(decibel)-/Phase-representation [DP].

Description:
The function checks whether the data set passed to it is complex. If so, then the form of the data set is also determined.

Examples:
A file is loaded and examined to determined whether its first data set is complex:

idFile = FileOpenDSF("c:\dat\test.dat", 0)
IF idFile >= 1
 test = FileObjRead(idFile, 1)
 IF IsCplx(test) = 0
 BoxMessage("Attention", "Data set is complex", "!1")
 END
 ret = FileClose(idFile)
END

See also:
Cmp1, Cmp2, Compl

imc FAMOS Func on Reference - 503 -

(c) 2024 imc Test & Measurement GmbH

IsXY

The function verifies whether the data set is an XY-data set.

Declaration:
IsXY (Data) -> SvResult

Parameter:

Data Data set to examine

SvResult

SvResult Result

0 : Not an XY-data set

1 : XY-data set

Examples:
A file is loaded and examined whether its first data set is of the type XY. If so, it is converted to an equidistantly sampled data setbefore being
subjected to further processing:

idFile = FileOpenDSF("c:\dat\test.dat", 0)
IF idFile >= 1
 test = FileObjRead(idFile, 1)
 IF IsXY(test) = 0
 test = XYdt(test, 0.1)
 END
 ...
 ret = FileClose(idFile)
END

See also:
CmpX, CmpY, XYof

imc FAMOS Func on Reference - 504 -

(c) 2024 imc Test & Measurement GmbH

Join

Joins 2 data sets together
The function is obsolete and instead the more powerful function JoinEx() should be used.

Declaration:
Join (DataFront, DataBack) -> DataJoined

Parameter:

DataFront First data set; allowed types: [ND]

DataBack Second data set; allowed types: [ND]

DataJoined

DataJoined Results from joining the two data sets

Description:
A typical application of this function is to generate a data set from many single values. This concatenation can be started in a loop, simply by specifying
an empty data set to which values are appended each time the loop is executed. The empty data set can be specified using the symbolic constant
EMPTY, for example.

The EMPTY constant is particularly convenient for sequences which call the Join function in a loop.

When two single values are joined to form a normal data set, the following standard values are selected for the data set: sampling interval = 1, x-
offset = 0.
When one single value and a normal data set are joined, the units of the normal data set are adopted. The unit of the single value should match
the y-unit of the normal data set.
When two normal data sets are joined, units, sampling interval and x-offset of the first data set are adopted. For useful application of the
function, units and sampling intervals should match.
You can use the function Append() to achieve time-/x-correct attaching or merging of data sets.

Beginning with Version 7.6, the more powerful function JoinEx() is available. Alternatively, the functionality of the Join()-function can be replicated
with initialization lists. The following 3 calls are nearly equivalent:

concat = Join(front, back) ;(1)
concat = JoinEx(front, back) ;(2)
concat = [front, back] ;(3)

The only difference is that for (1), the result is always a Real data format, while for (2) and (3), the numerical format of the parameters is preserved if
possible.

Examples:
A data set is to be created containing a list of several maxima:

NElist = EMPTY ;empty data set is created
NElist = Join(NElist, SVmax1)
; A number (first maximum) is appended to the list; NsList becomes a normal single value.
NElist = Join(NElist, SVmax2)
; Another value (second maximum) is appended to the list; NsList becomes a normal data set with a length of 2 etc...

Data recorded before the trigger are joined with data after the trigger:

NDcomplete = Join(NDpreTrigger, NDpostTrigger)

See also:
JoinEx, Append, AppendLoop, Cut

imc FAMOS Func on Reference - 505 -

(c) 2024 imc Test & Measurement GmbH

JoinEx

Connects data sets to each other

Declaration:
JoinEx (DataFront, DataBack [, DH2] [, DH3] [, DH4] [, DH5] [, DH6] [, DH7] [, DH8] [, DH9] [, DH10] [, DH11]
[, DH12] [, DH13] [, DH14]) -> JoinedData

Parameter:

DataFront First data set. Types allowed: [ND].

DataBack Data set to be appended. Types allowed: [ND].

DH2 2nd data set (optional) to append (optional)

DH3 3rd data set (optional) to append (optional)

DH4 4th data set (optional) to append (optional)

DH5 5th data set (optional) to append (optional)

DH6 6th data set (optional) to append (optional)

DH7 7th data set (optional) to append (optional)

DH8 8th data set (optional) to append (optional)

DH9 9th data set (optional) to append (optional)

DH10 10th data set (optional) to append (optional)

DH11 11th data set (optional) to append (optional)

DH12 12th data set (optional) to append (optional)

DH13 13th data set (optional) to append (optional)

DH14 14th data set (optional) to append (optional)

JoinedData

JoinedData Result of der concatenating all parameters

Description:
Either single values or simple data sets (equidistantly sampled, no events, no segments) can be used as parameters.

The new data set "inherits" the units and additional characteristic values (such as pretrigger/x-offset, sampling interval/x-delta) from the
first parameter having a length >= 2. In order for the function to be used in a sensible way, the units and the sampling intervals of all
parameters should match.
When single values are specified, the units of [DataForw] are used. The result's sampling interval is 1.0 and its x-offset is 0.0.
If all parameters have the same data format, it is also used for the result. Otherwise, it is converted to the numerical format "Real 8 Byte"
(double).
You can use the function Append() to join or merge data sets in correct accordance with their respective time or x-coordinates.
If you intend to repeatedly append data to a data set (e.g. in a loop), you should use the function AppendLoop() which is optimized for this
application case.

Instead of the function JoinEx(), in most cases you can also use an initialization list (comma-separated initializers in square brackets). The
following two lines, for example, are equivalent:

Mean3Days = Mean(JoinEx(BeforeYesterday, Yesterday, Today))
Mean3Days = Mean([BeforeYesterday, Yesterday, Today])

Examples:
A data set is supplemented with a beginning and a final 0:

Data = JoinEx(0, Data, 0)

The data measured on 3 days in succession are joined to a single data set:

Data3Days = JoinEx(BeforeYesterday, Yesterday, Today)

In an event-based data set, the maxima of all events are found and copied to a new data set.

allMax = EMPTY
FOREACH EVENT ev IN data

imc FAMOS Func on Reference - 506 -

(c) 2024 imc Test & Measurement GmbH

 allMax = JoinEx(allMax, max(ev))
END

Note: For such applications it is often more efficient to use the function AppendLoop() since it is significantly faster performing frequent and
repeated appending.

See also:
Join, Append, AppendLoop, Cut

imc FAMOS Func on Reference - 507 -

(c) 2024 imc Test & Measurement GmbH

KBT

KB-weighting and maximum-rate values

Declaration:
KBT (Data, SvLowerFrequency, SvUpperFrequency, SvIntegrations, SvTimeRating, SvRate, SvNorm, SvMinimum, Zero)
-> KBData

Parameter:

Data Data set to be analyzed

SvLowerFrequency
The lower cut-off frequency of the band-pass (>0!) should generally be set to 1 Hz. The program automatically selects a
frequency 0.8 times smaller for the bandpass, i.e. 0.8Hz. If the specified upper and lower cut-off frequencies are less than
zero, no filtering (band-pass and high-pass) or integration is performed.

SvUpperFrequency The upper cut-off frequency of the band-pass (>0!), should generally be set to 80 for 80Hz. The program automatically
selects a frequency 1/0.8 times larger, i.e. 100Hz.

SvIntegrations Number of integrations to be executed. If you have an acceleration signal, for example, it must be integrated once to yield
a velocity signal. The integrations and differentiations are executed only in combination with bandpass filtering.

0 : No integration (default)

1 : One integration

2 : Double integral

-1 : First derivative

-2 : Second derivative

SvTimeRating Averaging time for calculating the moving RMS (time rating).

>0 : Free averaging duration

0 : No RMS calculation

-1 : FAST (0.125s)

SvRate The rate at which the maximum rate values should be calculated

0 : No calculation of maximum rate values.

>0 : A period which you specify, e.g. 30 for 30 seconds. If the rate is less than the sampling rate, the latter is used as the
rate. If the rate is longer than the duration of the source data set, the complete source data set is used. If the data set is
longer than one interval and the last period extends beyond the data set, only the available measurement points are used.
It is then up to the user to include the last maximum rate values.

SvNorm This factor is used to multiply the result for normalization. (0 means no normalization. Multiplication is omitted.)

SvMinimum
Results below this value are set to zero. This excising of smaller values is only performed when a moving RMS is
calculated. It makes no sense to use negative normalization! Since no negative values can occur after RMS calculation,
[Minimum]=0 is used if no data are to be excised.

Zero Reserved parameter; set to 0.

KBData

KBData Result of the evaluation

Description:
KB-weighting is generally performed to evaluate vibrations, especially in the frequency range of 1 Hz to 80 Hz. Vibrations in this range are usually
perceived as unpleasant. KB-weighting is used prevalently in noise pollution protection for performing standards-compliant evaluation.

The KBT function provides you with the complete KB-weighting including determination of maximum rate values.

The KB-weighting is performed in accordance with DIN, in which the following steps are performed in succession:

It is assumed that the measurement signal is unweighted (speed signal, velocity over time).
This signal frequency range is clipped: 1 Hz and 80 Hz (normal); 1 Hz - 315 Hz (blasting vibrations) or 4 Hz - 80 Hz (railways). Part 1 of DIN 45669
specifies a Butterworth band-pass filter of fourth order, with the lower cut-off frequency reduced by a factor of 0.8 and the upper cut-off
frequency increased by a factor of 1 / 0.8 (e.g. 0.8 Hz and 100 Hz).
The clipped signal is filtered with a high-pass filter of first order and a cut-off frequency of 5.6 Hz. The frequency-weighted vibration signal is
the result.
The signal can then be integrated or differentiated to yield a velocity signal, since filtering has removed high-frequency noise
(differentiation is thus more accurate) as well as eliminating the low-frequency drifts and offsets, improving the result of integration. This is
not prescribed by DIN, but of great practical importance. Integration and differentiation are performed by extending the digital filter for the

imc FAMOS Func on Reference - 508 -

(c) 2024 imc Test & Measurement GmbH

bandpass with zeros or poles at frequency zero.
The weighted vibration strength is extracted from the frequency-weighted signal by calculating the exponentially-weighted moving RMS.
The moving RMS is calculated in the following way: The signal is squared, then exponentially averaged, then its square root is taken.
Squaring, averaging and subsequent root extraction are characteristic of forming the RMS. With a regular RMS value, an evenly weighted
average of all squares is calculated, while in this case for the moving RMS, time-weighting is performed. The exponential averaging used
causes a sort of "forgetting". It can also be regarded as a 1st order low-pass filter. The time constant for the moving is 0.125s for the moving
RMS according to DIN4150 Part 2.
The next step is to find the maxima of the rated vibration strength (result of RMS calculation) In each interval of 30 s length, the maximum
value is determined. These are then the maximum rate values.
Now the values are normalized by multiplying the signal by a specified factor, for example to implement a defined scaling
All maximum rate values below a defined threshold are set to zero. For any subsequent calculation of maximum rate values, only values
greater than 0.1 are considered, the others are set to zero.

Application for determination only of the maximum rate values, e.g. to be calculated using 1/3-octave spectra. Set the following parameter
values:

SvLowerFrequency = -1
SvUpperFrequency = -1
SvIntegrations = 0
SvTimeRating = 0
User's rate, e.g. 30s
SvNorm = 0
SvMinimum = 0

Application as a band-pass function (note that the high-pass with cut-off frequency 5.6 Hz is included in filtering!). Set the following parameters:

SvLowerFrequency = Lower cut-off frequency / * 0.8
SvUpperFrequency = Upper cut-off frequency / 0.8
SvIntegrations = 0
SvTimeRating = 0
SvRate = 0
SvNorm = 0
SvMinimum = 0

Application to calculate a moving RMS. Set the following parameters:

SvLowerFrequency = -1
SvUpperFrequency = -1
SvIntegrations = 0
SvTimeRating = User's averaging time constant or -1 for 0.125s
SvRate = 0
SvNorm = 0
SvMinimum = 0

The algorithms conform to:

DIN 4150 Teil 2, Vibrations from construction sites, effect on people in buildings
DIN 45669 Teil 1, Measurements of vibration emissions, vibration meters, requirements, testing
The calculation of the maximum rate RMS value is not included in this function; use the RMS function instead.

Attention, time constant!

If you use the moving RMS-value formation, note that the effect is different than that of a simple low-pass. The time constant cannot be read
directly from a graph of the filtered data because the root of the signal is computed after multiplication with the time constant. The time
constant can however be made visible by squaring the results! The time constant can be read relatively well for a square wave input signal if no
filtering is used.

Sampling rates

If the function performs filtering, a digital filter is used. The cutoff frequencies of this digital filter can only be less that half of the sampling
frequency. Higher cutoff frequencies are not possible.

Filtering precision

The design of the digital filters used for the bandpass and high-pass filtering is only useful for frequencies significantly below half of the
sampling frequency. In order to be able to use the bandpass at all, the sampling frequency should be at least 1kHz at an upper cutoff frequency of
80Hz.

Moving RMS value

The averaging time can be larger or smaller than the sampling rate. A zero-order approximation is performed (step signal).

Initial transient

When applying band-pass filters, remember the start-up signal, which can be approximated by calculating 1/frequency difference. The lower cut-
off frequency for the start-up signal is significant in selecting the number of integrations. During start-up of the filter, no conclusions can be
drawn from the result, so ignore the first values of the resulting data set. The start-up is not a problem specific to imc FAMOS or to digital filters,
but applies to filters in general.

imc FAMOS Func on Reference - 509 -

(c) 2024 imc Test & Measurement GmbH

Range of values

Note the range of values permitted when selecting a normalizing factor. Any values in the resulting data set exceeding the permitted range are
set to zero.

Unit

The x-unit of the source data set is expected in seconds. The time information specified with the function is expected in the same unit;
frequencies in Hz. The result always has the y-unit of the source data, even in integration.

Data type

The type of the result is an equidistant data set. If a single value is calculated (one maximum rate value), a single value is returned.

Y-scaling

The calculated values are always expressed as linear values. If display in dB is desired, select the mathematical function dB (..) or the
corresponding dB display in the curve window.

Examples:
The standard application of the function: a data set a with acceleration values is to be evaluated. Its sampling rate is 1 ms, and a frequency range
of 1 Hz to 80 Hz is selected. Since the signal originates from an acceleration sensor, single integration is required to yield a velocity signal. The
FAST evaluation (0.125 s) is used for calculation of the RMS value. Maximum rate values are calculated in intervals of 30 s. No further
normalization is performed; maximum rate values less than 0.1 are set to 0. A last function call calculates the RMS of the maximum rate.

KBFTI = KBT(a, 1.0, 80.0, 1, -1, 30, 0, 0.1, 0)
KBFTM = RMS(KBFTI)

Intermediate results can be viewed by separating the compact KBT function call into separate steps: first the frequency rating, then the moving
RMS calculation, and finally determination of the maximum rate values.

FrRating = KBT(a, 1.0, 80.0, 1, 0, 0, 0, 0, 0)
rms = KBT(FrRating, -1, -1, 0, 0.125, 0, 0, 0.1, 0)
KBFTI = KBT(rms, -1, -1, 0, 0, 30, 0, 0, 0)
KBFTM = RMS(KBFTI)

See also:
ExpoRMS, RMS, OctA, ABCRating, MInt

imc FAMOS Func on Reference - 510 -

(c) 2024 imc Test & Measurement GmbH

LAYOUT

Report Generator-Remote Control
The command is obsolete; instead of it, the more powerful commands of the Report Generator Kit such as RgDocOpen(), RgDocPrint() and
RgCurveSet()/RgTextSet() should be used.

Declaration:
LAYOUT Task Name Variable

Parameter:

Task Command to be executed

PRINT : Prints the current report

LOAD : Loads a Report-file

OBJECT : A variable is transferred to a Report-object

Name For LOAD and OBJECT: Filename or object title, respectively

Variable For OBJECT: variable to transfer

Description

LAYOUT PRINT
The current report is printed out
LAYOUT LOAD

A Report-configuration file is loaded to the Report Generator. If you set placeholders in the Report Generator, use this command to restore all
placeholders.

The Report Generator is started as an icon. Since sequences only require the Report Generator in conjunction with configurations to be loaded, it
doesn't need to be called separately.

The specification for the filename may also be a complete path name, if the desired configuration file is not in the default folder. You can set the
default folder for report either in the Report Generator itself or in the dialog "Options"/ "Folders".

LAYOUT OBJECT

A variable is passed to a Report Generator object. The desired object in the layout is selected by its title (name). Variables can be passed to text
or curve objects. Before transfer of a curve object, the data set must be displayed in a curve window.

Examples:

LOAD Data.dat
SHOW Data
Txt = "Created by S.Smith"
LAYOUT LOAD c:\imc\drb\report1.drb
LAYOUT OBJECT Curve Data
LAYOUT OBJECT Name Txt
LAYOUT PRINT

A report is loaded. A curve and text object is transferred to the report, which is then printed.

See also:
RgDocOpen, RgDocPrint, RgCurveSet, RgTextSet

imc FAMOS Func on Reference - 511 -

(c) 2024 imc Test & Measurement GmbH

LDIR

Sets the folder for loading files

Declaration:
LDIR Folder

Parameter:

Folder Complete pathname of the desired folder

Description
Instead of the command LDIR, the function SetOption() should be used in newly created sequences.

The folder for loading files is given a new setting.

Once this command is executed, this folder is used for loading files.

The folder name may also be expressedd in quotation marks. This is obligatory when the name contains spaces.

This command can also be called without any parameters (so without any specified fodler). Then the folder set under "Options/Folders" is again
used as the default.

The folder elected here remains valid until:

the command LDIR is called again
the function SetOption("Dir.DataFiles",...) is called
a file is loaded from a different folder using the dialog box "Load" in the menu "File"
a new folder for loading files is set using the dialog under "Options"/ "Folders"

Multithreading: The command has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:

LOAD DATA1
LDIR C:\TEST
LOAD DATA2

From the folder currently set, the file DATA1 is loaded in imc/FAMOS-format; subsequently the file C:\TEST\ DATA2.DAT.

LDIR "c:\My Tests on 12/1/98"

The pathname contains spaces and must therefore be written in quotation marks.

See also:
SetOption, LOAD, SDIR, MDIR, FileLoad, FileOpenDSF

imc FAMOS Func on Reference - 512 -

(c) 2024 imc Test & Measurement GmbH

Leng

Specifies a data set's number of values

Declaration:
Leng (Data, SvLeng) -> Result

Parameter:

Data Data set whose length is to be changed

SvLeng Length of the data set to be generated

Result

Result Data set with changed length

Description:
The length (data point count) of a data set is changed to a new value. If the new point count is less than the old one, the data set is truncated
(shortened). If the new point count is higher, the data set is filled with zeroes up to the new length (for scalable integer data formats the
unscaled raw values are set to zero)

The second parameter should not have a unit, since it is a pure number.
The data set's new point count can only be a whole number >= 0.
The new length of the data set is a count of data points, not an x-coordinate/-range.

Examples:
The first 200 data points in a data set oare to form a new data set.

NDnew = Leng(NDold, 200)

A data set of 600 points in length is truncated to 512 points and subsequently filled with zeroes to a length of 1024 points. If this data set is used in
an ACF or CCF, the signal is interpreted as non-recurring, i.e. not periodic.

NDHalfZeroes = Leng(Leng(NDdata, 512), 1024)

A data set with 1024 points is extended to 2048 points with a sin(x) / x - interpolator. This is achieved by lengthening the spectrum with zeroes
and then re-transforming it. Use the rectangular window!

NDintpol = iFFT(Leng(FFT(NDdata), 1025))

See also:
Leng?, MatrixChangeDim, Cut, XDel, XOff, Red, IPol

imc FAMOS Func on Reference - 513 -

(c) 2024 imc Test & Measurement GmbH

Leng?

Finds a data set's length (value count)

Declaration:
Leng? (Data) -> SvLeng

Parameter:

Data Data set whose length is to be found

SvLeng

SvLeng The parameter's length (point count)

Description:
A data set's length (data point count) is determined.

A count of data points is returned, not an x-coordinate differential.

Examples:
The duration of a data set is determined (product of sampling interval and point count):

duration = XDel?(NDdata) * Leng?(NDdata)

A histogram is standardized to 100% over the point count of the data set under examination:

NDnormhi= 100'%' * Histo(NDdata, 0, 0)/Leng?(NDdata)

The length of the single value is defined as 1. An empty data set's length is zero.

SvOne = Leng?(100)
SvZero = Leng?(EMPTY)

See also:
Leng, XDel?, XOff?, Time?, MatrixInfo

imc FAMOS Func on Reference - 514 -

(c) 2024 imc Test & Measurement GmbH

LFit

Linear regression; fitting to line

Declaration:
LFit (Data) -> Line

Parameter:

Data Data set to which a line of best fit is to be found [ND],[XY]

Line

Line Regression line

Description:
A data set given by the equation

f(x) = A * x + B

determined, which best approximates the data set passed to the function. The coefficients A and B are determined accordingly. This function is
based on the algorithm of linear regression, which determines an optimal straight line using the method of least squares.

Upon completion of the function, the equation is displayed in the output box in the imc FAMOS main window. The equation is displayed with
units and is in the format:

 f(x) = 5.834 [Ohm] * x + 12.29 [V]

Calling the function with an empty text as the parameter returns the last coefficients calculated, A and B, in the form of a data set of two values.

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Normal data set [NW]:

The data set generated has the length and unit of the specified data set, with a maximum length of 100. If the length is shortened (truncated), the
sampling time is changed so that the specified data set is defined for the same interval.

XY -data set [XY]

The generated data set has the length 2. It is defined over the same x-interval as the source data set.

Examples:
The linear regression for a data set calculated. Subsequently, the slope and offset of the regression line are computed.

RegressionLine = LFit(Daten)
coeff = LFit("")
factor= coeff[1]
offset = coeff[2]

The deviation from the best straight line is determined. The function RSamp is used first to align the sampling times before the difference is
calculated:

NDerror = NDdata - RSamp(LFit(NDdata), NDdata)

See also:
eFit, RSampEx, Appro, ApproNonLin, Poly

imc FAMOS Func on Reference - 515 -

(c) 2024 imc Test & Measurement GmbH

Lip

Linear interpolation

Declaration:
Lip (Data, SvFactor) -> Interpolated

Parameter:

Data Data set to be linearly interpolated [ND],[XY]

SvFactor Factor by which to enlarge the data set

Interpolated

Interpolated Linearly interpolated data set

Description:
The data set passed is linearly interpolated. The 2nd parameter states the factor by which the data set is to be enlarged. With linear
interpolation, it is imagined that the data set's points are connected by straight diagonal lines. Only intermediate values are calculated; there is
no extrapolation.

The units remain unchanged.
With equidistantly sampled data [ND], the sampling interval is smaller by the factor specified. The interpolation can be reversed by the
function Red().
The factor specified may only be an integer greater than 1.
Since extrapolation is not performed, the resulting data set length will not be exactly equal to the product of the original length and the
given factor. It will be shorter by (factor -1) values. With graphical display of curves, there generally is linear interpolation already, so that
this function doesn't need to be used for a graph.

Examples:
The point density of a data set is increased by a factor of 3:

data2 = Lip(data, 3)

See also:
IPol, MatrixIPol, Red, Leng

imc FAMOS Func on Reference - 516 -

(c) 2024 imc Test & Measurement GmbH

ln

Natural base e (Euler number) logarithm

Declaration:
ln (Data) -> Result

Parameter:

Data Data; allowed types: [ND],[XY].

Result

Result The parameter's natural logarithm

Description:
The base e (Euler number e = 2.718....) logarithm is calculated. This logarithm is called the natural logarithm.

Remarks

The x-coordinate(s) of the parameter and the result are the same.
The parameter of the function should have no unit. But if it does have one, it is retained (a warning is issued).
The parameter of the function ln() should always be greater than zero.
The functions exp() and ln() are the inverse of each other.
The parameter may be structured (events/segments).

Examples:
The natural logarithm of the predefined constant e is 1:

one = ln(e)

The following formula does not change the number. However, note the reduced definition range of the function exp():

number = ln(exp(number))

See also:
log, exp, ^(hoch)

imc FAMOS Func on Reference - 517 -

(c) 2024 imc Test & Measurement GmbH

LOAD

Open file

Declaration:
LOAD Filename VariableName

Parameter:

Filename Name of the file to be loaded

VariableName Name under which the variable is to be entered in the variable list

Description
This command is obsolete; instead of it you can use the more powerful and convenient function FileLoad().
The specified file is loaded in the currently set file format (FAMOS, BINARY or ASCII) and its data objects entered in the variable list. A complete
file name, including the path, can be specified. If the second parameter is missing, the file name without directory and extension is used as the
variable name.

In FAMOS files created with the version 3.0, the variable names are stored in the file; the variables are then created under the same name after
being loaded in FAMOS. When the second parameter is specified and the file contains exactly one data object, then the object is stored under
the specified name. If there are several data objects, all objects are read and the specified variable name is ignored.

Wildcards

Wildcards can also be specified in file names to load a series of files. The wildcard '?' stands for an exact character, '*' stands for an undefined
number of any characters.

LOAD c:\imc*.*

All files are loaded in the directory c:\imc.

LOAD a??.*

All files whose names begin with 'a' and consist of three characters are loaded in the current directory. Any file name extension can be used.

LOAD *a1*.dat

All files with the extension 'dat', whose names contain the string '1a' (at the beginning or end), are loaded.

Indirect calls and filenames with special characters

If the filename is in a text variable, the call is written in angle brackets:

MyFileName= "C:\Data\Signal.dat"
LOAD <MyFilename>

If the filename contains spaces, periods or other special characters, indirect calling by means of a text variable is obligatory. Additionally, the
variable must be enclosed in more quotation marks:

MyFilename= """C:\Data\1.1 Signal at 20°C.dat"""
LOAD <MyFilename>

If the FAMOS data format is set, a file name extension must not be specified. The extension ".DAT" is automatically appended.
End a file name with a period if an extension is not desired.
If no path is specified, the path set for loading files is used. Once FAMOS is started, this path is found in the standard directory in the dialog
'Options'/ 'Directories'. It can be changed using the command LDIR or the function SetOption().
The filename may also be written within quotation marks. This can be necessary, if, for instance, the path contains spaces.
In order to load files whos format you defined by means of the imc Fil Assistant, please use the function FileOpenFAS() or the command
FASLOAD.
The functions of the group FileOpen*() can also be used to load FAMOS files. These are much more powerful than the command LOAD,
especially for loading files containing multiple data sets.

Examples:

FAMOS
LOAD c:\imc\dat\Data var1

The file WAVE.DAT is loaded in FAMOS format and the resulting variable is entered in the variable list under the name "var1".

ASCII
LOAD DBAS.ASC

The specified ASCII file is loaded and entered in the variable list under the name DBAS.

imc FAMOS Func on Reference - 518 -

(c) 2024 imc Test & Measurement GmbH

BINARY
LDIR c:\BINDATA
LOAD *.BIN

All files with the extension 'BIN' are loaded in binary format in the specified directory.

LOAD "c:\imc\My data files\Data"

The filename contains a space and therefore it must be written inside of quotation marks.

See also:
FileLoad, FileOpenDSF, LDIR, FAMOS, BINARY, ASCII

imc FAMOS Func on Reference - 519 -

(c) 2024 imc Test & Measurement GmbH

LOCAL

This instruction serves to declare local variables

Declaration:
LOCAL VariableName

Parameter:

VariableName One or more variables' names (may include wildcard characters)

Description
Variables can be declared as 'local' within a sequence. Local variables are only valid during the running of the current sequence and can only be
used within these; at the end of the sequence execution, such variables are deleted automatically.

The declaration can be made either directly or in the assignment:

LOCAL temp = Ramp(0, 1, 100)

Or by forward declaration:

LOCAL temp
temp = Ramp(0, 1, 100)

In the forward declaration, it is also possible to use wildcard characters ('*' - representing any amount of characters, '?' - exactly one arbitrary
character):

LOCAL ? ; all variables whose name is exactly one character long
LOCAL #* ; all variables whose name starts with '#'

It is also possible to specify multiple name patterns, separated either by spaces or a comma:

LOCAL ?,#*

Designation

The internally used (complete) name of local variables is structured as follows: [Name]@![SequenceName] Applying the measurement design
concept in FAMOS, the local variables are thus assignedd to a 'virtual' measurement, whose name is derived from the name of the current
sequence. In the Variables list, they are also listed under their full name (e.g. when running the sequence in single-step mode or when sequence
execution is cancelled in consequence of an error).

Name duplicates with permanent (global) variables:

When generating local variables, any possibly already existing permanent variable having the same name is ignored.
In the search for variables, the local variable 'wins' over any existing permanent variable of the same name.

X = 1 ; permanent variable
LOCAL X
X = 2 ; new local variable
Y = X ; Y has the value 2 (like the local variable)

Special characteristics and limitatations of local variables:

Local variables are ignored by the functions for querying the Variables list (VarGetInit, VarGetInit2, VarExist?).
They can not be linked with Panel- or dialog elements.
They are not visible for queries by means of DDE.
They are not displayed in the Variables list/Measurement view.
They are not saved along with the project.
The declaration of a local variable only makes sense in the context of a sequence, in the 'Input'-window, the LOCAL-command is ignored for
this reason.
The forward declaration only applies to variables which are the direct result of an assignment. Variable which are the result of commands
(e.g. LOAD, QUERY etc) are never local.

See also:

imc FAMOS Func on Reference - 520 -

(c) 2024 imc Test & Measurement GmbH

log

Base 10 logarithm

Declaration:
log (Data) -> Result

Parameter:

Data Data; allowed types: [ND],[XY].

Result

Result Base 10 logarithm of the parameter

Description:
Computes the base 10 log

Remarks

The x-coordinate(s) of the parameter and the result are the same.
The parameter of the function should have no unit. But if it does have one, it is retained (a warning is issued).
The parameter of the function log() should always be greater than zero.
The parameter may be structured (events/segments).

Examples:

zero = log(1)

E.g.: log(0.1)= -1, log(1)= 0, log(10)= 1

See also:
ln, dB, ^(hoch)

imc FAMOS Func on Reference - 521 -

(c) 2024 imc Test & Measurement GmbH

LogSetup

Configures log output

Declaration:
LogSetup (TxTarget [, SvReset] [, TxTimeStamp] [, TxOutputLevel])

Parameter:

TxTarget Determines the target for subsequent LogTrace()-output. If an empty string is specified, the messages are written in the
output window of the FAMOS main window. Otherwise, a filename is expected here.

SvReset Resets display/file (optional , Default value: 0)

0 : Don't delete

1 : Deletes output window/empties file.

TxTimeStamp Outputs messages with a preceding time stamp. (optional , Default value: "")

"" : No time stamp

"hh:mm:ss" : Time (precision: 1 second)

"hh:mm" : Time (precision: 1 minute)

"hh:mm:ss,0" : Time (precision: 1/10 second)

"d hh:mm:ss" : Date + Time (precision: 1 second)

"d hh:mm" : Date + Time (precision: 1 minute)

"d hh:mm:ss,0" : Date + Time (precision: 1/10 second)

TxOutputLevel LogTrace()-commands configured with a lower importance are ignored. (optional , Default value: "*")

"-" : Ignores all LogTrace()-outputs.

"e" : Only output important errors.

"e2" : Output all errors (e, e2).

"w" : Outputs all errors and important warnings (e, e2, w).

"w2" : Outputs all errors and all warnings (e, e2, w, w2).

"i" : Output all errors, all warnings and important information (e, e2, w, w2, i).

"*" : Output all

Description:
When a filename without a folder is specified for [TxTarget], the default sequence folder is used. If no file extension is specified, then ".log" is
used.

The output file is written as a text file in the UTF-8 character set.

For output to a file, error messages and warnings either generated by FAMOS' Formula Interpreter or when executing functions are also logged.

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Examples:
A sequence loads all measurement files having a specified name pattern from a folder. For each file, a log entry is generated and appended to
the log file. Each entry consists of a time stamp, filename and status (success/error) of the operation.

logLevel = "*"
LogSetup("c:\log\protocol.txt", 0, "d hh:mm:ss,0", logLevel)
SetOption("Func.ErrorBoxes", "No") ; No error boxes for file functions!
fileNames = FsGetFileNames("c:\imc\dat","a*.dat", 0, 0, 0)
FOREACH ELEMENT name in fileNames
 IF FileLoad(name, "", 0) >= 0
 LogTrace("Load file " + name + " => Success")
 ELSE
 LogTrace("Load file " + name + " => Failure", "e")
 END
END

Note: As a centralized way to switch logging off completely, set the variable [logLevel] to "-". In order to only output the error messages, set
[logLevel] to "e".

imc FAMOS Func on Reference - 522 -

(c) 2024 imc Test & Measurement GmbH

The log file generated in the previous example is later loaded again and displayed in the output window:

LogSetup("", 1)
LogTrace("--- Contents of the log file ---")
idFile = FileOpenASCII("c:\log\protocol.txt", 0)
TxLine = ""
ok = FileLineRead(idFile, TxZeile, 0)
WHILE ok = 0
 LogTrace(TxZeile)
 ok = FileLineRead(idFile, TxZeile, 0)
END
FileClose(idFile)

See also:
LogTrace, BoxOutput

imc FAMOS Func on Reference - 523 -

(c) 2024 imc Test & Measurement GmbH

LogTrace

Outputs a text to the output window or a file.

Declaration:
LogTrace (TxLogText [, TxLevel])

Parameter:

TxLogText Text to be outputted

TxLevel Characterizes the importance of the output; is checked against the output level specified in LogSetup() - if its [TxLevel] is lower
(less important), the command is ignored. (optional , Default value: "i2")

"e" : Error

"e2" : Lower priority error

"w" : Warning

"w2" : Lower priority warning

"i" : Information

"i2" : Lower priority information

Description:
The function writes the specified text to the log. The output medium (text-file or output window) and output format (e.g. preceding time stamp)
are configured by means of the function LogSetup().

For output to a file, the text is prefixed with an "(E)", "(W)" or "(I)", depending on [TxLevel]. "E" stands for error, "W" for warning, "I" for
information. When logging data in the output window, the level is indicated by a corresponding symbol.

Examples:
A sequence loads all measurement files having a specified name pattern from a folder. For each file, a log entry is generated and appended to
the log file. Each entry consists of a time stamp, filename and status (success/error) of the operation.

logLevel = "*"
LogSetup("c:\log\protocol.txt", 0, "d hh:mm:ss,0", logLevel)
SetOption("Func.ErrorBoxes", "No") ; No error boxes for file functions!
fileNames = FsGetFileNames("c:\imc\dat","a*.dat", 0, 0, 0)
FOREACH ELEMENT name in fileNames
 IF FileLoad(name, "", 0) >= 0
 LogTrace("Load file " + name + " => Success")
 ELSE
 LogTrace("Load file " + name + " => Failure", "e")
 END
END

Note: As a centralized way to switch logging off completely, set the variable [logLevel] to "-". In order to only output the error messages, set
[logLevel] to "e".

The log file generated in the previous example is later loaded again and displayed in the output window:

LogSetup("", 1)
LogTrace("--- Contents of the log file ---")
idFile = FileOpenASCII("c:\log\protocol.txt", 0)
TxLine = ""
status = FileLineRead(idFile, TxZeile, 0)
WHILE status = 0
 LogTrace(TxZeile)
 status = FileLineRead(idFile, TxZeile, 0)
END
FileClose(idFile)

See also:
LogSetup, BoxOutput, FileLineWrite

imc FAMOS Func on Reference - 524 -

(c) 2024 imc Test & Measurement GmbH

LostValueFill

Available in: Professional Edition and above

Fills the gaps between events, where the events result from the presence of Lost Value, Overflow, Not a Number, Overmodulation, Sensor
Breakage.

Declaration:
LostValueFill (input data [, Reference] [, ReplaceHow] [, Substitute value] [, Time_Option] [, MaxLen]) ->
Result

Parameter:

input data input data

Reference

Reference. If an empty text "", then there is no reference. Calculation of the start and end, and of the length of gaps is
performed solely on the basis of x0 and the trigger times. When a reference channel is available, the start and end are
determined by the reference channel. Thus, the actual start can be located before the beginning of the first event, and the end
can be after the end of the last event. The reference channel must have the same sampling rate as the input data. (optional ,
Default value: "")

ReplaceHow How to effect the replacement (optional , Default value: 0)

0 : linear interpolation: between the last valid value before the gap and the first valid one after it

1 : constant continuation

2 : constant next: the next adjacent valid edge value is used

3 : fixed value which is specified as the subsequent parameter ReplacementValue

Substitute
value The replacement value, if a fixed defined value is intended as the replacement value. Else 0. (optional , Default value: 0)

Time_Option Time_Option (optional , Default value: 0)

0 : The events' trigger times are not taken into account.

1 : The events' trigger times are taken into account.

MaxLen

Maximum length of the result, in Samples = 0, if there is no limit. Setting limits is apporopriate if the input data might not
originate from a proper measurement. In such cases, gigantic volumes of data can be generated due to unfavorable values for
the event's trigger times or its x-offsets (x0). If the result is anticipated to become longer than the length defined here, the
function cancels and posts an error message. (optional , Default value: 0)

Result

Result Result

Description:
Lost Values in a data set may have caused the data set to have been subdivided into multiple events. None of these individual events contain any
Lost Values. The Lost Values can be considered to be located in the gaps between the events.

For some analyses it may be advantageous to append all the events back together to a single data set which correctly reflects the time
relationships. The gaps between the events are replaced with new inserted values.

Lost Value
The Lost Value refers to a missing or invalid or "not actually available" value in a data set. For instance, a reading may go missing due to overflow
of a buffer memory, or due to faulty transmission via a bus-system. The correct reading may not be possible to recover due to breakage of a
sensor (ruptured thermocouple) or to overmodulation of a measurement amplifier. If an equidistantly sampled measurement channel needs a
value, but none is available, a Lost Value is used instead.

With Real number formats, a Lost Value is frequently represented as 1e100; or as Not a Number, also represented as 1e100. With Integer number
formats, usually a value at the end of the respective number range is selected. Thus for instance -32768 for 16-bit signed Integers.

In overmodulation of measurement amplifiers, readings are usually generated which lie (slightly) outside of the measurement range. They have
typically been attenuated either by means of hardware or firmware.

In case of sensor (thermocouple) breakage, many measurement devices write a replacement value of approx. -2000 to the temperature channel.
Thus, checking for values <=-1000 would detect these sensor breakage values.

Not a Number (NaN) is the binary code which the computer uses for the Real number data type when the value provided is either not a number
or no numerical value is available for it. In imc FAMOS, the value is usually represented as 1e100. Not a Number can be used to represent a Lost
Value. Not a Number can also result from arithmetical operations when the permitted numerical range has been violated.

Parameter
The input data are equidistant and are to comprise events. Input data without events are treated as data having one event.

The ReplaceHow option and the replacement value determine how the replacement is achieved.

imc FAMOS Func on Reference - 525 -

(c) 2024 imc Test & Measurement GmbH

Examples:
A test station program returned multiple events although measuring a continuous data stream, because data went missing due to (a few)
network outages. All events are assigned the same trigger time; the offsets are expressed by the events' respective x0 values. The analysis
software requires one single contiguous data set without any events. The overall measurement is anticipated to produce approx. 2e6 readings.

T = LostValueFill(T_Evn, "", 0, 0, 0, 1e7)

In a long-term test run, there are two temperature channels T1 and T2, sampled at the same rate during the entire measurement. However, T2
was subdivided into multiple events due to an overflow. For the subsequent analysis, both channels must have the same time frame.

T2_NoEvn = LostValueFill(T2, T1, 0, 0, 0, 1e7)
Delta = T2_NoEvn - T1

See also:
LostValueReplace, LostValueGaps, RSampEx

imc FAMOS Func on Reference - 526 -

(c) 2024 imc Test & Measurement GmbH

LostValueGaps

Available in: Professional Edition and above

Any instances of Lost Value, Overflow, Not a Number, Overmodulation, or Sensor Breakage are replaced with gaps. Gaps are represented as
Events or XY-format.

Declaration:
LostValueGaps (input data, ResultsFormat, FindHow [, Limit]) -> Result

Parameter:

input data input data

ResultsFormat Format of the result: Should the gaps be represented by Events or by means of XY-values?

0 : Events are generated. Each event comprises a compact sequence of values without Lost Values.

1 : The data type XY is generated. Value pairs with Lost Values do not appear in the result.

FindHow A condition specifying how Lost Values are found in the data set

0 : =NaN (Not a Number)

1 : >=Limit

2 : <=Limit

3 : >Limit

4 : <Limit

5 : >=Limit or <=-Limit

6 : <Limit and >-Limit

Limit Limit which appears in the condition FindHow (optional , Default value: 1e100)

Result

Result Result

Description:
If any Lost Values appear in a data set, the system must react to them for purposes of analysis and display. This is because the Lost Values contain
important information. Otherwise, the correct values will be missing at these locations.

There are situations in which the Lost Values need to be simply excised so that gaps are left in the data. The application interprets the gaps
accordingly.

The gaps can be represented by forcing the incorporation of an XY-format in the result. The XY-pairs containing a Lost Value do not appear.

It can be helpful to generate the XY-format no matter how often or randomly the LostValues occur. Display of the measured points in the curve
window always clearly indicates at which locations there are genuine measured readings.

Alternatively, gaps can be represented by allocating sections of data to Events not having any LostValues. An Event then always comprises a
compact sequence of valid values. The Lost Values would then be considered to be located in the gaps between the events.

Generating events is only appropriate when there are a few locations with bunched occurrence of LostValues. The opposite of this is when there
are only a few contiguous regions in which there are no Lost Values. For reasons of efficiency it is worth avoiding the generation of too many
brief events.

Another method of dealing with Lost Values makes use of the function LostValueReplace(). Which method is appropriate depends on the
application.

Lost Value
The Lost Value refers to a missing or invalid or "not actually available" value in a data set. For instance, a reading may go missing due to overflow
of a buffer memory, or due to faulty transmission via a bus-system. The correct reading may not be possible to recover due to breakage of a
sensor (ruptured thermocouple) or to overmodulation of a measurement amplifier. If an equidistantly sampled measurement channel needs a
value, but none is available, a Lost Value is used instead.

With Real number formats, a Lost Value is frequently represented as 1e100; or as Not a Number, also represented as 1e100. With Integer number
formats, usually a value at the end of the respective number range is selected. Thus for instance -32768 for 16-bit signed Integers.

In overmodulation of measurement amplifiers, readings are usually generated which lie (slightly) outside of the measurement range. They have
typically been attenuated either by means of hardware or firmware.

In case of sensor (thermocouple) breakage, many measurement devices write a replacement value of approx. -2000 to the temperature channel.
Thus, checking for values <=-1000 would detect these sensor breakage values.

Not a Number (NaN) is the binary code which the computer uses for the Real number data type when the value provided is either not a number
or no numerical value is available for it. In imc FAMOS, the value is usually represented as 1e100. Not a Number can be used to represent a Lost
Value. Not a Number can also result from arithmetical operations when the permitted numerical range has been violated.

imc FAMOS Func on Reference - 527 -

(c) 2024 imc Test & Measurement GmbH

Parameter
The input data can be expressed either as equidistant or in XY-format with monotonically increasing x-axis. Events are possible, segments are
not.

The FindHow condition and the comparison value Limit specify which values are to be replaced.

Examples:
A plot of temperature sampled at 10Hz which returns a value of -2000 in case of sensor breakage is corrected for purposes of subsequent analysis:
An XY-format is generated, in which all value pairs with a sensor breakage do not appear.

T_xy = LostValueGaps(T, 0, 4, -1000)

The rotation speed has been measured in a long-term test on a test bench. There had been multiple network outages, so that for several minutes
no readings were transmitted and the buffers overflowed. The data saving software inserted NaN (Not a Number) values at the corresponding
locations in the measurement channels. A data set comprising multiple events is to be generated from this, in which all NaN are to be located in
the gaps between the events.

Speed_Evn = LostValueGaps(Speed, 1, 0, 0)

See also:
LostValueReplace, LostValueFill

imc FAMOS Func on Reference - 528 -

(c) 2024 imc Test & Measurement GmbH

LostValueReplace

Available in: Professional Edition and above

Any values of Lost Value, Overflow, Not a Number, Overmodulation, Sensor Breakage are replaced in the data set.

Declaration:
LostValueReplace (input data, FindHow [, Limit] [, ReplaceHow] [, Substitute value]) -> Result

Parameter:

input data input data

FindHow A condition specifying how Lost Values are found in the data set

0 : =NaN (Not a Number)

1 : >=Limit

2 : <=Limit

3 : >Limit

4 : <Limit

5 : >=Limit or <=-Limit

6 : <Limit and >-Limit

Limit Limit which appears in the condition FindHow (optional , Default value: 1e100)

ReplaceHow How to effect the replacement (optional , Default value: 0)

0 : linear interpolation: between the last valid value before the Lost Values and the first valid one after them. If on the edge,
continuation at constant value.

1 : constant continuation

2 : constant next: the next adjacent valid edge value is used

3 : fixed value which is specified as the subsequent parameter ReplacementValue

Substitute
value The replacement value, if a fixed defined value is intended as the replacement value. Else 0. (optional , Default value: 0)

Result

Result Result

Description:
If any Lost Values appear in a data set, the system must react to them for purposes of analysis and display. This is because the Lost Values contain
important information. Otherwise, the correct values will be missing at these locations.

There are situations in which only a few Lost Values appear and the data set is to be evaluated and displayed without much concern for the Lost
Values. For such purposes, the Lost Values should be replaced with valid measurement readings from the neighboring region. This method can
be acceptible if the signal changes only slowly. It is accomplished by determining an estimate of the signal's plot. The result thus comprises both
correct values and some estimated ones.

Another method of handling Lost Values makes use of the function LostValueGaps(). Which method is appropriate depends on the application.

Lost Value
The Lost Value refers to a missing or invalid or "not actually available" value in a data set. For instance, a reading may go missing due to overflow
of a buffer memory, or due to faulty transmission via a bus-system. The correct reading may not be possible to recover due to breakage of a
sensor (ruptured thermocouple) or to overmodulation of a measurement amplifier. If an equidistantly sampled measurement channel needs a
value, but none is available, a Lost Value is used instead.

With Real number formats, a Lost Value is frequently represented as 1e100; or as Not a Number, also represented as 1e100. With Integer number
formats, usually a value at the end of the respective number range is selected. Thus for instance -32768 for 16-bit signed Integers.

In overmodulation of measurement amplifiers, readings are usually generated which lie (slightly) outside of the measurement range. They have
typically been attenuated either by means of hardware or firmware.

In case of sensor (thermocouple) breakage, many measurement devices write a replacement value of approx. -2000 to the temperature channel.
Thus, checking for values <=-1000 would detect these sensor breakage values.

Not a Number (NaN) is the binary code which the computer uses for the Real number data type when the value provided is either not a number
or no numerical value is available for it. In imc FAMOS, the value is usually represented as 1e100. Not a Number can be used to represent a Lost
Value. Not a Number can also result from arithmetical operations when the permitted numerical range has been violated.

Parameter
The input data can be equidistant or expressed in XY format. Segments and events are possible.

imc FAMOS Func on Reference - 529 -

(c) 2024 imc Test & Measurement GmbH

The FindHow condition and the comparison value Limit specify which values are to be replaced.

The ReplaceHow option and the replacement value determine how the replacement is achieved.

When ReplaceHow = constant, when there is a gap before the first value, the first value is extended to the front.

For XY input data, only constant continuation and a fixed value are possible.

For a replacement value which is not used, 0 must be specified.

Resumption of values and/or interpolation are only performed within an events or segment, never across the spaces in between.

Examples:
A plot of temperature sampled at 10Hz which returns a value of -2000 in case of sensor breakage is corrected for purposes of subsequent analysis:
The sensor breakage values are replaced by means of linear interpolation of the surrounding valid values.

T = LostValueReplace(T_orig, 4, -1000, 0)

Import of an ASCII-file generates the rotation speed channel Rev, which contains NaN (Not a Number) values. These compromise the appearance
of the channel's display. Since the channel contains no negative values, -1 is used as the replacement value.

Rev_ = LostValueReplace(Rev, 0, 0, 3, -1)

There is a measurement channel which is transmitted via CAN-Bus which indicates the gear of an automatic transmission. The firmware of the
logging device reads a -3 if the gear could not be determined, and -4 if the transmission via CAN-Bus was faulty. The analysis always requires a
valid value for the gear. Fault conditions are rare. The replacement value to be used is the valid value which is next adjacent to the time of the
outage.

Gear = LostValueReplace(Gear_CAN, 2, -3, 2)

See also:
RangeSet, Set, LostValueGaps, LostValueFill

imc FAMOS Func on Reference - 530 -

(c) 2024 imc Test & Measurement GmbH

LoudnessLevel

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Either the loudness or the loudness level, as desired, is calculated for a specified spectrum of one-third octave bands as per DIN 45631/A1:2010-
03 or ISO 532-1:2017. The method introduced by E. Zwicker is used.

Declaration:
LoudnessLevel (ThirdSpectrumDB, SoundField, Unit) -> Result

Parameter:

ThirdSpectrumDB

Input data set. A spectrum of one-third octaves, scaled in dB. Value range -60..+120dB. Any values beyond these range limits
are reset to the limit values. The one-third octaves bands 25Hz through 12.5kHz should be included. Any not included are set
to the minimum range value. The data set is scaled in the x-direction in one-third octaves, therefore: x=14 corresponds to
25Hz, x=15 corresponds to 31.5Hz, ... x=41 corresponds to 12.5kHz. If the data set specified is segmented, a sequence of
values (a data set) is returned.

SoundField SoundField

2 : free-field, recorded outdoors

3 : diffuse, recording in a (small) room or vehicle interior

Unit Unit of result

0 : phon (the loudness level LN is to be determined)

1 : sone (the loudness N is to be determined)

Result

Result The result is expressed in one of the following units, depending on the sound field and type: "phonGF", "phonGD",
"soneGF", "soneGD".

Description:
The algorithm handles only stationary noise, but not time variant noise.

These parameters are no longer to be used; they are only compatible with imc FAMOS 7.2 and below.
SoundField=0: even, frontal

SoundField=1: diffuse

The main difference is minor rounding suggested by DIN 45631:1991 in Appendix A, which no longer appears in new standards.

Examples:
The loudness or loudness level is to be determined from a spectrum of one-third octaves ThirdsDB.

phonGF = LoudnessLevel(ThirdsDB,2,0) ; phon, free field
soneGF = LoudnessLevel(ThirdsDB,2,1) ; sone, free field
phonGD = LoudnessLevel(ThirdOct,3,0) ; phon, diffuse
soneGD = LoudnessLevel(ThirdOct,3,1) ; sone, diffuse

The loudness of a sonic pressure waveform (a single value derived from the entire measurement) is to be determined.

Sample data set: a single tone of 1kHz, 70dB. These command lines can be used if no other sample data is available:

Microphone= 0.08944*sin (ramp(0,1/40000, 50000)*PI2 * 1000)
yUnit Microphone Pa
xUnit Microphone s

A one-third octave analysis

OctI(0, 0, 0, -2, 0, 0, 0)
ThirdsTotal = OctA(Microphone,25,12500)

The transient is intended to be disregarded. But the function OctA takes the RMS of the whole waveform including the transient. If the transient
doesn't matter, Thirds = ThirdsTotal can be performed instead.

Settle = 0.5 's' / xdel?(Microphone) ; Assumption: 0.5s Duration of one-third octave filter transient
Length = leng? (Microphone)
IF Length > Settle + 0.1
 ThirdsSettle = OctA(leng(Microphone, Settle),25,12500)
 Thirds = SQRT ((Length * quad (ThirdsTotal) - Settle * quad (ThirdsSettle)) / (length - Settle))
 DEL ThirdsSettle
else
 Thirds = ThirdsTotal

imc FAMOS Func on Reference - 531 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

end
DEL ThirdsTotal
DEL Length
DEL Settle
ThirdsDB = db (Thirds / 2e-5'Pa') ; returns sonic pressure level

Calculation of loudness

soneGF = LoudnessLevel (ThirdsDB, 2, 1)

The time behaviour of the loudness is to be derived from the time behaviour of a one-third octave spectrum.

A time-dependent one-third octave analysis. The sonic pressure is recorded in the data set Microphone, scaled in Pa over s.

Interval = 0.1's' ; the time interval
OctI(0, 0.125, Interval/xdel?(Microphone), -2, 0, 0, 0)
Thirds = OctA(Microphone,25,12500)
ThirdsDB = db (Thirds / 2e-5'Pa')
SetSegLen(ThirdsDB, 28) ; segmenting
SetZoff(ThirdsDB,xoff? (Microphone)) ; defining the z-coordinate
SetZDel(ThirdsDB,Interval)
SetUnit(ThirdsDB,Unit?(Microphone,0),2)

Calculation of loudness

soneGF = LoudnessLevel (ThirdsDB, 2, 1)

See also:
LoudnessSpectrum, SoundIndex

imc FAMOS Func on Reference - 532 -

(c) 2024 imc Test & Measurement GmbH

LoudnessSpectrum

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

A spectrum of one-third octaves is used to plot the specific loudness over Barks as per DIN 45631/A1:2010-03 or ISO 532-1:2017. The specific
loudness is designated N' and the abscissa values z are scaled in Barks. The method introduced by E. Zwicker is used.

Declaration:
LoudnessSpectrum (ThirdSpectrumDB, SoundField, Type) -> Result

Parameter:

ThirdSpectrumDB

Input data set. A spectrum of one-third octaves, scaled in dB. Value range -60..+120dB. Any values beyond these range limits
are reset to the limit values. The one-third octaves bands 25Hz through 12.5kHz should be included. Any not included are set
to the minimum range value. The data set is scaled in the x-direction in one-third octaves, therefore: x=14 corresponds to
25Hz, x=15 corresponds to 31.5Hz, ... x=41 corresponds to 12.5kHz. If the data set specified is segmented, a sequence of
values (a data set) is returned.

SoundField SoundField

2 : free-field, recorded outdoors

3 : diffuse, recording in a (small) room or vehicle interior

Type Type

0 : Slope loudness, which leads to the specific loudness

1 : Core loudness. Only in special cases for the analysis of masking effects.

Result

Result The results' units are sone/Bark over Barks.

Description:
The result is defined over a range of 0 to 24 Barks with a resolution of 0.1 Bark.

The algorithm handles only stationary noise, but not time variant noise.

These parameters are no longer to be used; they are only compatible with imc FAMOS 7.2 and below.
SoundField=0: even, frontal

SoundField=1: diffuse

The main difference is a shift of the result by 1 value; formerly resulting in 241 values, now in 240 values.

Examples:
Specific loudness from a microphone signal "mic", measured in Pa over time. Recorded outdoors

Thd = SpecThirds_1(mic, 25, 12500, 0)
Thd_dB = dB (Thd / 2e-5)
N = LoudnessSpectrum(Thd_dB, 2, 0)

The core or slope loudness is to be determined from the one-third octave spectrum ThirdsDB:

N_FundF = LoudnessSpectrum(ThirdsDB,2,1) ; core loudness, free field
N_ContF = LoudnessSpectrum(ThirdsDB,2,0) ; slope loudness, free field
N_FundD = LoudnessSpectrum(ThirdsDB,3,1) ; core loudness, diffuse
N_ContD = LoudnessSpectrum(ThirdsDB,3,0) ; slope loudness, diffuse

A sonic pressure curve is used to derive the slope loudness (1 spectrum for the whole measurement). For sample data and info on eliminating
the transient, see the example under LoudnessLevel().

A one-third octave analysis

OctI(0, 0, 0, -2, 0, 0, 0)
Thirds = OctA(Microphone,25,12500)
ThirdsDB = db (Thirds / 2e-5'Pa') ; returns sonic pressure level

determining the slope loudness

N_ContF = LoudnessSpectrum(ThirdsDB,2,0)

The curve of a one-third octave spectrum over time is used to find the time-behaviour of the specific loudness over Barks.

A time-dependent one-third octave analysis. The sonic pressure is recorded in the data set Microphone, scaled in Pa over s.

Interval = 0.1's' ; the time interval
OctI(0, 0.125, Interval/xdel?(Microphone), -2, 0, 0, 0)

imc FAMOS Func on Reference - 533 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

Thirds = OctA(Microphone,25,12500)
ThirdsDB = db (Thirds / 2e-5'Pa')
SetSegLen(ThirdsDB, 28) ; segmenting
SetZoff(ThirdsDB,xoff? (Microphone)) ; defining the z-coordinate
SetZDel(ThirdsDB,Interval)
SetUnit(ThirdsDB,Unit?(Microphone,0),2)

determining the slope loudness

N_ContF = LoudnessSpectrum(ThirdsDB,2,0)
N_ContF_T = MatrixTranspose(N_ContF)

See also:
LoudnessLevel, OctI, SpecThirds, Sharpness

imc FAMOS Func on Reference - 534 -

(c) 2024 imc Test & Measurement GmbH

LowerValue

Returns the lower value of the two parameters.

Declaration:
LowerValue (Parameter1, Parameter2) -> Result

Parameter:

Parameter1 First single value or data set to be compared.

Parameter2 Second single value or data set to be compared.

Result

Result The respective lower value of the two parameters.

Description:
The function has two practical applications. When the parameters are a data set/ single value combination, the effect is to set an upper limit on
the data set values at the second parameter's value. If both parameters are data sets, the result is the lower envelope curve.

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/segments); but the respective counterpart parameter must then either have exactly the same
structure (same segment length, event-count and -length) or it must be a single value.

Examples:
The input channel is converted to decibels and limited to an upper limit of 100 dB.

Channel_01_dB = LowerValue(db(Channel_01), 100)

The lower and upper envelope curves of two data sets are determined.

Env_L = LowerValue(Channel_01, Channel_02)
Env_H = UpperValue(Channel_01, Channel_02)

See also:
UpperValue, <, RangeSet

imc FAMOS Func on Reference - 535 -

(c) 2024 imc Test & Measurement GmbH

MatrixAdd

Available in: Professional Edition and above

Addition and subtraction of two matrices or vectors, as well as their transposes

Declaration:
MatrixAdd (Matrix A, Matrix B [, Calculation]) -> Result

Parameter:

Matrix A Matrix or Vector A

Matrix B Matrix or Vector B

Calculation Do you wish for the matrices to be transposed? (optional , Default value: "A+B")

"A+B" : A + B

"AT+B" : A transposed + B

"A+BT" : A + B transposed

"AT+BT" : A transposed + B transposed

"A-B" : A - B

"AT-B" : A transposed - B

"A-BT" : A - B transposed

"AT-BT" : A transposed - B transposed

Result

Result Result

Description:
A matrix is a segmented data set. The segments are the columns.

In this context, a vector refers to a single-row or single-column matrix.

A column vector is a matrix with only one column. It is a data set without segments.

A column vector can also be represented as a segmented data set with exactly one segment.

A row vector is a segmented data set with a segment length of 1.

The result of the function is generally a matrix and thus a segmented data set. If the result is a column vector, it is a data set without segments. If
the result is a single number, it is interpreted as a column vector and thus also has no segments.

Subtraction by means of "A-B" etc. or by addition of negative matrix.

Units and sampling intervals are not taken into account.

In many cases, it is possible to apply the operators "+" or "-" for the calculation.

The addition can only be performed if the count of rows and columns match after any transposition.

Addition and subtraction of numbers for each element of the matrix with the operators "+" and "-", e.g. Matrix+1.

Examples:
Sum and difference of matrices

A = ramp(1, 1, 6) ; test data
setsegLen(A, 2)
; A:
; 1 3 5
; 2 4 6
B = MatrixInit (2, 3, "I")
; B:
; 1 0 0
; 0 1 0
C_sum = MatrixAdd(A, B, "A+B")
; C_sum:
; 2 3 5
; 2 5 6
C_diff = MatrixAdd(A, B, "A-B")
; C_diff:
; 0 3 5
; 2 3 6
C_diff = MatrixAdd(A, -B, "A+B")

imc FAMOS Func on Reference - 536 -

(c) 2024 imc Test & Measurement GmbH

; C_diff:
; 0 3 5
; 2 3 6

See also:
MatrixMult

imc FAMOS Func on Reference - 537 -

(c) 2024 imc Test & Measurement GmbH

MatrixChangeDim

Available in: Professional Edition and above

Insertion and deletion of rows and columns

Declaration:
MatrixChangeDim (Matrix, Start, Count, Option) -> Matrix

Parameter:

Matrix Matrix

Start As of this starting index, = 1 for the first element

Count Count

Option What change to make?

"insert col" : Insert columns

"insert row" : Insert rows

"remove col" : Delete columns

"remove row" : Delete rows

Matrix

Matrix Matrix

Description:
The result is a matrix of altered dimensions such as Matrix A.

A matrix is a segmented data set. The segments are the columns.

In this context, a vector refers to a single-row or single-column matrix.

A column vector is a matrix with only one column. It is a data set without segments.

A column vector can also be represented as a segmented data set with exactly one segment.

A row vector is a segmented data set with a segment length of 1.

The result of the function is generally a matrix and thus a segmented data set. If the result is a column vector, it is a data set without segments. If
the result is a single number, it is interpreted as a column vector and thus also has no segments.

When inserting, zeroes (0.0) are inserted. However, the data format is preferentially retained. If for example, the 0.0 can not be displayed due to
scaled integers, the closest value possible is used.

Insertion as of starting index=0 appends.

The matrix may not be empty. In order to bring a previosly empty matrix to a dimension > 0, MatrixInit() is used.

The result adopts the x- and z-coordinate.

Examples:
Insert 3 rows in front/on top

B = MatrixChangeDim (A, 1, 3, "insert row")

Append 2 rows

B = MatrixChangeDim (A, 0, 2, "insert row")

Delete 1st column

B = MatrixChangeDim (A, 1, 1, "remove col")

See also:
MatrixPart, MatrixInit, SetSegLen

imc FAMOS Func on Reference - 538 -

(c) 2024 imc Test & Measurement GmbH

MatrixCut

A straight cut is made through a matrix. The line of the cut is determined by 2 points.

Declaration:
MatrixCut (Matrix, SvX1, SvZ1, SvX2, SvZ2, SvCalculation, SvScaleAxis, SvIncrement) -> Result

Parameter:

Matrix A section is made through this matrix.

SvX1 x-coordinate of the 1st point

SvZ1 z-coordinate of the 1st point

SvX2 x-coordinate of the 2nd point

SvZ2 z-coordinate of the 2nd point

SvCalculation How are the intermediate values calculated?

0 : Automatically

1 : Linear interpolation

2 : Constant extension

3 : Nearest value

SvScaleAxis Use x- or z-coordinate of matrix to label results?

0 : Automatically

1 : x-coordinates

2 : Z-coordinates

SvIncrement Increment (delta-X, dx) of result. Can be set automatically or established permanently

0 : Automatically

>0 : Permanent setting

Result

Result Section line

Description:
The matrix can be a simple matrix (segmented waveform) or a matrix with extended properties (waveform with events, description see below).

Coordinates:
Each segment is a column. The x-coordinates are arrayed along the matrix columns. Thus, the x-coordinates denote rows. The z-coordinates
denote columns. In segmented data sets, the z-coordinate is defined by z0 (z-offset) and delta-Z (z-increment).

For a horizontal section, z1=z2.

For a vertical section x1=x2.

For a diagonal section, x1 and x2 are different, and z1, z2 are different.

The combination of input coordinates x1=x2 and z1=z2 is invalid. These coordinates don't specify a line, but rather a point.

Calculation:
"Automatic" and "Linear interpolation" interpolate between the auxiliary points (first between adjacent x-values, then between adjacent z-
values). "Automatic" is recommended. The calculation "Constant extension" mimics stair-step behavior (cf stair-step representation in the curve
window). In the direction is increasing indices, a value is kept constant until a new one appears. In the calculation "Nearest value" the matrix'
value which is located nearest to the desired position is used.

Scaling axis:
For a diagonal section, the result can be scaled in x- or z-coordinates of the matrix (i.e. this is how the result's x-unit is formed). For a horizontal
section the scaling can only follow the x-coordinate, for a vertical section only the z-coordinate. In automatic selection, the z-coordinate is
favored; only if this isn't possible is the x-coordinate chosen.

Increment:
Automatic selection is recommended. In this case an increment is selected which doesn't cause substantial loss of information. By contrast, in
fixed setting mode, points are only generated at whole multiples of the increment. The fixed increment should be selected in such a way as to
prevent loss of information and too much data from accumulating. A fixed increment should only be used if the scaling axis is also permanently
established.

Result:
The result is an equidistantly sampled data set. Depending on how the line slopes, an appropriate number of auxiliary points are selected, in
order to prevent loss of information. If a different amount of auxiliary points is desired, the function Xydt can be used next.

imc FAMOS Func on Reference - 539 -

(c) 2024 imc Test & Measurement GmbH

Event-based input data:
If the matrix is a data set with events, observe the following: Each event is a row of the matrix. The matrix z-coordinate must increase strictly
monotonously. All events must be equally long and have the same x-offset (x0) and same sampling interval delta-X (dx). With an automatic
increment (=0), the result is an XY-data set. Since in events the z-coordinate usually doesn't increase at constant rate, the section line usually isn't
sampled equidistantly. However, if a fixed (nonzero) increment is specified, an equidistantly samples data set is returned.

Examples:
An rpm-dependent spectrum "RotationSpectrum" is given. The frequency is plotted over the x-direction, and the rpms along the z-direction. The
spectrum around the rpm-vlaue 2000 revs/min is to be extracted.

Spectrum2000 = MatrixCut(RotationSpectrum, 0, 2000, 1, 2000, 0, 1, 0)

For this purpose, a horizontal section is made. The result is to be scaled in Hz (corresponding to the matrix x-coordinate). The coordinates z1 and
z2 don't matter but must be different.

An rpm-dependent spectrum "RotationSpectrum" is given. The frequency is plotted over the x-direction, and the rpms along the z-direction. The
course of the 50Hz spectrum line is to be determined dependent of the rpms.

SpectrumLine = MatrixCut(Rotationspectrum, 50, 0, 50, 1, 0, 2, 0)

For this purpose, a vertical section is made. The result is to be scaled in revs/min (corresponding to the matrix z-coordinate). The coordinates z1
and z2 don't matter but must be different.

An rpm-dependent spectrum "RotationSpectrum" is given. The frequency is plotted over the x-direction, and the rpms along the z-direction. The
course of the 3rd order is to be determined independently of the rpms. The 3rd order is the line for which: 3 * rpms [revs/min]= 60 * frequency
[Hz]. The result should comprise one value for every 50 revs/min.

Order3 = MatrixCut(RotationSpectrum, 0, 0, 3, 60, 0, 2, 50)

For this purpose, a diagonal section is made. The first point is the origin. The second point determines the proportionality between the
frequency and rpms, in other words the slope of the section line. The result is to be scaled in revs/min (corresponding to the matrix z-
coordinate). A fixed increment of 50 revs/min (z-coordinate) is specified.

See also:
MatrixTranspose, MatrixSumLines

imc FAMOS Func on Reference - 540 -

(c) 2024 imc Test & Measurement GmbH

MatrixEigen

Available in: Professional Edition and above

Eigenvalues and eigenvectors of a matrix

Declaration:
MatrixEigen (Matrix [, Option]) -> Result

Parameter:

Matrix Matrix

Option Do you wish for eigenvalues and/or eigenvectors to be calculated? (optional , Default value: "val")

"val" : Eigenvalues

"vect" : Eigenvectors

"val+vect" : Eigenvalues and eigenvectors

Result

Result Result

Description:
The function calculates the list of eigenvalues.

For a square matrix, the function calculates as many eigenvalues as there are rows. If there are duplicates of an eigenvalue, it appears multiple
times in the result.

The eigenvalues and eigenvectors are determined as complex numbers in the form RealPart/ImaginaryPart. With a real number value, the
imaginary part is 0.

Eigenvectors are normalized to make 1 their largest element. The eigenvectors are sorted the same way as their corresponding eigenvalues.

Only square matrices are supported.

The maximum supported dimension is 20*20.

The matrix must be real (not complex).

The right eigenvectors are determined: A*x = Eig*x, where A is the matrix, x an eigenvector and Eig the correpsonding eigenvalue.

If the function returns eigenvalues, then these are returned as a column vector.

If the function returns eigenvectors, then they are arrayed in a matrix. Every eigenvector is a column vector of the matrix.

If the function returns both eigenvalues and eigenvectors, then the result is a matrix whose frst column represents the eigenvalues. The other
column vectors are the eigenvectors.

If there is an eigenvalue with multiplicity > 1, there can be both like and different eigenvectors for it.

Caution is needed in the interpretation, if due to the numerical effects, an eigenvalue having high multiplicity leads to multiple closely
neighboring but different eigenvalues.

It is also necessary to exercise caution concerning the issue of whether an eigenvalue is real or complex. This is because due to numerical effects,
a real eigenwert might sometimes receive a (small) complex component.

The function works with a QR-algorithm.

Examples:
Eigenvalues

A = leng(0,9) ; test data
setsegLen(A,3)
A[1,1] = 5
A[2,2] = 3
A[3,3] = 4
A[1,3] = 6 ; row 3, column 1
A[1,2] = 1 ; row 2, column 1
A[2,3] = 2 ; row 2, column 1
; A:
; 5 0 0
; 1 3 0
; 6 2 4
Eig = MatrixEigen (A)
; Eig = [3, 4, 5]
Eig_r = Eig.r

Eigenvalues and vectors

imc FAMOS Func on Reference - 541 -

(c) 2024 imc Test & Measurement GmbH

A = leng(0,9) ; test data
setsegLen(A,3)
A[1,1] = 5
A[2,2] = 3
A[3,3] = 4
A[1,3] = 6 ; row 3, column 1
A[1,2] = 1 ; row 2, column 1
A[2,3] = 2 ; row 2, column 1
; A:
; 5 0 0
; 1 3 0
; 6 2 4
evv = MatrixEigen (A, "val+vect")
Eig = evv[1]
; Eig = [3, 4, 5]
ev1 = evv[2]
; ev1 = [0, -0.5, 1]
ev2 = evv[3]
; ev2 = [0, 0, 1]
ev3 = evv[4]
; ev3 = [1/7, 1/14, 1]

See also:

imc FAMOS Func on Reference - 542 -

(c) 2024 imc Test & Measurement GmbH

MatrixFromLine

Available in: Professional Edition and above

Formation of a matrix by forming a surface from a distribution of points (x,y,z) by interpolation.

Declaration:
MatrixFromLine (MatrixRef, Amplitude, RowX, ColumnZ [, Substitution]) -> Matrix

Parameter:

MatrixRef Matrix used as reference

Amplitude Amplitude, height, Y, stated in physical units

RowX Row, data in X-direction, stated in physical units

ColumnZ Column, data in Z-direction, stated in physical units

Substitution Substitute value to which the range outside of the surface formed is set. (optional , Default value: 0)

Matrix

Matrix Matrix

Description:
Each triplet of row.column and amplitude is a sampling point of a surface y = y (x, z). The surface is interpolated linearly between sampling
points.

The surface is interpreted as a mountain range, where a unique height is assigned to each point (element of the matrix).

If multiple of the original points are located at the same matrix element, the maximum among the amplitude values is given preference. This
corresponds to a view of the surface from a bird's eye view.

The surface itself is a convex space.

The surface is generated by connection of adjacent points via lines which constitute the sides of triangles. The 3D display in the curve window
proceeds in the exact same way.

In breaking down the surface into triangles, the resolution applied is 1e-5 in relation to the value range of RowX respectively ColumnZ.

The resulting surface tends not to be uniquely defined. This is easy to illustrate by imagining 4 points constituting the corners of a rectangle. Such
a surface can be broken down as a pair of triangles, but since there are 2 diagonals, there are 2 different possible triangle pairs.

The triplets are not in a sorted arrangement. The function never interpolates between adjacent values of the data passed (RowX[i], RowX[i+1]),
but only between values which are adjacent on the resulting surface.

The resulting continuous surface is sampled exactly at the matrix's sampling points, in other words at x0+i*dx for the row and at z0+k*dz for the
column. Intermediate values of the surface are not taken into account. The resolution of the matrix must be set as fine enough to avoid the loss
of significant information.

There is minimal rounding at the sampling points: the system rounds up/down in a region of 1e-5 of the sampling point distance (dx or dz) around
a sampling point.

The normal data sets for rows, columns and amplitude all have the same length. They are evaluated point-by-point, regardless of their sampling
interval.

The result's units are imported from the data sets Amplitude, RowX and ColumnZ.

The result is a matrix of the same dimensions as the reference matrix. The reference matrix determines x0, dx, z0, dz and the amount of rows and
columns.

A matrix is a segmented data set. The segments are the columns.

The computational demands increase heavily with the length of the data set passed. A length of 10000 is already to be considered large.

Examples:
Forming a matrix from x, y, z data. Alpha (=Amplitude) is plotted over rotation speed N (in x-direction; range: 0 to 6000 RPM) and torque M (in z-
direction, range: 0 to 500 Nm). Alpha, N and M are time-domain data sets with the same time base.

Matrix = MatrixInit (61, 51, "0", "", 0, 100, "", 0, 10, "")
Matrix = MatrixFromLine (Matrix, Alpha, N, M, 0)

See also:
MatrixSet, Set, SetIndex

imc FAMOS Func on Reference - 543 -

(c) 2024 imc Test & Measurement GmbH

MatrixGet

Available in: Professional Edition and above

Linearisation by means of a 2-dimensional family of characteristic curves (map). Gets elements of a matrix.

Declaration:
MatrixGet (Matrix, Row, Column [, Interpolation] [, Scaling]) -> Result

Parameter:

Matrix Matrix

Row Row, addressed in the x-direction, in other words the n-th sample within a segment

Column Column, addressed in the z-direction, in other words the n-th segment

Interpolation How is interpolation performed? (optional , Default value: 4)

0 : Constant from left. If the desired position lies between 2 elements, then the left-hand (earlier) one is used. Same effect as
rounding down the index.

1 : Linear: Between the values bordering on the desired position, linear interpolation is performed, and the value of this
connecting straight line is read at the position. This is performed in the direction of the row; subsequently with this result in the
column direction.

3 : Constant from right. If the desired position lies between 2 elements, then the right-hand (later) one is used. Same effect as
rounding up the index.

4 : Constant next. If the desired position lies between 2 elements, then the respective closest one is used. Same effect as
rounding the index.

Scaling How are the row and column scaled? (optional , Default value: "index")

"index" : Index beginning at 1

"units" : Stated in physical units, so containing x0, dx or z0, dz

Result

Result Result

Description:
The result is a data set which contains an element from the matrix for each row-column pair.

The data sets for the rows and columns are of the same length and structure regarding segments and events.

A matrix is a segmented data set. The segments are the columns.

If the specified values for the row or column lie outside of the matrix, the boundary value is returned.

The function is suitable for correction of a data set by means of a 2-dimensional family of characteristic curves (map). In this context, the array of
characteristic curves is the matrix, the data set are the rows and the other variable (e.g. temperature, for temperature dependence) is the
column.

The result data set adopts the time base of the data set Row. The data set Row may be either equidistant or XY. If XY, the result adopts its time
track. Regarding the data set Column, only the Y-values are taken into account, sample-by-sample.

With the constant interpolation types "constant from right" and "constant from left", an exact comparison of the position is performed. With the
scaling in physical units in particular, the smalles rounding error of the real numbers can cause tipping over to the next adjacent value. The
problems can be avoided by working with integer indices. If the measurement points themselves are addressed instead of demanding
intermediate values, then "Constant next" is the proper choice.

In the syntax of the sequences, the element of a matrix can also be requested directly by means of square brackets, where the segment index
(=column index) is stated first.

Examples:
Get element

A = ramp(0,1,12) ; test data
setsegLen(A,4)
; A:
; 0 4 8
; 1 5 9
; 2 6 10
; 3 7 11
B = MatrixGet (A, 3, 2)
; B = 6
alternatively:

imc FAMOS Func on Reference - 544 -

(c) 2024 imc Test & Measurement GmbH

B = A[2,3]

Correction of a temperature-dependent pressure value by means of a 2-dimensional family of characteristic curves

Pressure = MatrixGet (Charakteristic, Pressure_Raw, Temperature, 1, "units")

See also:
Chrct, MatrixSet, Value, Value2, ValueIndex, MatrixFromLine

imc FAMOS Func on Reference - 545 -

(c) 2024 imc Test & Measurement GmbH

MatrixInfo

Available in: Professional Edition and above

Query information on a matrix

Declaration:
MatrixInfo (Matrix, Info) -> Result

Parameter:

Matrix Matrix

Info What is to be queried?

"rows" : Row count

"columns" : Column count

"diag" : Return diagonal (main diagonal) as a column vector

"trace" : Trace, sum of the elements of a square matrix's main diagonal

Result

Result Result

Description:
A matrix is a segmented data set. The segments are the columns.

In this context, a vector refers to a single-row or single-column matrix.

A column vector is a matrix with only one column. It is a data set without segments.

A column vector can also be represented as a segmented data set with exactly one segment.

A row vector is a segmented data set with a segment length of 1.

Examples:
Diagonal

A=ramp(0,1,9) ; test data
setsegLen(A,3)
; A:
; 0 3 6
; 1 4 7
; 2 5 8
Diag = MatrixInfo (A, "diag")
; Diag = [0, 4, 8]

Row count, column count

A=ramp(0,1,12) ; test data
setsegLen(A,4)
; A:
; 0 4 8
; 1 5 9
; 2 6 10
; 3 7 11
rows = MatrixInfo (A, "rows")
; rows = 4
columns = MatrixInfo (A, "columns")
; columns = 3

See also:
MatrixMerge, SegLen?, Leng?

imc FAMOS Func on Reference - 546 -

(c) 2024 imc Test & Measurement GmbH

MatrixInit

Available in: Professional Edition and above

Creates a pre-initialized matrix

Declaration:
MatrixInit (Rows, Columns [, Option] [, y-unit] [, x0] [, dx] [, x-unit] [, z0] [, dz] [, z-unit]) -> Matrix

Parameter:

Rows Count of rows in the new matrix > 0; in x-direction; length of a segment

Columns Count of columns in the new matrix > 0; in z-direction; count of segments

Option How is initialization to be performed? (optional , Default value: "0")

"0" : All values 0.0

"I" : Main diagonal 1.0, else 0.0

y-unit y-unit, unit of the elements (optional , Default value: "")

x0 x0, offset along the row, in x-direction (optional , Default value: 0)

dx dx, increment along the row, in x-direction, > 0 (optional , Default value: 1)

x-unit x-unit, unit along the row, in x-direction (optional , Default value: "")

z0 z0, offset along the column, in z-direction (optional , Default value: 0)

dz dz, increment along the column, in z-direction, > 0 (optional , Default value: 1)

z-unit z-unit, unit along the column, in z-direction (optional , Default value: "")

Matrix

Matrix Matrix

Description:
The result is a matrix of the dimension [rows*columns].

A matrix is a segmented data set. The segments are the columns.

In this context, a vector refers to a single-row or single-column matrix.

A column vector is a matrix with only one column. It is a data set without segments.

A column vector can also be represented as a segmented data set with exactly one segment.

A row vector is a segmented data set with a segment length of 1.

The result of the function is generally a matrix and thus a segmented data set. If the result is a column vector, it is a data set without segments. If
the result is a single number, it is interpreted as a column vector and thus also has no segments.

Examples:
Identity matrix

A = MatrixInit (3, 3, "I")
; A:
; 1 0 0
; 0 1 0
; 0 0 1

Null matrix

A = MatrixInit (3, 4, "0")
; A:
; 0 0 0 0
; 0 0 0 0
; 0 0 0 0

See also:
SetSegLen

imc FAMOS Func on Reference - 547 -

(c) 2024 imc Test & Measurement GmbH

MatrixInverse

Available in: Professional Edition and above

Determining the inverse matrix

Declaration:
MatrixInverse (Matrix [, Error handling]) -> Result

Parameter:

Matrix Matrix

Error handling Determines the system response to an error. (optional , Default value: 0)

0 : Cancel and post error message

1 : Return empty data set

Result

Result Inverse matrix

Description:
The result is a matrix having the same dimensions.

Only a unique solution is returned as a solution. If the solution is either not unique or there is none, the error handling takes effect.

When called with incorrect parameter values or insufficient memory, the system cancels the operation with the usual error message.

Units and sampling intervals are not taken into account.

The matrix must be square.

Examples:
Inversion of a matrix A

A = leng(0,9) ; test data
setsegLen(A,3)
A[3,1] = 0.25 ; row 1, column 3
A[1,2] = 1
A[2,3] = 2
; A:
; 0 0 0.25
; 1 0 0
; 0 2 0
C = MatrixInverse (A)
; C:
; 0 1 0
; 0 0 0.5
; 4 0 0

See also:
SolveLinEq

imc FAMOS Func on Reference - 548 -

(c) 2024 imc Test & Measurement GmbH

MatrixIpol

Available in: Professional Edition and above

Interpolation of a matrix along rows and columns

Declaration:
MatrixIpol (Matrix, FactorRowX, FactorColumnZ, Interpolation) -> Result

Parameter:

Matrix Matrix

FactorRowX Factor in direction of the row (x). Interpolation within a segment

FactorColumnZ Factor in direction of the column (z). Interpolation between segments by inserting additional segments

Interpolation How is interpolation performed?

0 : Constant. Data augmentation in which between 2 adjacent values, the left-hand value (former of the two) is reproduced.
Also, replication of last value (extrapolation).

1 : Linear. Data augmentation in which between 2 adjacent values, extra values are added by linear interpolation (straight
connecting line).

2 : Cubic spline. Data augmentation by imposing a cubic spline on the series of measured values. Interpolated values are
derived from the spline.

3 : Constant from right. Data augmentation in which between 2 adjacent values, the right-hand value (latter of the two) is
reproduced. Also, replication of last value (extrapolation).

4 : Constant next: Data augmentation in which between 2 adjacent values, the respective closer value is reproduced. Also
replication of the last value (extrapolation).

5 : Linear with last stair-step: Data augmentation in which between 2 adjacent values, values are added by linear interpolation
(straight connecting line). The last value is replicated (extrapolation).

Result

Result Interpolated matrix

Description:
A matrix is a segmented data set. The segments are the columns.

The sampling interval of the data set generated is smaller by the specified factor FactorRowX, dz by the factor FactorColumnZ.

The factors mainly augment the data volume by means of interpolation. With the non-extrapolating interpolations, the data set is enlarged in the
pertinent direction but not quite by the factor specified. There are (Factor -1) values missing in that direction.

If the input data set has no segments, it is a column vector and can only be interpolated in the x-direction by means of FactorRowX.

The function can also be applied to data having events but without segments, however this only performs interpolation in the x-direction.

The function can handle RGB-data in constant and linear interpolation.

Examples:
Resolution increase for a family of characteristic curves (map) by a factor of 10

Map = MatrixIpol(Map, 10, 10, 2)

See also:
Ipol, Lip

imc FAMOS Func on Reference - 549 -

(c) 2024 imc Test & Measurement GmbH

MatrixMerge

Available in: Professional Edition and above

Copy a smaller matrix into a bigger one at a certain position

Declaration:
MatrixMerge (MatrixA, MatrixB, Starting row, Starting column) -> Matrix

Parameter:

MatrixA Matrix A

MatrixB Matrix B

Starting row From this row index on, > 0; in x-direction; index of sample within a segment

Starting column From this column index on , > 0; in z-direction; index of a segment

Matrix

Matrix Matrix

Description:
The result is a matrix of the same dimension as Matrix A.

A matrix is a segmented data set. The segments are the columns.

In this context, a vector refers to a single-row or single-column matrix.

A column vector is a matrix with only one column. It is a data set without segments.

A column vector can also be represented as a segmented data set with exactly one segment.

A row vector is a segmented data set with a segment length of 1.

The result of the function is generally a matrix and thus a segmented data set. If the result is a column vector, it is a data set without segments. If
the result is a single number, it is interpreted as a column vector and thus also has no segments.

If submatrices are to be joined together to a larger matrix, then it is possible to initially fill the combined matrix with zeroes using MatrixInit(),
for example. Subsequently, data are pasted in using multiple calls of MatrixMerge().

The diagonal (main diagonal) of a Matrix A is set if Matrix B is a vector (row- or column vector) and simultaneously StartingRow =-1 and
StartingColumn =-1.

The result adopts the x- and z-coordinates of Matrix A.

Examples:
Set 1 row

A=ramp(0,1,12) ; test data
setsegLen(A,4)
; A:
; 0 4 8
; 1 5 9
; 2 6 10
; 3 7 11
B = TransposeMatrix([5, 5, 5])
C = MatrixMerge (A, B, 3, 1)
; C:
; 0 4 8
; 1 5 9
; 5 5 5
; 3 7 11

Set diagonal

A=ramp(0,1,9) ; test data
setsegLen(A,3)
; A:
; 0 3 6
; 1 4 7
; 2 5 8
Diag = [2, 2, 1]
C = MatrixMerge (A, Diag, -1, -1)
; C:
; 2 3 6
; 1 2 7
; 2 5 1

imc FAMOS Func on Reference - 550 -

(c) 2024 imc Test & Measurement GmbH

See also:
MatrixPart, ReplIndex, MatrixChangeDim, MatrixInfo

imc FAMOS Func on Reference - 551 -

(c) 2024 imc Test & Measurement GmbH

MatrixMult

Available in: Professional Edition and above

Multiplication of two matrices or vectors, as well as their transposes

Declaration:
MatrixMult (Matrix A, Matrix B [, Calculation]) -> Product

Parameter:

Matrix A Matrix or Vector A

Matrix B Matrix or Vector B

Calculation Should the matrices be transposed before multiplication? (optional , Default value: "A*B")

"A*B" : A * B

"AT*B" : A transposed * B

"A*BT" : A * B transposed

"AT*BT" : A transposed * B transposed

"cross" : Cross product of two 3-dimensional column vectors

Product

Product Product

Description:
A matrix is a segmented data set. The segments are the columns.

In this context, a vector refers to a single-row or single-column matrix.

A column vector is a matrix with only one column. It is a data set without segments.

A column vector can also be represented as a segmented data set with exactly one segment.

A row vector is a segmented data set with a segment length of 1.

The result of the function is generally a matrix and thus a segmented data set. If the result is a column vector, it is a data set without segments. If
the result is a single number, it is interpreted as a column vector and thus also has no segments.

In a scalar product, a row vector is multiplied by a column vector. For example, if there are two column vectors, the formula "AT*B" is used.

In the dyadic product, a column vector is multiplied by a row vector. For example, if there are two column vectors, the formula "A*BT" is used.

This function is not used when the matrix is multiplied by a (scalar) factor. That is done by the operator "*". A simple factor of the type Single
Value is interpreted as a scalar.

Addition and subtraction of matrices with the operators "+" and "-".

Adding and subtracting matrices and their transposes also with MatrixAdd().

In order to divide by a matrix, one multiplies by the inverse matrix.

Units and sampling intervals are not taken into account.

Examples:
Multiply matrix by column vector

A = leng(0,9) ; test data
setsegLen(A,3)
A[3,1] = 4 ; row 1, column 3
A[1,2] = 1
A[2,3] = 2
; A:
; 0 0 4
; 1 0 0
; 0 2 0
b = [3, 2, -3]
; b:
; 3
; 2
; -2
c = MatrixMult(A, b, "A*B")
; c:
; -12
; 3
; 4

imc FAMOS Func on Reference - 552 -

(c) 2024 imc Test & Measurement GmbH

See also:
MatrixAdd

imc FAMOS Func on Reference - 553 -

(c) 2024 imc Test & Measurement GmbH

MatrixPart

Available in: Professional Edition and above

Form part of a matrix

Declaration:
MatrixPart (Matrix, Starting row, Rows, Starting column, Columns) -> Submatrix

Parameter:

Matrix Matrix

Starting row From this row index on, > 0; in x-direction; index of sample within a segment

Rows Count of rows to be adopted

Starting column From this column index on , > 0; in z-direction; index of a segment

Columns Count of columns to be adopted

Submatrix

Submatrix Submatrix

Description:
The result is a matrix of the dimension [rows*columns].

The function returns a submatrix. The portion to be exerpted, given by columns and rows, must fit completely within the matrix. For instance, if
the matrix has 4 rows, then from the 1st row on, 4 rows may be excerpted, but from the 4th row, only one.

A matrix is a segmented data set. The segments are the columns.

In this context, a vector refers to a single-row or single-column matrix.

A column vector is a matrix with only one column. It is a data set without segments.

A column vector can also be represented as a segmented data set with exactly one segment.

A row vector is a segmented data set with a segment length of 1.

The result of the function is generally a matrix and thus a segmented data set. If the result is a column vector, it is a data set without segments. If
the result is a single number, it is interpreted as a column vector and thus also has no segments.

The result adopts the x- and z-coordinate, but returns correspondingly shifted x- and z-offsets.

Examples:
Getting 1 row, namely the third

A=ramp(0,1,12) ; test data
setsegLen(A,4)
; A:
; 0 4 8
; 1 5 9
; 2 6 10
; 3 7 11
B = MatrixPart (A, 3, 1, 1, 4)
; B = [2, 6, 10]

Submatrix

A=ramp(-4,1,16) ; test data
setsegLen(A,4)
; A:
; -4 0 4 8
; -3 1 5 9
; -2 2 6 10
; -1 3 7 11
B = MatrixPart (A, 2, 2, 3, 2)
; B:
; 5 9
; 6 10

See also:
MatrixMerge, CutIndex, CutDt

imc FAMOS Func on Reference - 554 -

(c) 2024 imc Test & Measurement GmbH

MatrixSet

Available in: Professional Edition and above

Set elements of a matrix

Declaration:
MatrixSet (Matrix, Row, Column, New [, Scaling]) -> Matrix

Parameter:

Matrix Matrix

Row Row, addressed in the x-direction, in other words the n-th sample within a segment

Column Column, addressed in the z-direction, in other words the n-th segment

New New values

Scaling How are the row and column scaled? (optional , Default value: "index")

"index" : Index beginning at 1

"units" : Stated in physical units, so containing x0, dx or z0, dz

Matrix

Matrix Matrix

Description:
Each row-column pair addresses one element in the matrix. This element is set to the new value.

The numerical values from the row and column are rounded to the next element. If an index lies outside of the matrix after rounding, no
element of the matrix is changed.

The data sets for rows, columns and new values have the same length and structure regarding segments and events.

The result is a matrix of the same dimensions as the matrix passed.

The data sets for row and column may contain events and segments.

A matrix is a segmented data set. The segments are the columns.

In the syntax of the sequences, the element of a matrix can also be set directly by means of square brackets, where the segment index (=column
index) is stated first.

Examples:
Set element

A = MatrixInit (3, 3, "I")
; A:
; 1 0 0
; 0 1 0
; 0 0 1
B1 = MatrixSet (A, 3, 2, 5)
; B:
; 1 0 0
; 0 1 0
; 0 5 1
alternatively:
B2 = A
B2[2,3] = 5

See also:
MatrixGet, MatrixFromLine, Set, SetIndex

imc FAMOS Func on Reference - 555 -

(c) 2024 imc Test & Measurement GmbH

MatrixSumLines

The function finds the vector of the matrix row or column sums (segmented waveform).

Declaration:
MatrixSumLines (Matrix, SvOption) -> Sum

Parameter:

Matrix Matrix (segmented waveform)

SvOption Options parameter

0 : The total of all values in a row. The first row consists of the 1st element from every segment.

1 : The sum of a column's contents, in other words of a segment's values.

Sum

Sum Vector with column or row sums

Description:
The segmented waveform submitted is interpreted as a matrix (1 segment corresponds to a column) and the row or column sum is determined,
depending on the value of the option parameter.

Examples:
A matrix (segmented waveform) is given as:

; 2 1 0
; 4 1 1
; 5 2 0
; with 2,4,5 = Segment 1
; Determining the column sum:
Matrix = [2,4,5,1,1,2,0,1,0]
SetSegLen(Matrix, 3)
columnSum = MatrixSumLines(Matrix, 1)
; The result is a data set with the values (11,4,1), each element being the sum of a matrix column.
rowSume = MatrixSumLines(Matrix, 0)
; which returns (3, 6, 7).

See also:
MatrixTranspose, MatrixCut

imc FAMOS Func on Reference - 556 -

(c) 2024 imc Test & Measurement GmbH

MatrixTranspose

A matrix (segmented waveform) is transposed (rows are switched with columns).

Declaration:
MatrixTranspose (Matrix) -> TransposedMatrix

Parameter:

Matrix Matrix (segmented waveform)

TransposedMatrix

TransposedMatrix Resulting transposed matrix

Description:
The segmented waveform submitted is interpreted as a matrix (1 segment corresponds to a matrix column). The function transposes this matrix,
i.e. the rows become columns and vice-versa.

Examples:
The function AmpSpectrumRMS() from the imc Spectrum package computes a series of spectra which are recorded as segments of the resulting
data set. This result-matrix consists of amplitude values, plotted over the time and frequency. Next, the time and frequency axes are switched.

spectra = AmpSpectrumRMS(signal, 1024, 0, 50, 1, 0)
tm = MatrixTranspose(spectra)

See also:
MatrixSumLines, MatrixCut, MatrixMult

imc FAMOS Func on Reference - 557 -

(c) 2024 imc Test & Measurement GmbH

Max

Finds a data set's maximum value

Declaration:
Max (Data) -> SvMaximum

Parameter:

Data Data set whose maximum value is to be found [ND],[XY]

SvMaximum

SvMaximum Data set maximum value

Description:
The function Max() returns a data set's the largest numerical value (y-value). The maximum value's position (x-coordinate) can be found using the
function Pos().

Examples:
The maximum of a sinusoidal data set is its amplitude, also called its peak:

Amplitude = Max(sineWave)

This determines how often the most frequently used upper case letter occurs in the histogram of an ASCII text. Upper case letters have values
ranging from 65 to 90.

thePeak = Max(Cut(HistoText, 65, 90))

..and the most frequent upper case letter itself:

letter = Pos(HistoText, thePeak)

See also:
Min, Mean, Pos, PosiEx, SearchLevel, MvMax, Stat

imc FAMOS Func on Reference - 558 -

(c) 2024 imc Test & Measurement GmbH

MDIR

Sets folder for loading and saving sequances and user-defined dialogs

Declaration:
MDIR Folder

Parameter:

Folder Complete pathname of the desired folder

Description
Instead of the command MDIR, the function SetOption() should be used in newly created sequences.

The folder for loading and saving sequences/dialogs is given a new setting.

Once this command is executed, this folder is used for loading and saving sequences and user-defined dialogs.

This affects the command SEQUENCE, the function Dialog(), as well as the dialogs for manually loading and saving sequences and dialogs.

The folder name may also be expressedd in quotation marks. This is obligatory when the name contains spaces.

This command can also be called without any parameters (so without any specified fodler). Then the folder set under "Options/Folders" is again
used as the default.

The folder elected here remains valid until:

the command MDIR is called again
the function SetOption("Dir.Sequences",...) is called
a sequence- or dialog-file is manually loaded from a different folder or saved to a different folder
a new folder for sequences/dialogs is designated using the dialog "Options"/ "Folders"

Multithreading: The command has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:

SEQUENCE SEQ1
MDIR C:\MACRO
SEQUENCE SEQ2

From the currently set folder, the sequence SEQ1is called; next the sequence C:\MACRO\SEQ2.SEQ

MDIR "c:\My tests on 12/1/98"

The pathname contains spaces and must therefore be written in quotation marks.

See also:
SetOption, SEQUENCE, Dialog, LDIR

imc FAMOS Func on Reference - 559 -

(c) 2024 imc Test & Measurement GmbH

Mean

A data set's arithmetic mean

Declaration:
Mean (Data) -> SvMean

Parameter:

Data Data from which the mean value is to be calculated [ND].

SvMean

SvMean Arithmetic mean of the data set

Description:
The arithmetic mean of a data set's numerical values (y-values) is found. This statistic is defined as the sum of all numerical values divided by
their count.

Examples:
A pH value is to be determined. Since there is a strongly interfering rectifier near the measurement instrument, the measured variable was
measured 100 times. The mean value over all measurements can be considered a substantially improved reading:

PH_mean = Mean(PH_allValues)

From an acceleration signal, the velocity is obtained through integration. For this purpose, the mean value of the signal must first be subtracted:

v = Int(a - Mean(a))

See also:
Max, Min, StDev, RMS, MvMean, Stat

imc FAMOS Func on Reference - 560 -

(c) 2024 imc Test & Measurement GmbH

MeasChanNames?

Returns the names of all channels which are assigned to a given measurement.

Declaration:
MeasChanNames? (TxMeasurementName, TxFilter [, SvOption]) -> TxChannelNames

Parameter:

TxMeasurementName Name of the measurement queried

TxFilter Empty text with which to get all channels. Otherwise, the wildcard characters '?' (meaning any arbitrary character) and
'*' (any amount of arbitrary characters) can be used to define a selection filter.

SvOption Option (optional)

0 : Group channels are returned in the customary notation 'GroupName:ChannelName'. The group name itself is not
contained int he result. (default)

1 : For each group included, only the group name is returned.

TxChannelNames

TxChannelNames Text box with channel names

Description:
The function returns the name of all channels which are assigned to a given measurement. This corresponds to the content of the corresponding
measurement node in the Variables list/Measurement view.

If the respective name does not comply with the rules governing variable names in sequences (e.g. it contains special characters or spaces), the
name is additionally bracketed in {...}.

The concept of a variable's measurement association has previously mainly been used in the Data Source Browser. There, when a measurement
value file is loaded, each variable generated is automatically assigned to a measurement name, in order to be able to distinguish among variables
of the same name but from different data sources.

The names returned are sorted alphabetically.

Examples:
A Panel contains a curve window, which is configured for displaying the 1st channel of the 1st selected measurement ('Channel #1 @
Measurement #1') and a button 'Show'. The user initially loads all desired measurements manually. At the push of a button, then for each
measurement, all channels starting with 'U_' are each displayed for 2 seconds.

Event-sequence 'Button pressed (Show)':

measurements = MeasNames?("*")
FOREACH ELEMENT name in measurements
 SelMeasListSetName(1, name, 1)
 channels = MeasChanNames?(name, "U_*")
 FOREACH ELEMENT chan in channels
 SelChanListSetName(1, chan, "", 1)
 SelListControl(0) ; refresh curve windows now
 Sleep(2)
 END
END

See also:
MeasNames?, SelMeasListSetName, SelChanListSetName, SetMeasurementName

imc FAMOS Func on Reference - 561 -

(c) 2024 imc Test & Measurement GmbH

MeasNames?

Returns the names of all currently loaded measurements.

Declaration:
MeasNames? (TxFilter) -> TxMeasNames

Parameter:

TxFilter Empty text with which to get all measurements. Otherwise, the wildcard characters '?' (meaning any arbitrary character) and '*'
(any amount of arbitrary characters) can be used to define a selection filter.

TxMeasNames

TxMeasNames Text box with measurement name

Description:
This function returns the names of all currently loaded measurements. This corresponds to the (unfiltered) content of the Variables
list/Measurement view.

The concept of a variable's measurement association has previously mainly been used in the Data Source Browser. There, when a measurement
value file is loaded, each variable generated is automatically assigned to a measurement name, in order to be able to distinguish among variables
of the same name but from different data sources.

The names returned are sorted alphabetically.

Examples:
A panel contains a curve window which is configured for display of the 1st channel of the 1st selected measurement ('Channel #1 @
Measurement #1') and a button 'Show'. The user initially manually loads all measurements desired and selects a channel name (assigned the
number #1) in the Variables list/Measurement View. At the push of a button, all currently available measurements are enumerated and each
associated curve plot for the selected channel is displayed for 2 seconds.

Event-sequence 'Button pressed (Show)':

measurements = MeasNames?("")
FOREACH ELEMENT name IN measurements
 SelMeasListSetName(1, name)
 Sleep(2)
END

See also:
MeasChanNames?, SelMeasListSetName, SetMeasurementName

imc FAMOS Func on Reference - 562 -

(c) 2024 imc Test & Measurement GmbH

MeasurementName?

Finds the name of the measurement to which the variable is assigned.

Declaration:
MeasurementName? (Variable) -> TxMeasName

Parameter:

Variable Variable to be queried

TxMeasName

TxMeasName Name of the assigned measurement

Description:
If no measurement is assigned to the variable, an empty string is returned.

The concept of a variable's measurement association has previously mainly been used in the Data Source Browser. There, when a measurement
value file is loaded, each variable generated is automatically assigned to a measurement name, in order to be able to distinguish among variables
of the same name but from different data sources.

Examples:
The measurements currently being edited contain the channels 'Voltage' and 'Current'. For the currently selected Measurement #1 (Variables
List/Measurement View), the power is calculated and assigned a name reflecting the associated measurement. In consequence, the calculated
variable is automatically displayed in the Channels list (Variables List/Measurement View).

IF SelUseMeasurement(1) = 0
 EXITSEQUENCE
END
TxMeasName = MeasurementName?(Voltage)
Power = Voltage * Current
SetMeasurementName(Power, TxMeasName)

See also:
SetMeasurementName

imc FAMOS Func on Reference - 563 -

(c) 2024 imc Test & Measurement GmbH

Median

Signal smoothing by means of median-filtering over a specified number of points.

Declaration:
Median (Data, SvFilterWidth) -> Filtrate

Parameter:

Data Waveform to filter.

SvFilterWidth Filter width in points

Filtrate

Filtrate Smoothed waveform

Description:
Median filtering proceeds according to the following algorithm (example for filter width of 5): For every input value at the location [n], one result
value is found. For this purpose, the input values at the positions [n-2], [n-1], [n], [n+1] and [n+2] (total of 5) are ordered by their amplitude. The
result value is the respective median element within the ordered list.

The filter width must lie within the range 3 to 99 and be uneven; sensible values would be 3 or 5, for example. If an even number is specified as
the filter width, it is rounded up to the next uneven number.

Median-filtering can be used to suppress short, distinct disturbance peaks in the input signal. The filter width must be selected so as to be more
than twice as wide as the width of the disturbances expected.

On the other hand, the signal can be significantly distorted by this function, especially if the signal oscillates strongly. But if the function is
applied to mainly monotonic signals or signal segments, the distortion is only minimal.

The input waveform is assumed to extend at a respective constant level from its beginning and end. Thus, at the beginning and end of the
waveform, transients subside within half of the filter width; disturbances usually can't be suppressed in these signal regions.

The median-filter is a non-linear filter; the input and output waveforms are not phase shifted.

Examples:
Median filtering over 5 points. Afterwards, the first two and last two values in the result are deleted.

filtered = Median(signal, 5)
filtered = CutIndex(filtered, 3, Leng?(filtered)-2)

See also:
Smo, MvMean, MvMin, MvMax, Sort

imc FAMOS Func on Reference - 564 -

(c) 2024 imc Test & Measurement GmbH

Min

Finds a data set's minimum value.

Declaration:
Min (Data) -> SvMinimum

Parameter:

Data Data set whose minimum value is to be found [ND],[XY]

SvMinimum

SvMinimum Minimum of the data set

Description:
The Min function returns a y-value. The position of the minimum (x-coordinate) can be determined with the Pos function.

Examples:
A data set contains the measurement error of a device at various times: the error smallest in magnitude is to be determined:

mini = Min(Abs(error))

The supply voltage of a device was measured; the minimum value which occurred is to be determined and expressed as deviation in percent of
the nominal value 12V.

deviation = (Min(U_supply) -12'V') * 100'%' / 12'V'

See also:
Max, Mean, Pos, PosiEx, SearchLevel, MvMin, Stat

imc FAMOS Func on Reference - 565 -

(c) 2024 imc Test & Measurement GmbH

MInt

Moving integral over specified integration interval width

Declaration:
MInt (Data, SvWidth) -> Result

Parameter:

Data Data set to be integrated; allowed data types: [ND]

SvWidth Width of the integration interval

Result

Result Results of the moving integral

Description:
With moving integration, the integraton interval can have a permanent specified width. This constant integration interval is shifted across the
entire data set. The concatenated values of this integral compose the resulting data set. Integration is performed by summing all values of the
specified data set within the integration interval and then multiplying by the sampling rate.

The moving integral is computed as follows:

Here T is the integration interval, f(x) is the function to be integrated, mInt(t) is the moving integral, and x0 is the x-offset of the function to be
integrated. The first value of the moving integral is calculated for t = T + x0, i.e. the resulting data set starts somewhat later than the original data
set, as illustrated by an xoffset increased by T.

Besides the multiplication with the sampling time involved, the moving integral works as a filter. It smoothes the function, just like a low-pass
filter. The weighting function is rectangular. The increase of the x-offset suppresses start-up effects by not computing the first integral.

The y-unit of the created data set is the product of the x- and y-units of the specified data set.
The width of the integration interval must be less than the length of the data set to be integrated, so that the created data set has a length of
at least 2. Otherwise, the Int() function should be used instead.

Examples:

NDp_real = MInt(NDp, 0.020 's') / 0.020 's'

A data set representing the instantaneous power p of a load is used to calculate the power consumption. The period of the power source is 20 ms.
Use the Value function to obtain the value of the power consumption at a particular time.

See also:
Int, Sum, MvSum, Smo, Hyst

imc FAMOS Func on Reference - 566 -

(c) 2024 imc Test & Measurement GmbH

Mirror

Mirroring of a data set's values

Declaration:
Mirror (Data) -> Mirrored

Parameter:

Data Data set to be mirrored; allowed types: [ND],[XY].

Mirrored

Mirrored Mirrored data set

Description:
The specified data set is mirrored. The mirror axis is located at the center of the data set. The reflected data set is generated as follows: the first
value of the data set is exchanged with the last value, the second with the second-to-last, etc.

With XY-data, both the X- and the Y-values are mirrored, which means that only the order of the XYpairs in the data set changes, while the
graphical display remains unchanged.

For "graphical" mirroring of an XY data set, you can use the following formula:

Source_mirror = XYof(min(Source.X)+ max(Source.X)-Source.X, Source.Y)

When the Mirror() function is applied to a mirrored data set, the original data set results.

Examples:

NDmirror = Mirror(NDdata)

The data set NwData displayed at the left is to be mirrored. The result of mirroring is illustrated in the graph on the right as the data set
NwMirror:

See also:
Sort

imc FAMOS Func on Reference - 567 -

(c) 2024 imc Test & Measurement GmbH

Mod

Modulo (division remainder)

Declaration:
Mod (Numerator, Denominator) -> Result

Parameter:

Numerator Numerator. Allowed types: [ND],[XY].

Denominator Denominator. Allowed types: [ND].

Result

Result Division remainder (modulo) of numerator and denominator

Description:
The function Mod (modulus) determines the remainder of division. The numerator need not be an integer. The function works as follows:

The numerator and denominator values are made positive; then the denominator is subtracted from the numerator as many times as possible
without producing a negative value. The sign of the result is then set to the sign of the numerator.

The modulus function is applied to every point in data sets. If both parameters of the Mod function are equidistant data sets, the elements are
linked value for value, regardless of the corresponding xcoordinates. If the parameters are different data types, the single value is applied to
each point of the normal data set.

Both parameters may be structured (events/ segments), however, in that case, the respective other parameter must have exactly the same
structure (same segment length, event-count and -length), or be a single value.

Remarks

The unit of the generated data is the quotient of the units of the first and second parameters.
As in division, the second parameter may not be zero; a warning message is generated if a zero is specified.
If the specified data sets have different lengths, the length of the result corresponds to that of the shorter data set.

SvRemainder = Mod(SvNumerator, SvDenominator)

Numerator Denominator Mod
17 2 1

18 2 0

17 -2 1

-17 2 -1

-17 -2 -1

8.5 3.5 1.5

7.5 3.5 0.5

7.0 3.5 0

Examples:
The phase of a 10th-order linear has the values -900° ... 0°. Since phasen between -360° and 0° are easier to imaging, but a phase is not changed by
adding multiples of 360°, application of the function Mod() is useful:

NDphase360 = Mod(NDphase, 360)

See also:
/(Division), PhaseMod, Floor

imc FAMOS Func on Reference - 568 -

(c) 2024 imc Test & Measurement GmbH

Monoflop

Available in: Professional Edition and above

Monoflop

Declaration:
Monoflop (Data, Impulse duration [, Type] [, Start] [, Direction] [, Logic]) -> Result

Parameter:

Data input data

Impulse
duration Impulse duration in x-units, rounded to integer multiples of the sampling interval

Type Retriggerable? (optional , Default value: "no retrig")

"no retrig" : Not retriggerable: Rising edges are only evaluated again after the end of an impulse.

"retrig" : Retriggerable: Rising edges during the impulse generated prolong it.

"1 retrig" : retriggerable by Value 1: Once a pule is generated, every 1 in the input signal prolongs the generated impulse.

Start Interpretation of Start value =1? (optional , Default value: "const")

"const" : no signal edge. Causes the values before the 1st measuremnet value to all appear to be 1.

"0-1" : Transition from 0 to 1: Causes the values before the 1st measurement to all appear to be zero.

Direction Direction, forwards or backwards (optional , Default value: "")

"" : Regular: The signal is run in the regular direction forwards, meaning from front to back.

"reverse" : Backwards: The signal is run in the reverse direction, meaning from back to front.

Logic Logic, regular or inverted (optional , Default value: "")

"" : Regular: Pulses consist of 1, empty spaces of zero.

"invert" : Inverted: Pulses consist of zero, empty spaces of 1. The input is interpreted in inverted manner; the result is its
inversion.

Result

Result Result

Description:
For a rising signal edge (transition from zero to non-zero), the Monoflop returns an impulse of defined duration (Value 1 during the impulse, else
zero).

If the input data are zero, it is interpreted as logically zero (false, low). Else as logically 1 (true, high).

The Monoflop implements a dwell time.

In a simple typical application, the function is called with 2 parameters.

The input data can have events and segments.

When running through in reversed direction (direction = reverse), the signal end becomes the start. Pulses are not prolonged toward the end, but
toward the beginning. The behavior is no longer causal. E.g. for applications in which pulses indicate certain events, and the intention is to
delimit a region around these events, which is not always only after it, but sometimes also before it.

Examples:
Standard application: Not retriggerable Monoflop; impulse duration = 3s, sampling interval = 1s

MF = Monoflop (data, 3)
; in = 0 1 0 0 0
;out = 0 1 1 1 0

; in = 0 1 0 1 0
;out = 0 1 1 1 0

; in = 1 1 0 0 0
;out = 0 0 0 0 0

Retriggerable Monoflop; impulse duration = 3s, sampling interval = 1s

MF = Monoflop (data, 3, "retrig")
; in = 0 1 0 1 0 0 0 0

imc FAMOS Func on Reference - 569 -

(c) 2024 imc Test & Measurement GmbH

;out = 0 1 1 1 1 1 0 0

; in = 0 1 1 0 0
;out = 0 1 1 1 0

; in = 1 1 0 0 0
;out = 0 0 0 0 0

Monoflop retriggerable by State 1, impulse duration = 3s, sampling interval = 1s

MF = Monoflop (data, 3, "1 retrig")
; in = 0 1 1 0 0 0 0 0
;out = 0 1 1 1 1 0 0 0

; in = 0 1 1 0 1 1 0 0 0
;out = 0 1 1 1 1 1 1 1 0

; in = 1 1 0 0 0
;out = 0 0 0 0 0

Non-retriggerable Monoflop; impulse duration = 3s, sampling interval = 1s. A 1 at the beginning is to be interpreted as a signal edge.

MF = Monoflop (data, 3, "no retrig", "0-1")
; in = 0 1 0 0 0
;out = 0 1 1 1 0

; in = 0 1 0 1 0
;out = 0 1 1 1 0

; in = 1 1 0 0 0
;out = 1 1 1 0 0

Non-retriggerable Monoflop; impulse duration = 3s, sampling interval = 1s. Inverse logic

MF = Monoflop (data, 3, "no retrig", "const", "", "invert")
; in = 1 0 1 1 1
;out = 1 0 0 0 1

; in = 1 0 1 0 1
;out = 1 0 0 0 1

Non-retriggerable Monoflop; impulse duration = 3s, sampling interval = 1s. Backwards

MF = Monoflop (data, 3, "no retrig", "const", "reverse")
; in = 0 0 1 1 0 0 0 0 1 0 1 0 1 0
;out = 0 1 1 1 0 0 1 1 1 0 1 1 1 0

See also:
Flipflop

imc FAMOS Func on Reference - 570 -

(c) 2024 imc Test & Measurement GmbH

MSave

Saving of multiple data sets as a multi-column Ascii-file.
This function is obsolete. For the purpose of exporting multi-column ASCII-files, the more convenient and flexible alternative would usually be to
define an ASCII-export template and to use the functions FileSave() or FileOpenASCII2().

Declaration:
MSave (SvTask, SvOption, Data, TxFormatOrFile) -> SvError

Parameter:

SvTask Task

1 : Prepare new output. Must be performed once at the beginning of each data storing procedures. All other parameters must
take the right types, but they are ignored.

2 : Adds a data set to the file. [SvOption] must take the right type, but is ignored. [Data] is the data set to be added.
[TxFormatOrDatei] describes the output format; see description. With this command, specify all the data sets in succession,
which are to be saved in the file in the form of columns.

3 : Subsequently the file is saved. [SvOption] selects various modes. [Data] must take the correct type, but will be ignored.
[TxFormatOrFile] specifies the filename.

SvOption Mode selection for [SvTask] = 3 (Dave file). Else, ignored, and should be set to 0, for example. See description.

Data Variable to be saved. Data set or single value

TxFormatOrFile For [SvTask] = 2: Default of the numerical format. For [SvTask] = 3: the filename to be used. Else, ignored and should be set to
"", for example.

SvError

SvError Error code

0 : The file has been saved successfully.

1 : Insufficient working memory available

2 : Error in creating the file. Please check the filename specified.

3 : A maximum of 512 columns is allowed.

4 : Unable to write a file. Available space on the data carrier may not be sufficient.

5 : Incorrect specification in [TxFormatOrFile] for [SvTask] = 2.

Description:
Meaning of the parameter [TxFormatOrFile] for [SvTask] = 1:

"fV.N" Floating point: V = decimal places (without sign), N= decimal places (Default = 6); total <= 15

"f0V.N" like "fV.N", but with preceding zeroes before the decimal point

"eN" Exponential: N = decimal places <= 15 (Default = 6)

"e0N" like"eN", but with preceding zeroes in the 3-digit exponent

"xS" Hexadezimal: S = digit count <= 8

"x0S" like "xS", but with preceding zeroes

"aN" automatic Floating Point/Exponential: N = decimal places (Default = 6)

"", " " works in the same way as the former fixed format "f4.4"

Meaning of the parameter [SvOption] for [SvTask] = 2:

Add these:

0: Do not generate column with time

1: The first column is the time of the first data set; in seconds

2: like 1, but in milli-seconds

3: like 1, but in micro-seconds

4: like 1, but in nano-seconds

5: The time is outputted in Hrs:Min:Sec; absolute clock time. With single values, the start time is the time the file was created.

imc FAMOS Func on Reference - 571 -

(c) 2024 imc Test & Measurement GmbH

6: The time is outputted in Hrs:Min:Sec; Start at 00:00:00

7: The time and date is expressed in the country format. With single values, the start time is the time the file was created.

8: like 5, but start time represent the time of creation

9: like 7, but start time and -date represent the time of creation

Add these:

0: The file will be newly created

10: The data appended to an existing file. If the file does not exist, it will be created.

Add these:

0: The columns are separated by Tab-characters.

100: The columns are separated by space characters.

900: The column separation is specified by the system control.

Add these:

0: A dot is used as the decimal symbol.

1000: A comma is used as the decimal symbol. (Excel)

9000: The decimal symbol is specified by the system control.

Add these:

0: The data sets are equidistant.

10000: The first data set contains X-coordinates for the rest of the columns.

Add these: (only for formatted time output; Option + 5,6 or 7):

0: Seconds without decimal places

100000: Count of seconds' decimal places = 1

..

900000: Count of seconds' decimal places = 9
Unless a full filename is specified, the current default folder is used. Upon starting FAMOS, the current default folder is set to the preset (dialog:
'Options'/ 'Folders'). It can be changed using the function SetOption().

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Examples:
Saves the data sets a, b, c and d with a time expressed in milli-seconds. The columns are separated by Tab-characters. In the first line of the file, a
brief description is presented. A decimal point is used.

The name of the file is "C:\Test.txt".

fh = FileOpenASCII("C:\Test.txt", 1)
IF fh > 0
 err = FileLineWrite(fh, "1.Zeit/ms, 2.U/mV, 3.I/mA", 0)
 err = FileClose(fh)
END
MSave(1, 0, 0, "")
MSave(2, 0, a,"f3.2") ; z.B. " 123.12" oder "12345.12" oder " 1.12"
MSave(2, 0, b,"E3") ; z.B. " 1.123E+001"
MSave(2, 0, c,"e5") ; z.B. "-1.12345e+001"
MSave(2, 0, d,"A3") ; z.B. "1.123E+005" or "-1123.456"
MSave(3, 12, 0, "C:\Test.txt") ;time in ms, append to file

See also:
FileOpenASCII2, FileSave, FileLineWrite

imc FAMOS Func on Reference - 572 -

(c) 2024 imc Test & Measurement GmbH

Mult

Time-/x-correct multiplication

Declaration:
Mult (Factor1, Factor2, SvOption) -> Product

Parameter:

Factor1 First parameter, factor; allowed types: [ND],[XY].

Factor2 Second parameter, factor; allowed types: [ND],[XY].

SvOption Option

0 : The trigger time of the two summands is ignored.

1 : Time-correct superposition with regard to trigger-time

Product

Product Product; result of multiplication [XY]

Description:
Two data sets undergo time-correct or x-correct multiplication, meaning that the y-values for each shared x-value of time are multiplied.

The result is defined only within the x-range which is shared by both data sets. Within this range a resultvalue is determined for every point at
which at least one of the data sets possesses a value. If no value exists for the other data set, one is determined by linear interpolation.

The x-tracks of both parameter data sets must be monotonous, i.e. the x-coordinates must increase continuously.

The operator * (multiplication) by contrast performs point-by-point multiplication of data sets' values.

Examples:
Two channels are measured; one between 11:00 and 13:00, and the other between. 12:00 and 14:00.

power12_13h = Mult(voltage11_13h, current12_14h, 1)

Time-correct multiplication of the two data sets with respect to the trigger time is performed. The result is defined for the time between 12:00
and 13:00 hours.

See also:
*(Multiplikation), Add, Sub, Div, Append

imc FAMOS Func on Reference - 573 -

(c) 2024 imc Test & Measurement GmbH

MvMax

Moving maximum with resampling

Declaration:
MvMax (Data, SvWindow, SvReduction [, SvCompatibilty]) -> MovingMax

Parameter:

Data Data set to which function is applied [NW]

SvWindow Width of function operation interval (in x-units)

SvReduction Width of the reduction interval (in x-units)

SvCompatibilty (optional , Default value: 0)

0 : The maximum ratio of window width to reduction interval is limited to 10. The calculation is thus compatible with FAMOS-
versions <=7.4.

1 : The maximum ratio of window width to reduction interval is limited to 1000.

MovingMax

MovingMax Moving maximum

Description:
Each calculated value is the absolute maximum over the width [SvWindow].

[SvReduction] specifies the width of the reduction interval. Exactly one result value is calculated for each such interval. The x-coordinate
associated with each value is the coordinate where the pertinent interval begins. For this reason, the "steps" representation of the resulting data
set in the curve window is recommended.

The averaging interval and reduction interval must be integer multiples of the sampling interval. Otherwise rounding off occurs, since the
calculations always apply to a whole set of measurement values.

Furthermore, there must be an integer ratio of 1:1, 2:1... 10:1 (for SvCompatibility=0) or 1000:1 (for SvCompatibility=1) between the count of
measurement values in [SvWindow] and [SvReduction]. If this is not the case, the system will modify the two intervals accordingly.

If [SvReduction] and [SvWindow] are unequal, initially not enough values are available; in that case the respectively available input values are
analyzed.

Examples:
Every 10 s, the maximum over the last 10 s is calculated:

resultMax = MvMax(timeData, 10, 10)

Every 10 s, the maximum over the last 20 s is calculated:

resultMax = MvMax(timeData, 20, 10)

For every 5th point, the maximum over the last 10 points is calculated:

_xdelta = xdel?(timeData)
resultMax = MvMax(timeData, 10*_xdelta, 5*_xdelta)

See also:
Max, MvMin, MvMean, MvRMS

imc FAMOS Func on Reference - 574 -

(c) 2024 imc Test & Measurement GmbH

MvMean

Moving mean value with resampling

Declaration:
MvMean (Data, SvWindow, SvReduction [, SvCompatibilty]) -> MovingMean

Parameter:

Data Data set to which function is applied [NW]

SvWindow Width of function operation interval (in x-units)

SvReduction Width of the reduction interval (in x-units)

SvCompatibilty (optional , Default value: 0)

0 : The maximum ratio of window width to reduction interval is limited to 10. The calculation is thus compatible with FAMOS-
versions <=7.4.

1 : The maximum ratio of window width to reduction interval is limited to 1000.

MovingMean

MovingMean Moving mean

Description:
Each calculated value is the arithmetical mean over the width [SvWindow].

[SvReduction] specifies the width of the reduction interval. Exactly one result value is calculated for each such interval. The x-coordinate
associated with each value is the coordinate where the pertinent interval begins. For this reason, the "steps" representation of the resulting data
set in the curve window is recommended.

The averaging interval and reduction interval must be integer multiples of the sampling interval. Otherwise rounding off occurs, since the
calculations always apply to a whole set of measurement values.

Furthermore, there must be an integer ratio of 1:1, 2:1... 10:1 (for SvCompatibility=0) or 1000:1 (for SvCompatibility=1) between the count of
measurement values in [SvWindow] and [SvReduction]. If this is not the case, the system will modify the two intervals accordingly.

If [SvReduction] and [SvWindow] are unequal, initially not enough values are available; in that case the respectively available input values are
analyzed.

Examples:
Every 10 s, the mean value over the last 10 s is calculated:

resultMean = MvMean(timeData, 10, 10)

Every 10 s, the mean valud over the last 20 s is calculated:

resultMean = MvMean(timeData, 20, 10)

For every 5th point, the mean valud of the last 10 points is calculated:

_xdelta = xdel?(timeData)
resultMean = MvMean(timeData, 10*_xdelta, 5*_xdelta)

See also:
Mean, MvMin, MvMax, MvRMS, Median

imc FAMOS Func on Reference - 575 -

(c) 2024 imc Test & Measurement GmbH

MvMin

Moving minimum with resampling

Declaration:
MvMin (Data, SvWindow, SvReduction [, SvCompatibilty]) -> MovingMin

Parameter:

Data Data set to which function is applied [NW]

SvWindow Width of function operation interval (in x-units)

SvReduction Width of the reduction interval (in x-units)

SvCompatibilty (optional , Default value: 0)

0 : The maximum ratio of window width to reduction interval is limited to 10. The calculation is thus compatible with FAMOS-
versions <=7.4.

1 : The maximum ratio of window width to reduction interval is limited to 1000.

MovingMin

MovingMin Moving minimum

Description:
Each calculated value is the absolute minimum over the width [SvWindow].

[SvReduction] specifies the width of the reduction interval. Exactly one result value is calculated for each such interval. The x-coordinate
associated with each value is the coordinate where the pertinent interval begins. For this reason, the "steps" representation of the resulting data
set in the curve window is recommended.

The averaging interval and reduction interval must be integer multiples of the sampling interval. Otherwise rounding off occurs, since the
calculations always apply to a whole set of measurement values.

Furthermore, there must be an integer ratio of 1:1, 2:1... 10:1 (for SvCompatibility=0) or 1000:1 (for SvCompatibility=1) between the count of
measurement values in [SvWindow] and [SvReduction]. If this is not the case, the system will modify the two intervals accordingly.

If [SvReduction] and [SvWindow] are unequal, initially not enough values are available; in that case the respectively available input values are
analyzed.

Examples:
Every 10 s, the minimum over the last 10 s is calculated:

resultMin = MvMin(timeData, 10, 10)

Every 10 s, the minimum over the last 20 s is calculated:

resultMin = MvMin(timeData, 20, 10)

For every 5th point, the minimum over the last 10 points is calculated:

_xdelta = xdel?(timeData)
resultMin = MvMin(timeData, 10*_xdelta, 5*_xdelta)

See also:
Min, MvMax, MvMean, MvRMS

imc FAMOS Func on Reference - 576 -

(c) 2024 imc Test & Measurement GmbH

MvRMS

Moving RMS-value with equally weighted averaging

Declaration:
MvRMS (Data, SvWindow, SvReduction [, SvCompatibilty]) -> MovingRMS

Parameter:

Data Data set to which function is applied [NW]

SvWindow Width of function operation interval (in x-units)

SvReduction Width of the reduction interval (in x-units)

SvCompatibilty (optional , Default value: 0)

0 : The maximum ratio of window width to reduction interval is limited to 10. The calculation is thus compatible with FAMOS-
versions <=7.4.

1 : The maximum ratio of window width to reduction interval is limited to 1000.

MovingRMS

MovingRMS Moving RMS-value

Description:
The moving RMS-value withequally weighted averaging and subsequent resampling is calculated.

Each calculated value is the root-mean-square over the width [SvWindow].

[SvReduction] specifies the width of the reduction interval. Exactly one result value is calculated for each such interval. The x-coordinate
associated with each value is the coordinate where the pertinent interval begins. For this reason, the "steps" representation of the resulting data
set in the curve window is recommended.

The averaging interval and reduction interval must be integer multiples of the sampling interval. Otherwise rounding off occurs, since the
calculations always apply to a whole set of measurement values.

Furthermore, there must be an integer ratio of 1:1, 2:1... 10:1 (for SvCompatibility=0) or 1000:1 (for SvCompatibility=1) between the count of
measurement values in [SvWindow] and [SvReduction]. If this is not the case, the system will modify the two intervals accordingly.

If [SvReduction] and [SvWindow] are unequal, initially not enough values are available; in that case the respectively available input values are
analyzed.

Examples:
Every 10 s, the RMS-value over the last 10 s is calculated:

resultRMS = MvRMS(timeData, 10, 10)

Every 10 s, the RMS-value over the last 20 s is calculated:

resultRMS = MvRMS(timeData, 20, 10)

For every 5th point, the RMS over the last 10 points is calculated:

_xdelta = xdel?(timeData)
resultRMS = MvRMS(timeData, 10*_xdelta, 5*_xdelta)

See also:
RMS, ExpoRMS, MvMin, MvMax, MvStDev

imc FAMOS Func on Reference - 577 -

(c) 2024 imc Test & Measurement GmbH

MvStDev

Moving standard deviation with resampling

Declaration:
MvStDev (Data, SvWindow, SvReduction [, SvCompatibilty]) -> MovingStDev

Parameter:

Data Data set to which function is applied [NW]

SvWindow Width of the calculation interval (in x-units)

SvReduction Width of the reduction interval (in x-units)

SvCompatibilty (optional , Default value: 0)

0 : The maximum ratio of window width to reduction interval is limited to 10. The calculation is thus compatible with FAMOS-
versions <=7.4.

1 : The maximum ratio of window width to reduction interval is limited to 1000.

MovingStDev

MovingStDev Moving standard deviation

Description:
Each calculated value is the standard deviation over the width [SvWindow].

[SvReduction] specifies the width of the reduction interval. Exactly one result value is calculated for each such interval. The x-coordinate
associated with each value is the coordinate where the pertinent interval begins. For this reason, the "steps" representation of the resulting data
set in the curve window is recommended.

The calculation interval and reduction interval must be integer multiples of the sampling interval. Otherwise rounding off occurs, since the
calculations must always apply to a whole set of measurement values.

Furthermore, there must be an integer ratio of 1:1, 2:1... 10:1 (for SvCompatibility=0) or 1000:1 (for SvCompatibility=1) between the count of
measurement values in [SvWindow] and [SvReduction]. If this is not the case, the system will modify the two intervals accordingly.

If [SvReduction] and [SvWindow] are unequal, initially not enough values are available; in that case the respectively available input values are
analyzed.

Examples:
Every 10 s, the standard deviation over the last 10 s is calculated:

resultStDev = MvStDev(timeData, 10, 10)

Every 10 s, the standard deviation over the last 20 s is calculated:

resultStDev = MvStDev(timeData, 20, 10)

For every 5th point, the standard deviation over the last 10 points is calculated:

_xdelta = xdel?(timeData)
resultStDev = MvStDev(timeData, 10*_xdelta, 5*_xdelta)

See also:
StDev, MvMean, MvRMS, Stat

imc FAMOS Func on Reference - 578 -

(c) 2024 imc Test & Measurement GmbH

MvSum

Moving additive totaling with resampling

Declaration:
MvSum (Data, SvWindow, SvReduction [, SvCompatibilty]) -> MovingSum

Parameter:

Data Data set to be totalled [ND]

SvWindow Width of the calculation interval (in x-units)

SvReduction Width of the reduction interval (in x-units)

SvCompatibilty (optional , Default value: 0)

0 : The maximum ratio of window width to reduction interval is limited to 10. The calculation is thus compatible with FAMOS-
versions <=7.4.

1 : The maximum ratio of window width to reduction interval is limited to 1000.

MovingSum

MovingSum Moving sum

Description:
Each calculated value is the sum over the width [SvWindow].

[SvReduction] specifies the width of the reduction interval. Exactly one result value is calculated for each such interval. The x-coordinate
associated with each value is the coordinate where the pertinent interval begins. For this reason, the "steps" representation of the resulting data
set in the curve window is recommended.

The calculation interval and reduction interval must be integer multiples of the sampling interval. Otherwise rounding off occurs, since the
calculations must always apply to a whole set of measurement values.

Furthermore, there must be an integer ratio of 1:1, 2:1... 10:1 (for SvCompatibility=0) or 1000:1 (for SvCompatibility=1) between the count of
measurement values in [SvWindow] and [SvReduction]. If this is not the case, the system will modify the two intervals accordingly.

If [SvReduction] and [SvWindow] are unequal, initially not enough values are available; in that case the respectively available input values are
analyzed.

Examples:
Every 10 s, the sum over the last 10 s is calculated:

resultSum = MvSum(timeData, 10, 10)

Every 10 s, the sum over the last 20 s is calculated:

resultSum = MvSum(timeData, 20, 10)

For every 5th point, the sum over the last 10 points is calculated:

_xdelta = xdel?(timeData)
resultSum = MvSum(timeData, 10*_xdelta, 5*_xdelta)

See also:
Sum, MvRMS, Int, MInt

imc FAMOS Func on Reference - 579 -

(c) 2024 imc Test & Measurement GmbH

Name?

Gets a variable's name

Declaration:
Name? (Variable [, Structure] [, Format]) -> TxName

Parameter:

Variable Variable whose name is to be found. The data type is arbitrary.

Structure Structure of the name found (optional , Default value: 0)

0 : Complete identifier, with group name and measurement if applicable

1 : Identifier with group name (if applicable), without measurement

2 : Name without group name, without measurement

Format Formatting of the name found (optional , Default value: 0)

0 : Standard

1 : Advanced syntax: To make it possible for a variable name to be specified in formulas, it must obey certain rules (e.g. no spaces,
first character not a digit, etc.). If this condition is not met, the name must additionally be bracketed in curly brackets {...}. With this
option, the name returned is supplemented with these curly brackets, if necessary.

TxName

TxName Name

Description:
Gets the name of the variable passed. Typical application cases for this function are:

Sequence functions with parameters passed by means of a reference: Here, the local parameter is not a true variable but instead an alias for
the variable passed when the function is called. Applying the function to such a reference parameter then returns the name of the
referenced variable.
Classic sequences: On the basis of the placeholder-name (e.g. PA1), it is possible to get the name of the variable which was passed when the
sequence was called.
Data groups: A channel name is determined from the channel index. This is a more powerful alternative to the function GrChanName?().

The first parameter must be a variable specified directly, without additional indexing (such as component-, event-index). With groups, specifying
the channel index is allowed.

Examples:
The following sequence function displays the data set passed to it in a free-floating curve window. The data set's name is displayed in the
header.

!ShowCurve(par)
 ; par: [ND, Reference]
 CwNewWindow(par, "show")
 CwNewChannel("append new axis", par)
 CwDisplaySet("header.count", 1)
 CwDisplaySet("header.text", Name?(par))

In a data group [input], all channels are enumerated. All channels whose maximum is greater than 2 are copied to a new data group [output].

limit = 2
count = GrChanNum?(input)
FOR i = 1 TO count
 IF max(input:[i]) > limit
 name = Name?(input:[i], 2, 1)
 output:<name> = input:[i]
 END
END

See also:
Comm?, MeasurementName?, GrChanName?, VarGetName?

imc FAMOS Func on Reference - 580 -

(c) 2024 imc Test & Measurement GmbH

NorthCorrection

Available in: Professional Edition and above

Correction of angle reading within a window, in order to allow sensible averaging of compass readings or angles/phases.

Declaration:
NorthCorrection (Data, Window) -> Result

Parameter:

Data input data

Window Width of the averaging interval expressed in x-units; rounded to whole multiples of the sampling interval

Result

Result Result

Description:
The function NorthCorrection() perfoms angle reading correction according to the addition method.

It prevents a discontinuity at due North, i.e. a jump from 360° to 0°, within the averaging interval. For values fluctuating around 360°, and which
thus can sometimes lie near 0°, an incorrect mean value of 180° is thus avoided.

The result of averaging may lie beyond the range of compass readings 0°...360° , e.g. 365°. The function PhaseMod() converts the result back to
the compass range (0°...360°), e.g. from 365° to 5°.

A condition for this procedure is that the wind direction does not change by more than 180 degrees within the averaging interval.

Any appropriate usage of NorthCorrection() will only be in conjunction with averaging or similar functions, and subsequent use of PhaseMod().

The input data are expressed in the unit Degrees and are typically in the value range -360 to 360 degrees or even somewhat higher.

The function adds/subtracts 360 degrees at the locations necessary.

The input data are equidistant.

Examples:
Calculation of the moving wind direction averaged over 10s.

NC = NorthCorrection(Channel, 10)
NC_Mean = MvMean(NC, 10, 10)
Wind = PhaseMod(NC_Mean)

See also:
PhaseMod, PhaseContinuous

imc FAMOS Func on Reference - 581 -

(c) 2024 imc Test & Measurement GmbH

NOT

Logical inversion

Declaration:
NOT (Operand) -> ZeroOrOne

Parameter:

Operand Single value or data set to be inverted.

ZeroOrOne

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description:
Logical inversion of a number. The result is 1 if the operand is 0. Otherwise the result is 0.

The function can be applied to single values and data sets. With data sets, the function is carried out data point by data point.

Examples:
The following two expressions are equivalent:

NOT(A) AND NOT(B)
NOT(A OR B)

Inversion of a digital data set

Result = NOT(DigChannel1)

See also:
AND, OR, XOR

imc FAMOS Func on Reference - 582 -

(c) 2024 imc Test & Measurement GmbH

OctA

1/3-octave analysis

Declaration:
OctA (Data, SvLowerFrequency, SvUpperFrequency) -> OctavData

Parameter:

Data The data set to be subjected to 1/3-octave analysis

SvLowerFrequency The lower endo of the frequency range

SvUpperFrequency The upper end of the frequency range

OctavData

OctavData Results of filtering

Description:
This function performs the common frequency-band analyses: 1/3-octave (third bands), 1/12 octave (semitone bands) and 1/24 octave
(quartertone bands). Frequency rating curves are also provided. All filtering is executed using digital filters - an FFT is not used.

The analysis is performed as follows:

Digital filters are created corresponding to the sampling rate and the desired bandwidth and frequency ranges.

The data set is filtered with these digital filters.

The filtered data are subjected to time-weighting. With time-weighting, the moving RMS-value based on exponential averaging is formed. The
time constant can be specified. The moving RMS-value is calculatedd as follows: The signal is squared, then exponentially averaged, then the
square root is taken. Squaring, averaging and subsequent root extraction are characteristic of forming the RMS. With a regular RMS value, an
evenly weighted average of all squares is calculated, while in this case for the moving RMS, time-weighting is performed. The exponential
averaging used causes a sort of "forgetting". It can be thought of as 1st order lowpass filtering.

The time-weighted is now resampled once again. Only every n-th value is processed. If rigorous averaging is used with the time weighting, it is
generally not necessary to use every value, since adjacent values are barely different from each other.

It is possible to normalize the results again by multiplying with a reference value. The refernece value is a value corresponding to 0 dB, for
example.

Next, frequency-weighting is performed. The weighting options are linear, A, B, C and D.

The function can return three different varieties of results:

The time plot of a frequency band is determined. You obtain a data set plotted over time.

Multiple frequency bands are determined, with averaging over the entire data set. You obtain a data set plotted over frequency.

Multiple frequency bands can be averaged over time. For example, when the frequencies f1, f2 and f3 are averaged over time, the resulting data
set has the following form: the values f1, f2 and f3 at the first time, then the values f1, f2, f3 at the second time, etc. The data set is scaled for the
first set of frequencies, (f1..f3). The time between frequency samples and the number of frequencies is not contained in the data set. This data
type is complicated to work with and thus reserved for special applications! Refer to the section on periodic comparison in the Curve Window
manual. This data set can only be displayed meaningfully using the periodic comparison representation. A single period can be extracted using
the mathematical functions. The data set can be thought of as a matrix, with each line as a period and all lines listed consecutively.

To convert acceleration data to velocity data or vice versa, the signal can be integrated or differentiated. It is usually convenient to perform these
operations at this point, since high frequency noise has already been removed by the band-pass filtering (making differentiation easier) and
since low-frequency drifts and offsets have been eliminated (simplifying integration). This is not described in the DIN standards, but we mention
it because it is of practical significance. Integration and differentiation are executed by expanding the digital band-pass filter with poles or zeros
at the frequency 0.

The time shift of the amplitude in a frequency band is generally a strongly varying signal, which must first be rectified and averaged. The method
used here is one for moving RMS calculation. The following time ratings can be selected:

=0 No time weighting

> 0 Time constant is defined by the user; it must be smaller or greater than the sampling rate.

-1 FAST The time constant is 0.125s.

-2
SLOW The time constant is 1s.

-3
Impulse

In increasing amplitude, the time constant is 35ms; in decreasing amplitude, the time constant is 1.5s. Impulse shaped signals are
recorded quickly and decaying signals slowly.

-4 Peak Extreme display for very short impulses, with guaranteed display of the peak value. In increasing amplitude, the time constant is zero
(can be achieved exactly in a computer, but only approximately in analog circuits). In decreasing amplitude, the time constant is 3s.

Because the sensitivity of the human ear is frequency-dependent, frequency weighting curves are available for "adapting" the measured data.

imc FAMOS Func on Reference - 583 -

(c) 2024 imc Test & Measurement GmbH

Below, the available frequncy weighting selections are listed. Linear weighting means no weighting. Frequencies between the ones specified are
linearly interpolated, meaning that the dB-value is interpolated linearly. beyond the end of the table, the last weighting is held constant.

Weighting types

Frequenz [Hz] A [dB] B [dB] C [dB] D [dB]
10 -70.4 -38.2 -14.3 -26.5

12.5 -63.4 -33.2 -11.2 -24.5

16 -56.7 -28.5 -8.5 -22.5

20 -50.5 -24.2 -6.2 -20.5

25 -44.7 -20.4 -4.4 -18.5

31.5 -39.4 -17.1 -3.0 -16.5

40 -34.6 -14.2 -2.0 -14.5

50 -30.2 -11.6 -1.3 -12.5

63 -26.2 -9.3 -0.8 -11.0

80 -22.5 -7.4 -0.5 -9.0

100 -19.1 -5.6 -0.3 -7.5

125 -16.1 -4.2 -0.2 -6.0

160 -13.4 -3.0 -0.1 -4.5

200 -10.9 -2.0 0.0 -3.0

250 -8.6 -1.3 0.0 -2.0

315 -6.6 -0.8 0.0 -1.0

400 -4.8 -0.5 0.0 -0.5

500 -3.2 -0.3 0.0 0.0

630 -1.9 -0.1 0.0 0.0

800 -0.8 0.0 0.0 0.0

1000 0.0 0.0 0.0 0.0

1250 0.6 0.0 0.0 2.0

1600 1.0 0.0 -0.1 5.5

2000 1.2 -0.1 -0.2 8.0

2500 1.3 -0.2 -0.3 10.0

3150 1.2 -0.4 -0.5 11.0

4000 1.0 -0.7 -0.8 11.0

5000 0.5 -1.2 -1.3 10.0

6300 -0.1 -1.9 -2.0 8.5

8000 -1.1 -2.9 -3.0 6.0

10000 -2.5 -4.3 -4.4 3.0

12500 -4.3 -6.1 -6.2 0.0

16000 -6.6 -8.4 -8.5 -4.0

20000 -9.3 -11.1 -11.2 -7.5
The following nominal pass ranges apply to octave-filters, where the numerical values of the frequencies repeated every 3 decades. Thus the list
can be extended forward and backward.

Octaves

Center frequency [Hz] Lower limit [Hz] Upper limit [Hz]

16 11.2 22.4

31.5 22.4 45

63 45 90

125 90 180

imc FAMOS Func on Reference - 584 -

(c) 2024 imc Test & Measurement GmbH

250 180 355

500 355 710

1000 710 1400

2000 1400 2800

4000 2800 5600

8000 5600 11200

16000 11200 22400
The following frequencies apply to 1/3-octaves, where the numerical values repeat every decade, so that the table can be extended forwards
and backwards.

1/3-octaves

Center frequency [Hz] Lower limit [Hz] Upper limit [Hz

1000 900 1120

1250 1120 1400

1600 1400 1800

2000 1800 2240

2500 2240 2800

3150 2800 3550

4000 3550 4500

5000 4500 5600

6300 5600 7100

8000 7100 9000

10000 9000 11200
The center frequencies of the 1/12- and 1/24-octave bands are found at the center frequencies of the 1/3-octave and at intermediate values
calculated logarithmically at regular intervals. Any additional frequency samples use the edges of the 1/3 octave range.

Example of 1/12-octaves:

1/12 octaves

Center frequency [Hz] Lower limit [Hz] Upper limit [Hz]

1000 974 1029

1058 1029 1089

1120 1089 1151

1183 1151 1216

1250 1216 1286

1323 1286 1361

1400 1361 1448

1497 1448 1547

..
Example of 1/24-octaves:

1/24 octaves

Center frequency [Hz] Lower limit [Hz] Upper limit [Hz]

1000 987 1014

1029 1014 1043

1058 1043 1073

1089 1073 1104

1120 1104 1135

1151 1135 1167

1183 1167 1200

imc FAMOS Func on Reference - 585 -

(c) 2024 imc Test & Measurement GmbH

1216 1200 1233

1250 1233 1268

1286 1268 1304

1323 1304 1342

..
When data sets are created in the frequency range, the x-axis (frequency) is scaled in a particular way. The frequency bands are at logarithmic
distances, so that it is convenient to lable the x-axis with the logarithm of the frequency. When displaying frequency data sets in curve windows,
you can use "1/3-octave labeling" for the x-axis. The logarithm is then expanded and the frequencies are written along the axis in accordance
with DIN. The following table shows how the x-scaling of the data is related to the frequency bands, based on the following rule: calculate the log
base ten of the center frequency and then round this value.

x-scaling

x-scaling Center-frequency [Hz]
.. ..

-3 0.5

-2 0.63

-1 0.8

0 1

1 1.25

2 1.6

3 2

4 2.5

5 3.15

6 4

7 5

8 6.3

9 8

10 10

11 12.5

.. ..

20 100

30 1000

40 10000

41 12500

42 16000

43 20000

.. ..
The 1/3-octaves are located at the x-positions 0, 1, 2..., the octaves at the positions 0, 3, 6, 9, 12..., 1/12-octaves at the positions 0, 0.25, 0.5, 0.75, 1,
1.25..., and 1/24-octaves are located at all multiples of 1/8.

This means the various bandwidths are expressed as multiples of a 1/3-octave. Accordingly, for frequency-scaling, the Delta-X of the results data
set is set to the following values:

Bandwidth Delta-X
Octave 3

1/3-octave 1

1/12 octave 0.25

1/24 octave 0.125
The function OctA() itself has only 3 arguments. All other settings are made using the function OctI(). The arguments belonging to the function
OctI() are explained here also.

Parameter Meaning

imc FAMOS Func on Reference - 586 -

(c) 2024 imc Test & Measurement GmbH

FrequencyLower

One end of the frequency range of interest. if a value of zero is specified, the value is set to [FrequencyTop]. You always
specify the center of a frequency range. The center frequency does not need to be met exactly. But it is important that the
frequency be within the pass-through range of the desired band. Then the exact frequency is used automatically. At least
one of the two specified frequencies must be above zero. No values below zero may be specified.

FrequencyUpper Like [FrequencyLower], but the other end of the frequency range

...Integrations
Amount of integrations to perform 0 No integration 1 One integration 2 Double integration -1 First derivative -2 Second
derivative For instance, if you have a measurement from an accelerometer but you want to know the travel distance, select
double integration.

...TimeWeight Averaging duration, time weighting > 0 your averaging duration 0 no averaging -1 FAST -2 SLOW -3 Impulse -4 Peak

...Reduction

Reduction factor. The amount of data points in the result is reduced from the source data point count by this factor. A factor
of 2 meanss that every 2nd value is adopted. A factor of 1 means that each value is adopted, without any reduction. A
reduction factor of 0 indicates that the factor is to be the same as the length of the source data set, thus generating exactly
one resulting value. For a reduction factor = 0, an RMS-value for the entire data set is generated. This RMS-value is the true
(equally-weighted) RMS-value, as is also calculated by the mathematics function RMS(). The constant specified for the time
weighting is ignored.

...Width Width of frequency bands -1 octave -2 1/3-octave -3 1/12-octave -4 1/24-octave

...FreqWeight Frequency weighting 0 linear 1 A 2 B 3 C 4 D

...reference Reference value for normalization; multiplication by this value is performed. For a reference value of zero, no normalization
is performed.

The algorithms conform to:

DIN 45651, Octave filters for electro-acoustical measurements
DIN 45652, third-octave filters for electro-acoustical measurements
DIN IEC 651, Sound level meters
Filtering is performed with 8th order band-pass filters with Butterworth characteristic and meet the requirements of the standards DIN EN
61260 and IEC 1260, Class 0.

Attention, time constant!

Please note that applying calculation of moving RMS, the effect is different from using simple a low-pass. The time constant cannot be read
directly from a graph of the filtered data because the root of the signal is computed after multiplication with the time constant. The time
constant can however be made visible by squaring the results!

Sampling rates

++++
When the function performs filtering, a digital filter is used. This digital filter's cutoff frequencies may only be less than half of the sampling
frequency. Higher cutoff frequencies are not possible. The frequencies of the band edges are relevant, not the center frequncies.

Filtering precision

>
The design of the digital filters used for the bandpass is only good for frequeciessignificantly less than half of the sampling frequency. To
genuinely benefit from the band-pass filter, this means that the sampling frequency should be significantly larger than twice the highest
frequency to be evaluated.

Moving RMS value

The averaging time can be larger or smaller than the sampling rate. The calculation is performed with a zero-th order approximation (stair-step-
shaped signal). With a reduction factor of zero, the equally-weighted true RMS is calculated (see RMS function). This is the best reflection of the
entire data set's spectrum.

Initial transient

When applying band-pass filters, remember the start-up signal, which can be approximated by calculating 1/frequency difference. The first
values of the resulting data set can be ignored. Start-up effects are not specific to imc FAMOS or to digital filters, they apply to filters in general.

Range of values

Please note the range of values permitted when selecting a reference value. Any values in the resulting data set outside the valid range are set
to zero.

Unit

The x-unit of the source data set is expected in seconds. Time information specified for the function is expected in the same unit. The frequency
specified is expected to be expressed in Hz. The result always has the y-unit of the source data, even in integrations. The x-unit of the source
data set is used for a time display; for a frequency display, "Thirds" is used. This unit indicates that the number displayed counts the number of
1/3 octaves (1/3 octave number). A display with proper labeling can be selected in the Curve Window.

Y-scaling

The calculated values are always specified as linear. Select the mathematical function dB or the relevant display mode in the Curve Window to
activate a display in dB.

Reduction

imc FAMOS Func on Reference - 587 -

(c) 2024 imc Test & Measurement GmbH

Note that during data reduction, the time-wighed data set is merely resampled. With a reduction factor of 3 for example, only the third, sixth,
ninth, etc. are actually saved, while the first and second are discarded. For this reason, you should not set the samling significantly slower than
the time constant. 3 samples per time constant are recommended; any more would lie approximately in line with these. A reductions factor of
zero means that the equally-weighted true RMS is calculated for all data - the time constant for the time wighting is ignored.

Examples:
A test data set is obtained from the sample data set SLOPE. Here, the 1/3-octave with the center frequency 10Hz is plotted over time. Thus the
intention is to determine how the frequency components change in the range 10Hz over time.

First the data set b is created by interpolation and changing the sampling rate, giving it a duration of approximately 4 s and a sampling rate of 1
ms.

b = ipol((xdel(slope, 0.01), 10)

The frequency band analysis is now initialized without integration, no time wieghting and no data reduction. A third-octave filtering is performed
without frequency weighting and the data are not normalized. This is the most simple settings configuration of the function Octl(). Next, the
OctA function is used to create the data set t_10, which displays the band-pass filtered signal at the 1/3 octave 10Hz.

OctI(0, 0, 1, -2, 0, 0, 0)
t_10 = OctA(b, 10.0, 0)

To view the amplitudes of this signal over time, rectification is necessary. This is performed using time weighting. This is performed first using a
very small time constant (=1e-20 s), then with the standard FAST time constant. Using small time constants correspond to rectifying the signal
conventionally.

OctI(0, 1e-20, 1, -2, 0, 0, 0)
tgl_10 = OctA(b, 10.0, 0)
OctI(0, -1, 1, -2, 0, 0, 0)
tf_10 = OctA(b, 10.0, 0)

With averaging, amplitude trend is much more apparent:

Now several third-octave bands are determined simultaneously (once) for the entire data set. This time, the reduction value is set to 0, for which
reason the time wighting is effectively deactivated. The 1/3-octave spectrum is to be determined for the band of 1 Hz to 100 Hz. The function
returns the amplitudes of the specified third-octave calculated from or averaged over the entire data set, since for a reduction factor of 0, one
value pwer data set length is generated.

OctI(0, 0, 0, -2, 0, 0, 0)
tz = OctA(b, 1, 100)

In this graphical display, the x-axis is labeled in 1/3-octaves and octaves. This display can be selected via the curve window's Display menu and by
setitng the x-axis accordingly.

Additionally, the y-axis is scaled in dB and step display mode is selected.

Now the most complicated procedure is applied. All frequencies from the specified third band (1Hz to 100Hz) are determined over time and
displayed in a waterfall diagram. A reduction factor of 100 and the FAST time wighting are to be used - all other settings are the same as in the
previous example. The OctA function creates a data set which must be processed and displayed in a very specific way.

OctI(0, -1, 100, -2, 0, 0, 0)
tz_21 = OctA(b, 1, 100)

imc FAMOS Func on Reference - 588 -

(c) 2024 imc Test & Measurement GmbH

To display the data set as a waterfall diagram, first display the data set in a curve window, then select waterfall and period comparison display
modes and third-octave labeling for the x-axis.

A period of 21 is specified for the selection of further curves. This is the number of 1/3 octaves which lie between 1Hz and 100Hz. The result of
the OctA function can be thought of as a multi-period data set. The number of periods to be compared can be specified, in this example, there
are 21 (this number 21 has nothing to do with the number of 1/3 octaves, it is the quotient of (2sec. / 0.1s + 1)). With the sampling rate of 1 ms for
the source data set and a reduction factor of 100, a complete 1/3 octave spectrum is created every 0.1s. Use the options for 3D-display to scale the
z-axis accordingly with dz=0.1s. Thus, the z-axis is labeled from 0s to 2s.

Now individual spectra, namely the first three, are excised from the data set, which can be regarded as a matrix. For this purpose, the function
Perio() is used. Here, too the length of a spectrum (21 1/3-octaves) must be specified.

t0 = Perio(tz_21, 21, 0)
t1 = Perio(tz_21, 21, 1)
t2 = Perio(tz_21, 21, 2)

See also:
OctI, SpecThirds, SpecThirds_1, OtrRpmThirds, ExpoRMS, ABCRating

imc FAMOS Func on Reference - 589 -

(c) 2024 imc Test & Measurement GmbH

OctI

Initialization of the 1/3-octave analysis function OctA().

Declaration:
OctI (SvIntegrations, SvTimeRating, SvReduction, SvWidth, SvFrequencyRating, SvNorm, Zero)

Parameter:

SvIntegrations Number of intgrations to perform

0 : No integration (default)

1 : One integration

2 : Double integral

-1 : First derivative

-2 : Second derivative

SvTimeRating Averaging duration, time weighting

>0 : Free averaging duration

0 : No averaging

-1 : FAST (default)

-2 : SLOW

-3 : Impulse

-4 : Peak

SvReduction Reduction factor (default = 0)

SvWidth Width of the frequency bands

-1 : Octave

-2 : 1/3-octave (default)

-3 : 1/12 octave

-4 : 1/24 octave

SvFrequencyRating Frequency weighting

0 : Linear (default)

1 : A

2 : B

3 : C

4 : D

SvNorm Reference value for normalization; multiplication by this value is performed. The default is 0 - no normalization.

Zero Reserved parameter; set to 0.

Description:
This function initializes a 1/3-octave filter analysis. Several parameters can be initialized at once, which later do not need to be entered again
when repeating the use of the 1/3-octave analysis.

The effects of the parameters are described in detail in conjunction with the 1/3-octave analysis function OctA().

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

See also:
OctA, SpecThirds, SpecThirds_1, OtrRpmThirds

imc FAMOS Func on Reference - 590 -

(c) 2024 imc Test & Measurement GmbH

OdsGetLastErrorCode

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Requests the error code of the ODS function error which occurred most recently.

Declaration:
OdsGetLastErrorCode () -> EwError

Parameter:

EwError

EwError Error code

Description:
Calling this function deletes the internal error record.

See also:
OdsGetLastErrorTxt

imc FAMOS Func on Reference - 591 -

(c) 2024 imc Test & Measurement GmbH

OdsGetLastErrorTxt

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Requests the error description of the ODS function error which occurred most recently.

Declaration:
OdsGetLastErrorTxt () -> TxError

Parameter:

TxError

TxError Error text

Description:
Calling this function deletes the internal error record.

See also:
OdsGetLastErrorCode

imc FAMOS Func on Reference - 592 -

(c) 2024 imc Test & Measurement GmbH

OdsIEAddAttribute

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Adds a numeric instance attribute.

Declaration:
OdsIEAddAttribute (InstanceID, TxName, Data, Zero) -> Status

Parameter:

InstanceID ID of the instance element

TxName Name of the new attribute.

Data Data set or single value with the content of the new attribute.

Zero Reserved parameter. Always set to 0.

Status

Status Function status

0 : Error

1 : Function executed successfully.

Description:
A new attribute is added to the specified instance element.

Such a locally defined attribute (also called an instance attribute) is private for the instance element and not defined by the application model.

The ODS data type of the new attribute is automatically determined from the data type of the data set which is passed in.

In case of error, a 0 is returned; if the function is successful, a 1. The error cause can be determined using one of the functions
OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Examples:
Two private attributes are assigned to each instance element which is currently selected in the ODS-Browser's tree diagram.

SessionID = OdsPluginSessionConnect(0)
IF SessionID <> 0
 IDList = OdsPluginListSelItems(0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 OdsIEAddAttribute(IDList[i], "Status", 1, 0)
 OdsIEAddAttributeTxt(IDList[i], "Inspector", "J. Doe", 0)
 i = i+1
 END
END

See also:
OdsIEGetAttribute, OdsIESetAttributeTxt, OdsIEAddAttributeTxt

imc FAMOS Func on Reference - 593 -

(c) 2024 imc Test & Measurement GmbH

OdsIEAddAttributeTxt

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Adds an instance attribut (text).

Declaration:
OdsIEAddAttributeTxt (InstanceID, TxName, TxContent, Zero) -> Status

Parameter:

InstanceID ID of the instance element

TxName Name of the new attribute.

TxContent Content of the new attribute.

Zero Reserved parameter. Always set to 0.

Status

Status Function success

1 : Function executed successfully

0 : Error.

Description:
A new text attribute is added to the specified instance element.

Such a locally defined attribute (also called an instance attribute) is private for the instance element and not defined by the application model.

The ODS data type of the new attribute is [DT_STRING].

In case of error, a 0 is returned; if the function is successful, a 1. The error cause can be determined using one of the functions
OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Examples:
Two private attributes are assigned to each instance element which is currently selected in the ODS-Browser's tree diagram.

SessionID = OdsPluginSessionConnect(0)
IF SessionID <> 0
 IDList = OdsPluginListSelItems(0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 OdsIEAddAttribute(IDList[i], "Status", 1, 0)
 OdsIEAddAttributeTxt(IDList[i], "Inspector", "J. Doe", 0)
 i = i+1
 END
END

See also:
OdsIEGetAttribute, OdsIESetAttributeTxt, OdsIEAddAttributeTxt

imc FAMOS Func on Reference - 594 -

(c) 2024 imc Test & Measurement GmbH

OdsIEBuildVarName

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

A valid FAMOS variable name is derived from an instance element's ASAM-path.

Declaration:
OdsIEBuildVarName (InstanceID, Option) -> TxVarName

Parameter:

InstanceID ID of the instance element

Option Option for forming a name.

0 : Name of the instance element only

1 : Prefixes the name of the parent element.

2 : Appends the name of the parent element.

TxVarName

TxVarName Valid FAMOS variable name.

Description:
A valid FAMOS variable name is derived from a given instance element. For this purpose, the name of the instance element (attribute "name" in
the ODS base model) and further ASAM-path elements which depend on the option (2nd parameter) are given consideration.

Invalid characters in the resulting name are replaced by an underline '_'.

In case of error, an empty string is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or
OdsGetLastErrorCode().

Examples:
A connection to an ODS-server named "ODSTest" is set up and all measurement quantities whose names begin with "Channel1_" are imported to
FAMOS. The FAMOS variable name is formed from the name of measurement to which it belongs and the channel name.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurementQuantity" ,"Channel1_*", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxVarName = OdsIEBuildVarName(IDList[i], 1)
 <TxVarName> = OdsIEGetChannel(IDList[i], "", 0)
 i = i+1
 END
 OdsSessionClose(0)
END

See also:
OdsIEGetChannel, OdsIEGetMeasurement

imc FAMOS Func on Reference - 595 -

(c) 2024 imc Test & Measurement GmbH

OdsIECreateElement

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Creates a new instance element

Declaration:
OdsIECreateElement (Typ, InstanceID, Option, Zero) -> IDNewInstance

Parameter:

Typ ODS type designator for the instance to be created.

InstanceID ID of the instance element used. Its meaning depends on the next parameter.

Option Relation of the new instance to [InstanceID].

0 : The new instance element is created as the child of [InstanceID].

1 : The new instance-element is created as a copy of [InstanceID]. Both elements then have the same father.

2 : The new instance element is a TopLevel-element, so it has no father. [InstanceID] must be 0.

Zero Reserved parameter; always set to 0.

IDNewInstance

IDNewInstance If successful, ID of the newly created instance, else 0.

Description:
The new instance's attributes are initialized with default values.

The function can not be used to create instances of the type "AoMeasurementQuantity", "AoLocalColumn" or "AoSubMatrix". Use the function
OdsIEImportData() for this purpose.

Examples:
A new TopLevel-instance of the type "AoTest" is created and various attributes are set.

SessionID = OdsSessionCreate("TEST", "","", 0)
IF SessionID > 0
 id = OdsIECreateElement("#AoTest", 0, 2, 0)
 IF id > 0
 OdsIESetAttributeTxt(id, "#name", "Test_123", 0)
 OdsIESetAttributeTxt(id, "#description", "Test only", 0)
 OdsIESetAttribute(id, "Charge", 1205, 0)
 OdsIESetAttribute(id, "#version_date", ZeitSystem?(), 0)
 OdsSessionClose(0)
 END
END

See also:
OdsIEDeleteElement, OdsIEImportData

imc FAMOS Func on Reference - 596 -

(c) 2024 imc Test & Measurement GmbH

OdsIEDeleteElement

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Deletes an instance element

Declaration:
OdsIEDeleteElement (InstanceID, Zero) -> Status

Parameter:

InstanceID ID of the instance element to be deleted.

Zero Reserved parameter. Always set to 0.

Status

Status Success of the function

0 : Error

1 : Function performed successfully.

Description:
Deletion of instances cannot be reversed, therefore use this command with all due caution.

Deleting an instance element deletes all of the element's children, in other words all the elements in the branch of the tree diagram to which it
belongs.

No check is made of whether deleting the instances causes the data storage to become inconsistent. Therefore it can occur that other instances
contain relations which refer to the instances deleted here. These then become invalid, of course.

Examples:
All instances of the type "AoTest" whose names start with "T_" are listed.

Each instance found is deleted (after a confirmation by the user).

SessionID = OdsSessionCreate("Test", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoTest", "T_*", 0)
 i = 1
 Count = Leng?(IDList)
 WHILE i >= Count
 TxName = OdsIEGetAttributeTxt(IDList[i], "#name", 0)
 IF BoxMessage("Delete instance?", TxName, "?4") = 1
 OdsIEDeleteElement(IDList[i], 0)
 END
 i = i+1
 END
 OdsSessionClose(0)
END

See also:
OdsIECreateElement

imc FAMOS Func on Reference - 597 -

(c) 2024 imc Test & Measurement GmbH

OdsIEGetAttribute

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Inquires the value of an instance element's numerical attribute.

Declaration:
OdsIEGetAttribute (InstanceID, TxAttributeName, Zero) -> Values

Parameter:

InstanceID ID of the instance element

TxAttributeName Attribute name. Either the corresponding name according to the data basis' application model or, if it exists, the name
according to the ODS base model.

Zero Reserved parameter. Always set to 0.

Values

Values Value(s) of the specified attribute.

Description:
As the attribute designator (2nd parameter), either the name according to the application model or, alternatively, the name from the ODS base
model can be entered. For base model names, a "#" must be prefixed to the actual name.

The attribute's contents must be convertible either to a numerical value or to a vector of numerical values.

If the attribute is a statement of time/date (data type DT_DATE), it is converted to the internal FAMOS time format (double).

In case of error, an empty data set (length = 0) is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or
OdsGetLastErrorCode().

Examples:
Every ODS-element must, as a obligatory attribut, possess a unique ID; this attribute's name in the base model is "id". A connection to an ODS-
server named "ODSTest" is opened and the ID of a measurement specified by its ASAM-path is read out.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 InstanceID = OdsIEListByAsamPath("/[Test]T_2;/[SubTest]SV_5;/[Measurement]N1_14;", 0)
 IF InstanceID > 0
 ID = OdsIEGetAttribute(InstanceID, "#id", 0)
 ; Supposing the corresponding attribute name in the
 ; application model is "MeasurementID", then the call
 ; ID = OdsIEGetAttribute(InstanceID, "MeasurementID", 0)
 ; is equivalent
 END
 OdsSessionClose(0)
END

See also:
OdsIEGetAttributes, OdsIEGetAttributeTxt, OdsIEGetPropertyTxt

imc FAMOS Func on Reference - 598 -

(c) 2024 imc Test & Measurement GmbH

OdsIEGetAttributes

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Requests all of an instance element's attributes

Declaration:
OdsIEGetAttributes (InstanceID, Zero) -> GrAttribute

Parameter:

InstanceID ID of the instance element

Zero Reserved parameter. Always set to 0.

GrAttribute

GrAttribute Group of all attributes of an instance element.

Description:
The function reads out all of a given instance element's attributes returns them in the form of a data group. The data group's channels contain the
name of the respective attributes; the respective resulting data type (data set or text) is determined automatically according to the attribute's
ODS data type.

In case of error, an empty data group is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or
OdsGetLastErrorCode().

Examples:
A connection to the ODS-server "ODSTest" is opened and all measurements whose names begin with "Channel1_" are imported to FAMOS. One
group per measurement group is created whose name is formed from the same of the measurement to which it belongs and from the name of
the measurement group. Each group contains the attributes of the measurement and the actual measured data.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurementQuantity" ,"Channel1_*", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxVarName = OdsIEBuildVarName(IDList[i], 1)
 <TxVarName> = OdsIEGetAttributes(IDList[i], 0)
 <TxVarName>:Daten = OdsIEGetChannel(IDList[i], "", 0)
 i = i+1
 END
 OdsSessionClose(0)
END

See also:
OdsIEGetAttribute, OdsIEGetAttributeTxt, OdsIEGetPropertyTxt, OdsIEGetChannel

imc FAMOS Func on Reference - 599 -

(c) 2024 imc Test & Measurement GmbH

OdsIEGetAttributeTxt

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Requests the contents (as text) of an instance element attribute.

Declaration:
OdsIEGetAttributeTxt (InstaneID, TxAttributeName, Zero) -> TxContents

Parameter:

InstaneID ID of the instance element

TxAttributeName Name of the attribute to find

Zero Reserved parameter. Always set to 0.

TxContents

TxContents Contents of the specified attribute

Description:
As the attribute designator (2nd parameter), either the name according to the application model or, alternatively, the name from the ODS base
model can be entered. For base model names, a "#" must be prefixed to the actual name.

The attribute's content must be convertible to text, so it must not contain, for example, a vector of numeric values.

In case of error, an empty text is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or
OdsGetLastErrorCode().

Examples:
A connection to an ODS-server named "ODSTest" is opened and the names and starting dates of all messages [AoMeasurement] it contains are
listed.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurement" ,"", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxName = OdsIEGetAttributeTxt(IDList[i], "#name", 0)
 TxDate = OdsIEGetAttributeTxt(IDList[i], "#measurement_begin", 0)
 BoxOutput(TxName + " " + TxDate, LEER, "", 1)
 i = i+1
 END
 OdsSessionClose(0)
END

See also:
OdsIEGetAttribute, OdsIEGetAttributes, OdsIEGetPropertyTxt

imc FAMOS Func on Reference - 600 -

(c) 2024 imc Test & Measurement GmbH

OdsIEGetChannel

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

For a given measurement quantity, the measured data are read out and converted to a FAMOS data set.

Declaration:
OdsIEGetChannel (InstanceID, TxChannelName, Zero) -> Measured data

Parameter:

InstanceID ID of the instance element whose measured data are to be read out. The instance must be either of the type Measurement
[AoMeasurement] or Measurement Quantity [AoMeasurementQuantity].

TxChannelName If the first parameter refers to a measurement, the name of the desired measurement quantity must be entered here. If the
first parameter refers directly to a measurement quantity, an empty text must be passed in.

Zero Reserved parameter. Always set to 0.

Measured data

Measured data Data set with the measured data from the selected measurement quantity.

Description:
The function reads out the measured data for a given measurement quantity [AoMeasurementQuantity].

The instance specified in the first parameter must belong to one of the following types:

Measurement [AoMeasurement]: The first parameter determines the measurement, and the channel select from it is determined by the name
specified in the 2nd parameter.

Measurement quantity [AoMeasurementQuantity]: The first parameter directly determines the desired measurement quantity. Then an empty
text is passed in for the 2nd parameter.

In case of error, an empty data set (length = 0) is returned. The error cause can then be determined using one of the functions
OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Examples:
A connection to the ODS-server "ODSTest" is set up. Then all measurements are found whose names begin with "TEST2_". All channels belonging
to these measurements and whose names begin with "T2" are read out.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurement" ,"TEST2_*", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 chan = OdsIEGetChannel(IDList[i],"T2", 1, 0)
 TxName = OdsIEBuildVarName(IDList[i],0)
 TxName = TxName + "_T2"
 RENAME chan <TxName>
 END
 OdsSessionClose(0)
END

And, in order to read out all measurement quantities whose names begin with "T2", regardless of what measurement they belong to:

...
 IDList = OdsIEListByType("#AoMeasurementQuantity" ,"T2", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 chan = OdsIEGetChannel(IDList[i],"", 1, 0)
 TxName = OdsIEBuildVarName(IDList[i],1)
 RENAME chan <TxName>
 END
...

See also:
OdsIEGetMeasurement

imc FAMOS Func on Reference - 601 -

(c) 2024 imc Test & Measurement GmbH

OdsIEGetMeasurement

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

The channels contained in a measurement are read out and converted to a FAMOS data group.

Declaration:
OdsIEGetMeasurement (InstanceID, TxNamePattern, AttributeOption, Null) -> GrMeasurement

Parameter:

InstanceID InstanceID of the measurement. Type: AoMeasurement

TxNamePattern Pattern for channel names

AttributeOption Transfer the measurement's attributes, too?

0 : No attributes

1 : All attributes

Null Reserved parameter. Always set to 0.

GrMeasurement

GrMeasurement Group of all channels specified and measurement attributes, if appropriate.

Description:
The function reads out the measurement channels [AoMeasurementQuantity] of the measurements selected and stores them as a data group.
The instanceID passed in must refer to an instance element of the type measurement [AoMeasurement]. Optionally, measurement's attributes
are read out too.

The 2nd parameter (TxNamePattern) can be used to limit the channels to be included by entering a search pattern to narrow down the search.
The usual wildcard symbols '*' and '?' are allowed. If all channels are to be read, enter here either an empty text or "*".

In the case of error, an empty group is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or
OdsGetLastErrorCode().

Examples:
A connection to the ODS-server "ODSTest" is set up. Then all measurements are found whose names begin with "TEST2_". All channels belonging
to these measurements and whose names begin with "T2" are read out.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurement" ,"TEST2_*", 0)
 Count = Leng?(IDList)
 i = 1
 WHILEE i <= Count
 GrMeas = OdsIEGetMeasurement(IDList[i],"T2*", 1, 0)
 TxName = OdsIEBuildVarName(IDList[i],0)
 RENAME GrMeas <TxName>
 END
 OdsSessionClose(0)
END

See also:
OdsIEGetChannel

imc FAMOS Func on Reference - 602 -

(c) 2024 imc Test & Measurement GmbH

OdsIEGetPropertyTxt

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Queries pre-defined properties of an instance element.

Declaration:
OdsIEGetPropertyTxt (InstanceID, TxName, Zero) -> TxPropertyValue

Parameter:

InstanceID ID of the instance element

TxName Selection of the property to find.

"Path" : Complete Asam path of the element.

"AppName" : Name of the element in the application model.

"BaseName" : Name of the element in the ODS base model.

"ParentName" : Name of ther parent instance.

Zero Reserved parameter. Always set to 0.

TxPropertyValue

TxPropertyValue Queried property

Description:
Along with the attributes defined by the base and application models, this instance element also possesses certain permanent properties which
are mainly derived from the element's type and its position in the data source's ODS tree structure.

These include, for example, the instance element's unique ASAM-path, as well as the name of the corresponding element in the application and
base model.

In case of error, an empty text is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or
OdsGetLastErrorCode().

Examples:
A connection to the ODS-server "ODSTest" is set up and the ASAM-pats of all measurements [AoMeasurement] it contains whose names start
with "Test2_" are listed.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurement" ,"TEST2_*", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxPath = OdsIEGetPropertyTxt(IDList[i], "Path", 0)
 BoxOutput(TxPath, EMPTY, "", 1)
 ; The following call
 ; TxBaseName = OdsIEGetPropertyTxt(IDList[i], "BaseName", 0)
 ; always returns "AoMeasurement".
 i = i+1
 END
 OdsSessionClose(0)
END

See also:
OdsIEGetAttribute, OdsIEGetAttributes, OdsIEGetAttributeTxt

imc FAMOS Func on Reference - 603 -

(c) 2024 imc Test & Measurement GmbH

OdsIEImportData

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Adds measured data to the ODS data storage

Declaration:
OdsIEImportData (InstanceID, Data, Zero) -> IDNewInstance

Parameter:

InstanceID ID of the instance element to which the data are to be added. Depending on the data type (data set or data group), the
instance must be either of the type Measurement [AoMeasurement] or Test [AoTest/AoSubTest].

Data Data set or data group with the measured data.

Zero Reserved parameter. Always set to 0.

IDNewInstance

IDNewInstance ID of the newly created instance, if successful, else 0.

Description:
The measured data passed in as parameters are accepted in the data storage as a new instance.

Either a single data set or a data group can be imported.

[Data] is of the type Normal Waveform: The data are added to an existing measurement as a new channel. [InstanceID] must refer to an element
of the type Measurement [AoMeasurement], and the newly created instance is of the type [AoMeasurementQuantity].

[Data] is of the type Data Group: the data are added to an existing test as a new measurement. [InstanceID] must refer to an element of the type
Test [AoTest or AoSubTest], and the newly created instance is of the type [AoMeasurement].

Examples:
In the data storage, a new measurement named "M_212" is created as the child of the sub-test "SV7". The two FAMOS data sets "SO21" and
"SO22" are imported to this measurement as measurement quantities:

Option 1:

SessionID = OdsSessionCreate("Test", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoSubTest", "SV_7", 0)
 IF leng?(IDList) = 1
 idTest = IDList[1]
 idmea = OdsIECreateElement("#AoMeasurement", idTest, 0, 0)
 ok = OdsIESetAttributeTxt(idmea, "#name", "M_212", 0)
 idmeq1 = OdsIEImportData(idmea, SO21, 0)
 idmeq2 = OdsIEImportData(idmea, SO22, 0)
 END
 OdsSessionClose(0)
END

Option 2:

SessionID = OdsSessionCreate("Test", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoSubTest", "SV_7", 0)
 IF leng?(IDList) = 1
 M_212:SO21 = SO21
 M_212:SO22 = SO22
 idmea = OdsIEImportData(idTest, M_212, 0)
 END
 OdsSessionClose(0)
END

See also:
OdsIEGetMeasurement, OdsIEGetChannel

imc FAMOS Func on Reference - 604 -

(c) 2024 imc Test & Measurement GmbH

OdsIEListByAsamPath

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Determines the instance element for a given ASAM path.

Declaration:
OdsIEListByAsamPath (TxAsamPath, Zero) -> InstanceID

Parameter:

TxAsamPath Complete ASAM path for the desired instance element.

Zero Reserved parameter. Always set to 0.

InstanceID

InstanceID ID of the instance element in case of success. This ID be supplied as a parameter for all instance-specific Kit functions.

> 0 : ID of the instance element

0 : Error

Description:
The ASAM path describes the position of the instance within the hierarchically-structured data storage and is unique for each instance. In terms
of function and structure, it is approximately comparable to the path for a file in a file system.

Each partial element of the ASAM path is defined by the name of the describing application element (in square brackets), the name of the
instance and, if available, the instance version, e.g.:

"/[Test]T_2;/[SubTest]SV_5;/[Measurement]N1_14;"

In case of error, 0 is returned. The error cause can be found using one of the functions OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Examples:
A connection to the ODS server named "ODSTest" is opened and the measurement data specified by their ASAM-path are read into FAMOS.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 InstanceID = OdsIEListByAsamPath("/[Test]T_2;/[SubTest]SV_5;/[Measurement]N1_14;", 0)
 IF InstanceID > 0
 TxVarName = OdsIEBuildVarName(InstanceID, 0)
 <TxVarName> = OdsIEGetChannel(InstanceID, "", 0)
 END
 OdsSessionClose(0)
END

See also:
OdsIEListByType, OdsIEListChildren, OdsPluginListSelItems

imc FAMOS Func on Reference - 605 -

(c) 2024 imc Test & Measurement GmbH

OdsIEListByType

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Determines all instance elements of a given type. The search can be limited by specifying a name pattern (using wildcard symbols).

Declaration:
OdsIEListByType (TxOdsType, TxNamePattern, Zero) -> InstanceElements

Parameter:

TxOdsType Designation of an ODS element type. The type name can be derived from either the data source's application model or the
ODS base model.

TxNamePattern All instances whose names match the pattern (using wildcard symbols) are returned

Zero Reserved parameter. Always set to 0. Exception for Namepattern ="#", see below.

InstanceElements

InstanceElements IDs of all instance elements which correspond to the specifications.

Description:
As the type-designator (1st parameter), either the name according to the application model or, alternatively, the name from the ODS base model
can be entered. For base model names, a "#" must be prefixed to the actual name.

In the name pattern (2nd parameter), the wildcard characters "?" and "*" are used in the usual way ("?" stands for any one character, "*" for any
string of characters).

To find every instance of the desired type independently, enter here an empty text or "*".

Special case: If the 2nd parameter has the content "#", then the 3rd parameter is interpreted as ODS instance id. This corresponds to the value of
the base attribute "id" of the instance element. The result has than either the length 0 (element not found) or 1.

The data set returned contains the IDs of all instance elements which correspond to specifications. To determine the number of elements found,
Leng?() can be used. To access a particular element, use the '[]' operator (see example).

In case of error, an empty data set (length = 0) is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or
OdsGetLastErrorCode().

Examples:
A connection to the ODS-server named "ODSTest" is opened and all measurement quantities whose name starts with "Channel1_" are imported
to FAMOS.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurementQuantity" ,"Channel1_*", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxVarName = OdsIEBuildVarName(IDList[i], 1)
 <TxVarName> = OdsIEGetChannel(IDList[i], "", 0)
 i = i+1
 END
 OdsSessionClose(0)
END

See also:
OdsIEListByAsamPath, OdsIEListChildren, OdsPluginListSelItems

imc FAMOS Func on Reference - 606 -

(c) 2024 imc Test & Measurement GmbH

OdsIEListChildren

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Determines the direct child-instances (descendants) of an instance element.

Declaration:
OdsIEListChildren (InstanceID, TxOdsType, TxNamePattern, Zero) -> InstanceElements

Parameter:

InstanceID ID of the instance-element whose children are to be determined.

TxOdsType Designation of an ODS element type. Only instances of the specified type are returned. The type name can be derived
either from the data source's application model or from the ODS base model. Empty string if the type doesn't matter.

TxNamePattern Only instances whose name corresponds to the pattern entered here (using wildcard symbols) are returned. Empty text or
"*", if the name doesn't matter.

Zero Reserved parameter. Always set to 0.

InstanceElements

InstanceElements IDs of all instance elements which match the specifications.

Description:
As the type-designator (2nd parameter), either the name according to the application model or, alternatively, the name from the ODS base
model can be entered. For base model names, a "#" must be prefixed to the actual name.

If all children are to be listed regardless of the type, an empty string can be entered here.

In the name pattern (3rd parameter), the wildcard symbols '?' and '*' can be used in the usual way ('?' stands for any one character, '*' for any
string of characters).

To find all instances regardless of their name, enter here an empty string or "*".

The data set returned contains the IDs of all instance elementswhich correspond to the specifications. To determine the number of element
found, Leng?() can be used; and the operator '[]' can be used to access a particular element.

In case of error, an empty data set (length = 0) is returned. The error cause can be determined using either of the functions OdsGetLastErrorTxt()
or OdsGetLastErrorCode().

Examples:
An ODS-server named "ODSTest" is opened and a search is done from all measurements whose name begins with "TestA_". For each
measurement found, the names of the measurement quantities it contains are listed.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurement, "TestA_*", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i<= Count
 TxName = OdsIEGetAttributeTxt(IDList[i], "#name", 0)
 BoxOutput(TxName, EMPTY, "", 1)
 IDChildList = OdsIEListChildren(IDList[i], "#AoMeasurementQuantity", "", 0)
 ChildCount = Leng?(IDChildList)
 j = 1
 WHILE j <= ChildCount
 TxName = ".." + OdsIEGetAttributeTxt(IDChildList[j], "#name", 0)
 BoxOutput(TxName, EMPTY, "", 1)
 j = j+1
 END
 i = i+1
 END
 OdsSessionClose(0)
END

Note: According to the ODS base model, the base element [AoMeasurementQuantity] is a direct child of [AoMeasurement].

See also:
OdsIEListByAsamPath, OdsIEListByType, OdsPluginListSelItems

imc FAMOS Func on Reference - 607 -

(c) 2024 imc Test & Measurement GmbH

OdsIERemoveAttribute

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Deletes an instance attribute

Declaration:
OdsIERemoveAttribute (InstanceID, TxName, Zero) -> Status

Parameter:

InstanceID ID of the instance element

TxName Name of the attribute to be deleted.

Zero Reserved parameter. Always set to 0.

Status

Status Function success

1 : Function executed successfully

0 : Error.

Description:
The specified attribute is deleted.

The attribute to delete must be a local instance attribute. Attributes defined by the application model cannot be deleted.

In case of error, a 0 is returned; if the function is successful, a 1. The error cause can be determined using one of the funcitons
OdsGetLastErrorTxt() or OdsGetLastErrorCode().

See also:
OdsIEAddAttribute, OdsIEAddAttributeTxt

imc FAMOS Func on Reference - 608 -

(c) 2024 imc Test & Measurement GmbH

OdsIESetAttribute

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Changes an instance element's numeric attribute.

Declaration:
OdsIESetAttribute (InstanceID, TxAttributeName, Data, Zero) -> ErrorCode

Parameter:

InstanceID ID of the instance element

TxAttributeName Name of the attribute. Either the corresponding name according to the application model of the data basis or the name
according to the ODS base model, if defined.

Data Data set or single value with the attribute's new content.

Zero Reserved parameter. Always set to 0.

ErrorCode

ErrorCode Success of the function

1 : Function executed successfully

0 : Error

Description:
As the attribute designator (2nd parameter), either the name according to the application model or, alternatively, the name from the ODS base
model can be entered. For base model names, a "#" must be prefixed to the actual name.

The data type of the attribute addressed must be compatible to the data parameter specified. For numeric attributes, a single value is expected;
for attributes with a vector data type, a data set of an appropriate type (e.g. simple real or complex) must be specified.

In case of error, a 0 is returned, and if the function is executed successfully, a 1. the error cause can be determined using one of the functions
OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Examples:
A new TopLevel instance of the type "AoTest" is created and various attributes are set.

SessionID = OdsSessionCreate("TEST", "","", 0)
IF SessionID > 0
 id = OdsIECreateElement("#AoTest", 0, 2, 0)
 IF id > 0
 OdsIESetAttributeTxt(id, "#name", "Test_123", 0)
 OdsIESetAttributeTxt(id, "#description", "Test only", 0)
 OdsIESetAttribute(id, "Charge", 1205, 0)
 OdsIESetAttribute(id, "#version_date", TimeSystem?(), 0)
 OdsSessionClose(0)
 END
END

See also:
OdsIEGetAttribute, OdsIESetAttributeTxt

imc FAMOS Func on Reference - 609 -

(c) 2024 imc Test & Measurement GmbH

OdsIESetAttributeTxt

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Changes the content (text) of an instance element's attribute.

Declaration:
OdsIESetAttributeTxt (InstanceID, TxAttributeName, TxContent, Zero) -> ErrorCode

Parameter:

InstanceID ID of the instance element

TxAttributeName Name of the attribute. Either the corresponding name according to the application model of the data basis or, the name
according to the ODS base model, if defined.

TxContent New content of the addressed attribute.

Zero Reserved parameter. Always set to 0.

ErrorCode

ErrorCode Success of the function

1 : Function executed successfully

0 : Error.

Description:
As the attribute designator (2nd parameter), either the name according to the application model or, alternatively, the name from the ODS base
model can be entered. For base model names, a "#" must be prefixed to the actual name.

The addressed attribute's data type must be <Text>.

In case of error, a 0 is returned; if the function is successful, a 1. The error cause can be determined using one of the functions
OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Examples:
A new TopLevel instance of the type "AoTest" is created and various attributes are set.

SessionID = OdsSessionCreate("TEST", "","", 0)
IF SessionID > 0
 id = OdsIECreateElement("#AoTest", 0, 2, 0)
 IF id > 0
 OdsIESetAttributeTxt(id, "#name", "Test_123", 0)
 OdsIESetAttributeTxt(id, "#description", "Test only", 0)
 OdsIESetAttribute(id, "Charge", 1205, 0)
 OdsIESetAttribute(id, "#version_date", TimeSystem?(), 0)
 OdsSessionClose(0)
 END
END

See also:
OdsIEGetAttributeTxt, OdsIESetAttribute

imc FAMOS Func on Reference - 610 -

(c) 2024 imc Test & Measurement GmbH

OdsInitialize

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Initialization of the ODS-system. The necessary parameters for the (re-)initialization of the CORBA runtime environment are defined.

Declaration:
OdsInitialize (TxNSAddress, TxORBParameter, TxPrivateParameter, Zero) -> Error code

Parameter:

TxNSAddress Address of the CORBA naming service in the form "PCAddress:PortNumber"

TxORBParameter Additional parameters for the initialization of the CORBA-ORB. Usually empty.

TxPrivateParameter Additional initialization parameters for the ODS-browser. Usually empty.

Zero Reserved parameter. Always set to 0.

Error code

Error code Success of the function

1 : Function executed successfully

0 : Error

Description:
The CORBA-kernel used by the Browser is (re)started, for which certain necessary initialization parameters are to be specified.

The initialization parameters to be specified depend mainly on the properties of the ODS-server to be connected. These especially include the
specification of the "CORBA naming service" used by the server. The latter is absolutely necessary for the Browser to find the desired server.

If this function is not called, the settings set in the ODS plug-in are used (dialog "Presettings/System").

It usually only makes sense to call the function in a sequence before all other ODS access functions. This achieves a precisely defined system
response regardless of the current plug-in settings.

Calling this function closes all connections currently open! The CORBA-kernel is then stopped and restarted with the parameters supplied.

In case of error, a 0 is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Multithreading: All functions of the ODS kit may only be called in the Standard execution thread. A call within a BEGIN_PARALLEL block (i.e.
within sequence functions that are executed in a separate thread) is not permitted.

Examples:
A connection to an ODS-server is opened and the names of all measurements [AoMeasurement] it contains are listed. The desired ODS-server
signed in under the name "ODSTest" at the ODS naming service running at Port 900 of the local PC.

OdsInitialize("localhost:900","","",0)
SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurement" ,"", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxName = OdsIEGetAttributeTxt(IDList[i], "#name", 0)
 BoxOutput(TxName, LEER, "", 1)
 i = i+1
 END
 OdsSessionClose(0)
END

See also:
OdsSessionCreate, OdsPluginSessionConnect

imc FAMOS Func on Reference - 611 -

(c) 2024 imc Test & Measurement GmbH

OdsPluginListSelItems

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Determines which instance elements in the ODS plug-in's active session are selected.

Declaration:
OdsPluginListSelItems (Zero) -> InstanceElementList

Parameter:

Zero Reserved parameter. Always set to 0.

InstanceElementList

InstanceElementList ID's of all instance elements which are currently selected.

Description:
The data set returned contains the IDs of all selected instance elements. To find out the number of elements found, the function Leng?() can be
used; and for accessing a particular element, the '[]' operator (see example).

The active session for the Kit must previously have been set to a plug-in session using OdsPluginSessionConnect() or OdsSessionSelect().

In case of error, an empty data set (length = 0) is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or
OdsGetLastErrorCode().

Examples:
All instance elements which are currently selected in the ODS-Browser's tree diagram are found and exported to FAMOS along with all their
attributes.

SessionID = OdsPluginSessionConnect(0)
IF SessionID <> 0
 IDList = OdsPluginListSelItems(0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxVarName = OdsIEBuildVarName(IDList[i], 0)
 <TxVarName> = OdsIEGetAttributes(IDList[i], 0)
 i = i+1
 END
END

See also:
OdsPluginSessionConnect, OdsSessionSelect

imc FAMOS Func on Reference - 612 -

(c) 2024 imc Test & Measurement GmbH

OdsPluginSessionConnect

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

The session currently displayed by the ODS plug-in becomes the kit's new active session.

Declaration:
OdsPluginSessionConnect (Zero) -> SessionID

Parameter:

Zero Reserved parameter. Always set to 0.

SessionID

SessionID ID of the session

< 0 : Session-ID

0 : Error.

Description:
This function is used in order to subsequently be able to use the ODS-Kit's functions in the session currently open in the ODS-Browser plug-in.

A session activated with this function may not be closed using OdsSessionClose().

In case of error, a 0 is returned. The error cause can be determined using one of the functions OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Examples:
All instance elements that are curently selected in the ODS-Browser's tree diagram are found and exported together with all their attributes to
FAMOS.

SessionID = OdsPluginSessionConnect(0)
IF SessionID <> 0
 IDList = OdsPluginListSelItems(0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxVarName = OdsIEBuildVarName(IDList[i], 0)
 <TxVarName> = OdsIEGetAttributes(IDList[i], 0)
 i = i+1
 END
END

See also:
OdsPluginListSelItems, OdsSessionCreate, OdsSessionSelect

imc FAMOS Func on Reference - 613 -

(c) 2024 imc Test & Measurement GmbH

OdsSessionClose

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Closes the connection to an ODS-server.

Declaration:
OdsSessionClose (Option) -> ErrorCode

Parameter:

Option Selection

0 : Closes the active session

-1 : Closes all sessions which were opened by the Kit.

ErrorCode

ErrorCode Success of the function

1 : Function performed successfully

0 : Error

Description:
[Option] = 0: The active session is closed. The session must have been opened beforehand using the function OdsSessionCreate(). The function
may not be used on sessions that were activated using the function OdsPluginSessionConnect().

If multiple sessions are open at once, then once this session has been successfully closed, the oldest one left is activated. If you wish to continue
working with a different one instead, use the function OdsSessionSelect() afterwards.

[Option] = -1: All sessions are closed which were previously opened by the Kit using OdsSessionCreate().

In case of error, a 0 is returned. The error cause can be found by using one of the the functions OdsGetLastErrorTxt() and OdsGetLastErrorCode().

See also:
OdsSessionCreate, OdsSessionSelect, OdsPluginSessionConnect

imc FAMOS Func on Reference - 614 -

(c) 2024 imc Test & Measurement GmbH

OdsSessionCreate

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Sets up a connection to an ODS data source (ODS-server).

Declaration:
OdsSessionCreate (TxServerName, TxServerOptions, TxSessionParameter, Null) -> SessionID

Parameter:

TxServerName Name of the ODS data source (ODS-server).

TxServerOptions Server-specific settings needed for establishing a connection. Usually empty.

TxSessionParameter Options, passed to the server when the session is opened, e.g. user name and password.

Null Reserved parameter. Always set to 0.

SessionID

SessionID ID of the open connection or 0 if the connection could not be made.

> 0 : Session-ID

0 : Error.

Description:
The function serves to set up a connection (session) with an ODS-server. Afterwards, the kit's other functions are used to access the data storage.

If connection is successfully established, the session opened here becomes the kit's active session. Almost all of the ODS-Kit's functions refer to
the currently active session.

To switch between multiple sessions open at the same time, use the function OdsSessionSelect(). This contains the session-ID returned here as a
parameter.

The first parameter (name of the ODS-service) must be entered in the same form as the service was registered by the server in the CORBA
naming service used. In the rare case that two servers have the same name and differ only by the additional parameter "kind" (see output field
"Kind" in the dialog "Connect to server"), the server must be specified by "name.kind".

For special applications in mixed environments, it is also possible to specify a file which contains the IOR (Interoperable Object Reference) of an
existing CORBA-connection to an ODS-server. In this way, the Kit can hook up to an existing connection. The syntax for [TxServerName] is then
"IOR_FILE=<filename>", where <filename> refers to a file containing a valid IOR.

The options for opening the session (3rd parameter) are entered in the form "NAME=VAUE" and separated by commas.

The following parameters, among others for authentication, are defined by ODS; whether they are actually used depends on the server.

Parameter Definition/Content
USER User name

PASSWORD Password

OPENMODE E.g.: "read","write"
In addition to these pre-defined parameters, further server-specific options can be set here, e.g.:

SessionID = OdsSessionCreate("ODSTest", "","USER=hans, PASSWORD=fgasr, PROJECT=foo", 0)

If you don't need a connection any longer, you absolutely should close it explicity using the function OdsSessionClose().

If you wish to work on a session using the kit which is currently opened with the ODS-Browser plug-in, use instead of OdsSessionCreate() the
function OdsPluginSessionConnect().

In case of error, a 0 is returned. The cause of the error can be found using either of the functions OdsGetLastErrorTxt() or OdsGetLastErrorCode().

Multithreading: All functions of the ODS kit may only be called in the Standard execution thread. A call within a BEGIN_PARALLEL block (i.e.
within sequence functions that are executed in a separate thread) is not permitted.

Examples:
A connection to an ODS-server named "ODSTest" is opened and the names of all measurements [AoMeasurement] it contains are listed.

SessionID = OdsSessionCreate("ODSTest", "","", 0)
IF SessionID > 0
 IDList = OdsIEListByType("#AoMeasurement" ,"", 0)
 Count = Leng?(IDList)
 i = 1
 WHILE i <= Count
 TxName = OdsIEGetAttributeTxt(IDList[i], "#name", 0)

imc FAMOS Func on Reference - 615 -

(c) 2024 imc Test & Measurement GmbH

 BoxOutput(TxName, EMPTY, "", 1)
 i = i+1
 END
 OdsSessionClose(0)
END

See also:
OdsSessionSelect, OdsSessionClose, OdsPluginSessionConnect

imc FAMOS Func on Reference - 616 -

(c) 2024 imc Test & Measurement GmbH

OdsSessionSelect

Scope: ASAM-ODS Browser

Available in: Enterprise Edition and above (ODS-Browser-Kit)

Switches to a different session

Declaration:
OdsSessionSelect (SessionID) -> ErrorCode

Parameter:

SessionID ID of the session to be activated

ErrorCode

ErrorCode Success of the function

1 : Function performed successfully

0 : Error

Description:
Nearly all Kit-functions affect the active session. If multiple sessions are open at once, this function can be used to switch the active session.
Subsequent calls to session-specific kit functions then pertain to the session activated here.

The first parameter [SessionID] must previously have been returned by a call to OdsSessionCreate() or OdsPluginSessionConnect().

In case of an error, 0 is returned. The error cause can be found using one of the functions OdsGetLastErrorTxt() or OdsGetLastErrorCode().

See also:
OdsSessionCreate, OdsPluginSessionConnect

imc FAMOS Func on Reference - 617 -

(c) 2024 imc Test & Measurement GmbH

OnError

This function specifies how FAMOS responds in cases of an error occurring in the sequence execution.

Declaration:
OnError (TxMode [, TxErrorMessage] [, TxErrorVariableName] [, ErrorValue])

Parameter:

TxMode Set whether/how to resume sequence execution after any subsequently occurring errors.

"" : Default response. An error is displayed in a message box and the sequence execution is stopped. This corresponds
to the behavior in older FAMOS-versions up to and including Version 7.4.

"Default" : Same meaning as "" (default)

"Return" : No error message box; skip to sequence end. Any existing caller (sequence/dialog/panel) is resumed. If
applicable, the calling sequence can query the error using GetLastError().

"ReturnFail" : No error message box; skip to sequence end. The error code is returned to the caller.

"ResumeNext" : No error message box; resume at next command line. GetLastError() can be used to query the error
code.

"ResumeEnd" : No error message box; skip to next END-command. Specially well suited for resuming errors in FOR- or
FOREACH-loops at the next loop iteration. If there is no subsequent END-command, then skip to the end of the
sequence. GetLastError() can be used to query the error code.

TxErrorMessage Error message to be outputted. If not specified (or for empty text), the original error message (syntax error of the
Formula Interpreter or runtime error when running a function) is used. (optional)

TxErrorVariableName When specified, then at fault condition, the value specified in the next parameter is written to the variable having this
name. (optional)

ErrorValue At fault condition, the variable specified in the previous parameter is set to the value specified here (allowed: single
value or text). (optional)

Description:
While running sequences, errors can occur which are caused either by the Formula Interpreter ("Syntax error", e.g. unknown function name,
wrong number of parameters) or when performing functions ("runtime error", e.g. incorrect type or illegal function parameter content). By
default, these errors are indicated in a message box and futher execution is cancelled. This behavior can be reconfigured by means of OnError().

It is recommended to apply the advanced error modes defined here with care and after extensive testing. Unexpended, possible critical errors
may become "latent". The skip through the sequence which occurs at fault condition suspends normal processing of the routine, so that for
example any cleanup activity (deleting variables, closing files etc.) may not be performed. In general, it is more sensible to test any possible
error causes and to respond accordingly to these in the routine. Thus for instance, the function VerifyVar() can be tested for whether the data
type and a variable's structure meets the requirements of the subsequent analysis.

When creating and testing sequences and sequence functions, in some cases it may be helpful to interrupt the routine whenever an error
occurs, even if the current setting of OnError() specifies a different response. To achieve this, you can activate the option "Always break on
error" under the menu item "Sequence"/"Execute".
The settings specified here only apply to the current sequence, so they are not even "inherited" by sub-sequences or sequence functions
called by this sequence. At the end of the current sequence, the previously valid settings become applicable again.
Sequence functions with [TxMode]="ReturnFail": At the end of the sequence function, any return value is not generated, In/Out-parameters
are not updated.
Sequence functions with [TxMode]="Return": The sequence function responds as if no errorhad occurred - th ereurn value is generated,
In/Out-parameters are updated. With sequence functions having this mode and return value, it is necessary to ensure that the Return-
variable is created already before occurrence of potential errors and is set to a default value then, for example.
For instance, this can be assured by generating the Return-variables at the beginning of the sequence or by using the Return-variables as
[TxErrorVariable] in this function (see Example #3).
When this function is called, the internal error memory queried by GetLastError() is deleted.
In evey mode, the error message is also displayed in the FAMOS output window.

Examples:
A sequence loads all files from a folder in a loop. Each file is expected to contain a channel having the name 'channel1'; this channel is smoothed
and saved in a different folder. If any file can not be loaded or contains no channel named 'channel1', the system initially ignores this and
proceeds with the next file. At the end of the sequence, a note is outputted if appropriate indicating that not all files could be processed.

error = 0
inPath = "c:\inbox"
outPath = "c:\outbox"
filenames = FsGetFileNames(inPath, "*.dat", 0, 0, 0)

imc FAMOS Func on Reference - 618 -

(c) 2024 imc Test & Measurement GmbH

SetOption("Func.ErrorBoxes", "Yes") ; File functions show error boxes!
OnError("ResumeEnd", "", "error", 1)
FOR i = 1 TO TxArrayGetSize(filenames)
 FileLoad(fileNames[i], "", 0)
 channel1 = Smo(channel1, 0.5)
 FileSave(outPath + FsSplitPath(fileNames[i], 4),"", 0, channel1)
 DELETE channel1
END
IF error
 BoxMessage("Error", "Could not process all files!", "!1")
END

FAMOS' function for calculating the square root, Sqrt(), returns 0 for a negative inut value and posts a corresponding warning. The following
sequence function instead returns an error.

; Declaration: !Sqrt_Strict(Par) => Result
OnError("ReturnFail")
IF min(Par) < 0
 ThrowError("The parameter contains negative values!")
END
Result = Sqrt(par)

The following sequence function checks whether a data set is located within the tolerance band defined by 2 other data sets. If a function cannot
be run due to inappropriate parameters, there is a special return value which indicates this.

; Declaration: !ToleranceBand(TestData, Lower, Upper) => Result
; Result = 0: OK
; Result = 1: top of tolerance band violated
; Result = 2: bottom of tolerance band violated
; Result = 3: top and bottom of tolerance band violated
; Result = -1: Error: Input data do not match (in terms of x-axis) or have events/segments

OnError("Return", "", "Result", -1)
Verify(Leng?(TestData)=Leng?(Lower) AND Leng?(TestData)=Leng?(Upper))
Verify(xdel?(TestData)=xdel?(Lower) AND xdel?(TestData)=xdel?(Upper))
Verify(xoff?(TestData)=xoff?(Lower) AND xoff?(TestData)=xoff?(Upper))

TooLarge = Max(TestData- Upper) > 0 ; e.g. error with segmented data
TooSmall = (Max(Lower - TestData) > 0) * 2
Result = TooLarge + TooSmall

A sequence calls 3 sequence functions in succesion, which each perform an independent evaluation of long duration. If any of the evaluations
fails, the subsequent evaluations should still be performed anyway. At the end, a message box is displayed if not all evaluations were not
successful. The output window provides the user with specific error mesages which indicate which evalations failed. (The sequence functions are
written to include OnError("ReturnFail",...) in such a way that they return critical errors to the caller, but do not interrupt the routine.)

error = 0
OnError("ResumeNext", "Error in #1", "error", 1)
!Evaluation_1()

OnError("ResumeNext", "Error in #2", "error", 1)
!Evaluation_2()

OnError("ResumeNext", "Error in #3", "error", 1)
!Evaluation_3()

IF error
 BoxMessage("Error", "At least 1 evaluation could not be executed!", "!1")
END

See also:
Verify, VerifyVar, ThrowError, GetLastError

imc FAMOS Func on Reference - 619 -

(c) 2024 imc Test & Measurement GmbH

OR

Logical "OR"-operator

Declaration:
Operand1 OR Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value or data set to be compared.

Operand2 Second single value or data set to be compared.

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
"OR"-operation on two numbers. The result is 1 if either of the operands is 1. Otherwise the result is 0.

The operator can be applied to single values or data sets. With data sets, the operation is applied data point by data point..

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/ segments); but then the respective other parameter must either have the exactly same structure
(same segment length, event count and length), or be a single value.

Examples:
A data set's maximum value is determined and checked for constancy within a tolerance band.

Channel1 = ...
Maximum = max(Channel1)
IF Maximum < 21 OR Maximum > 34
 BoxMessage("Attention", "Value outside tolerance", "!1")
END

The disjunction operation is applied to two digital data sets. The result data set's value is 1 everywhere that at least one operand data set's value
is 1.

Result = (DigChannel1 OR DigChannel2)

See also:
AND, NOT, XOR

imc FAMOS Func on Reference - 620 -

(c) 2024 imc Test & Measurement GmbH

OtrEncoderRevs01

Available in: Enterprise Edition and above (OrderTracking-Kit)

A rectangular signal sampled by an incremental encoder is used to find the rotation speed. The signal consists of the sampled rectangle signal
which consist of only ones and zeroes.

Declaration:
OtrEncoderRevs01 (Encoder signal, PulsePerRevolution, Zero) -> Time-history of rotation speed

Parameter:

Encoder signal The rectangular encoder signal

PulsePerRevolution The amount of pulses (marks) per revolution. >= 1. This need not be an integer.

Zero Always zero

Time-history of rotation speed

Time-history of rotation speed

Description:
The encoder is assumed to have turned by one increment each time the signal makes a transition from "Less than or equal to 0.0" to "Greater than
0.0". If the signal were to contain the sequence of values { 0, 0, 1, 1, 1, 0, 0, 1, 1, 0 }, then 2 pulse would have been detected. The function returns a
rotation speed time-history, scaled in RPM. If the measurement data do not correspond to the appropriate levels, the signal can be re-shaped
using, for example, the Schmitt-Trigger function stri().

This function's effects are not influenced by OtrTachoMode ().

Note: For other tacho signaltypes, only OtrTachoMode() and OtrTachoToSpeed() are suitable.

Examples:
Only a binary input (digital IN, taking only the values 1 or 0) is available for measuring a rotation speed. The rectangular signal of the encoder
used, Rectangle_01, is sampled at a fixed sampling rate. The encoder emits 100 pulses per revolution and was sampled at the very fast rate of 0.1
ms. The rotation speed ranges between 10RPM and 2000RPM. The frequency of the rectangles ranges from 17Hz to 3.3kHz, which can just be
sampled at a rate of 10kHz.

speed = OtrEncoderRevs01 (Rectangle_01, 100, 0)

In the following example, the encoder is sampled with an analog input. The captured voltage "VoltageInput" is 0.8V at LOW, and at HIGH 4.7V. A
Schmitt-Trigger is used to condition the signal. The encoder has 128 markings.

Rectangle_01 = stri (VoltageInput, 3, 2)
speed = OtrEncoderRevs01 (Rectangle_01, 128, 0)

See also:
OtrTachoMode, OtrTachoToSpeed, OtrTachoToDist

imc FAMOS Func on Reference - 621 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrFrequLine

Available in: Enterprise Edition and above (OrderTracking-Kit)

Frequency line calculation: The magnitude or phase of a periodic sinusoidal signal is determined.

Declaration:
OtrFrequLine (Oscillation signal, PeriodLength, Number of Periods, Option) -> Result

Parameter:

Oscillation signal Signal with periodic oscillation

PeriodLength Number of samples in a period, >=2

Number of Periods Averaging over this many periods, >=1

Option What to calculate

0 : Determine magnitude (root mean square value)

1 : Determine phase (in degrees)

Result

Result Calculated magnitude or phase time plot

Description:
The function determines the value of either magnitude or phase of the oscillation for each interval of length "Period length * PeriodAmount".
Each of such intervals is exactly the size of "PeriodAmount" oscillations. The oscillation duration must be constant. Its length need not be an
integer number of samples. It is specified by "PeriodLength", the period duration divided by the sampling interval.

The function determines one line of the discrete Fourier spectrum (DFT) with Rectangle-windowing.

If the signal contains other frequency components to a significant extent, a large number of periods should be specified in order to reduce their
distorting influence. It may be worth band-pass filtering the signal beforehand.

The product of PeriodLength and PeriodAmount may not exceed 2e9 .

The phase is determined within the range -180 to +180 degrees. The value of the phase is 0 degrees for a cos-oscillation, -90 degrees for a sine
oscillation.

If PeriodLength is not an integer number, the product of PeriodLength and PeriodAmount must be an integer number of samples.

Examples:
An oscillation signal is sampled over the rotation angle (vib_revs), so that all oscillation components up to the 8th order are included. the signal
thus has 16 points per revolution. The phase of the 1st order is to be determined. One value for every 5 revolutions is desired.

Phase = OtrFrequLine (vib_revs, 16, 5, 1)

See also:

imc FAMOS Func on Reference - 622 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrOrderSpecFromFFT

Available in: Enterprise Edition and above (OrderTracking-Kit)

The order spectrum, referenced to the rotation speed, is calculated from the FFT-spectrum referenced to the rotation speed. The FFT-spectrum is
given as a root mean square (RMS)-value spectrum.

Declaration:
OtrOrderSpecFromFFT (FFT_Spectrum, Resolution, OrderMax, Calculation) -> Result

Parameter:

FFT_Spectrum FFT-Spectrum, referenced to rotation speed. A segmented data set is given, where every segment represents a spectrum.

Resolution The resolution of the order spectrum, e.g. 0.1, if 0.1 orders is the spacing between order spectrum lines. The resolution is
generally an integer fraction of 1.0, such as [1, 1/2, 1/3, 1/4, ..]

OrderMax The highest order (line) in the order spectrum

Calculation Calculation method by which a single order line is condensed from multiple FFT spectrum lines.

0 : The maximum is used

1 : Power remains unchanged

2 : Sampling (interpolation)

Result

Result Order spectrum, referenced to rotation speed

Description:
The function finds an order spectrum. The order spectrum can be determined from the FFT spectrum (in approximation) if the rotation speed is
known. In this context, a frequency of (rotation speed / 60.0) corresponds to the 1st order.

The data set containing the FFT spectrum is segmented. One segment equals one FFT. One rotation speed value is valid for each segment. The
rotation speed should not be 0.0 and must be scaled in RPM. The data set's z-coordinate determines what the rotation speed is.

The function either stretches out or compresses the FFT-spectrum. Therefore it is not worth it to make the resolution as small as possible or the
maximum order very high. That only increases the calculation time and memory requirements without providing better results.

The first line in the FFT-spectrum (that is the offset or DC-component) must be f = 0.0 Hz. The resulting order spectrum has the same DC-
component.

The FFT spectrum should reflect the magnitude (RMS-value) of the frequency lines.

Calculation method

With the calculation method "Maximum", the maximum of all the FFT-spectrum lines contributing to an order line is formed. With the
calculation method "Power" the resulting order line is determined so that its power is the sum of the power in every contributing lines in
the FFT-spectrum. This means that the spectral power density remains intact. With the calculation method "Sampling", all the spectral lines
of the FFT-spectrum are considered as connected by straight lines (i.e. linear interpolation). This polygonal trace is sampled at the
appropriate positions.

Note:

The algorithm is simple and inexact. Precise and rigorous calculation of the order spectrum is performed by the function OtrOrderSpec(), which
uses a tracking filter and resampling over the rotation angle.

Examples:
First, the rotation speed-referenced FFT-spectrum is determined from the signals "Vibration" and "speed". Then, to save calculation time, the
order spectrum is formed from the already determined FFT-spectrum. The biggest peaks in the FFT-spectrum are to remain intact (meaning:
appear in the order spectrum with the same amplitude).

FFT_Spectrum = OtrRpmSpectrum (Vibration, speed, 1000, 6000, 100, 1024, 0, 1, 0)
Resolution = 0.1 ; of the spectrum, i.e. 1/10 orders
OrderMax = 6.0 ; display lines up to here in the order spectrum.
Calc = 0 ; Default. Use maximum. Peak values remain intact
OrderSpec = OtrOrderSpecFromFFT(FFT_Spectrum, Resolution, OrderMax, Calc)

See also:
OtrRpmSpectrum, OtrOrderSpec

imc FAMOS Func on Reference - 623 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrOrderSpectrum

Available in: Enterprise Edition and above (OrderTracking-Kit)

Order spectrum related to the instantaneous rotation speed is determined from the time-history of vibration and tachometer signals. The desired
rotation speed range is divided into classes of equal width.

Declaration:
OtrOrderSpectrum (Vibration, Tachometer signal, RPM_Min, RPM_Max, RPM_class_width, Resolution, OrderMax,
WindowType, AveragingType) -> Result

Parameter:

Vibration Time-history of vibration signal

Tachometer
signal Rotation speed signal interpreted as per OtrTachoMode(). Default is time-history of rotation speed, scaled in rpm's.

RPM_Min Lower limit of desired rotation speed range. Scaled in rpm's.

RPM_Max Upper limit of desired rotation speed range. Scaled in rpm's.

RPM_class_width Width of rot.-speed class (interval). Scaled in rpm's.

Resolution Resolution of the order spectrum. 0.1, if 0.1 orders is the distance between oder spectrum lines. The resolution must be an
integral fraction of 1.0, thus: [1, 1/2, 1/3, 1/4, ..]

OrderMax The highest order (line) displayed in the order spectrum.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

AveragingType The method of summarizing all spectra of a single rpm-class.

0 : arithmet. mean

1 : arithmet. mean, 50% overlap

2 : arithmet. mean, 75% overlap

3 : Maximum

4 : Maximum, 50% overlap

5 : Maximum, 75% overlap

6 : Minimum

7 : Minimum, 50% overlap

8 : Minimum, 75% overlap

9 : first

10 : arithmet. mean, strict

11 : arithmet. mean, strict, 50% overlap

12 : arithmet. mean, strict, 75% overlap

13 : Maximum, strict

14 : Maximum, strict, 50% overlap

15 : Maximum, strict, 75% overlap

16 : Minimum, strict

17 : Minimum, strict, 50% overlap

18 : Minimum, strict, 75% overlap

19 : first, strict

imc FAMOS Func on Reference - 624 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

20 : RMS

21 : RMS, 50% overlap

22 : RMS, 75% overlap

23 : RMS, 90% overlap

24 : RMS, 95% overlap

25 : RMS, 98% overlap

26 : RMS, 99% overlap

Result

Result Order spectrum in relation to rotation speed

Description:
For sampling, the absolute value of the RPMs is used; for assignment to an RPM-class, the original RPM value.

The inverse of the resolution states how many revolutions contribute to an order spectrum. For instance, with a resolution of 0.1 each spectrum is
determined from 10 revolutions.

The spectral lines are stated as RMS (root mean square) values.

Since the FFT is calculated internally from a larger number of data (a power of two), some spectral lines are cut off. The visible spectrum thus no
longer reflects the whole power of the signal. A rectangular window for the FFT is highly recommended, if high resolution of the frequency is
desired.

The averaging is based only on the amplitude spectrum.

Strict performance of averaging:

A spectrum is only calculated if the instantaneous RPM signal remains within the bounds of one class for a set time interval. Thus, the RPM may
only change slowly. If you wish to compute spectra when the RPM signal changes quickly, select a correspondingly large RPM_class_width!

Non-strict performance of averaging:

Class association is determined by the mean RPM-value during the set time interval for spectrum calculation. Precision is sacrificed if the RPM
signal changes quickly.

A tracking Butterworth low-pass filter is used as the anti-aliasing filter. The signal thus filtered is sampled over the rotation angle. Then an FFT is
calculated. This procedure causes the signal to temporarily contain much higher order lines than in the spectrum which is ultimately returned. The
AAF's 3dB-order is far behind the order lines in the resulting spectrum.

The function works well for:

OrderMax < 10 / (SamplingTime_Vibration * max (rotation speed)),

where SamplingTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value.

The instantaneous rotation speed may change only slowly. The speed my not fall far below 1% of capacity. If either the rotation speed or
OrderMax is much too large, the calculation time increases very much without providing better results.
The rotation angle is determined by integration (summing up) of the tachometer signal. If the tacho signal is itself a rotation speed signal (and
not an impulse signal), the rotation speed must be available at good precision.
The Tacho signal's sampling interval must be either equal to the vibration's sampling time or an integer multiple of it.
If no spectrum is found for a certain RPM-class, this spectrum is filled with zeroes.
The result is a segmented waveform. Each segment is an order spectrum.
Before calling this function, OtrTachoMode() should be called at least once.

Examples:
The order spectrum related to the rotation speed is to be calculated from the time-history of the rotation speed and of the vibration, vib. The time-
based signals are sampled every 0.2 ms.

OtrTachoMode (0, 0, 0, 0)
rpm_Min = 1000.0 ; minimum of rotation speed range
rpm_Max = 6000.0 ; maximum of rotation speed range
rpm_Delta = 100.0 ; width of individual rotation speed classes
Resolution = 0.1 ; spectrum resolution, every 1/10 order is shown, calculated for 10 revolutions
OrderMax = 6.0 ; display spectral lines up to this order.
Windowtype = 0 ; 0 default (rectangle)
AvgType = 0 ; 0 (arithmet. mean)
OSpectrum = OtrOrderSpectrum (vib, speed, rpm_Min, rpm_Max, rpm_Delta, Resolution, OrderMax, Windowtype, AvgType)

imc FAMOS Func on Reference - 625 -

(c) 2024 imc Test & Measurement GmbH

Here we have: OrderMax = 6.0 < 10 / (0.0002 * 6000) = 8.3

OtrTachoMode() is first used to set the tacho signal type used.

See also:
OtrTachoMode, OtrRpmOrder, OtrRpmSpectrum, OtrTimeOrderSpectrum, OtrOrderSpecFromFFT

imc FAMOS Func on Reference - 626 -

(c) 2024 imc Test & Measurement GmbH

OtrResample

Available in: Enterprise Edition and above (OrderTracking-Kit)

Sampling of a vibration signal over the rotation angle, given the tacho signal.

Declaration:
OtrResample (Vibration, Tachometer signal, OrderMax, Interpolation) -> Result

Parameter:

Vibration Time-history of vibration signal

Tachometer signal Rotation speed signal interpreted as per OtrTachoMode(). Default is time-history of rotation speed, scaled in rpm's.

OrderMax Maximum order line in the result

Interpolation Specifies how intermediate values are found

0 : Constant interpolation (stair-steps)

1 : Linear interpolation

2 : Cubic interpolation

Result

Result Vibration signal sampled over the rotation angle

Description:
The resulting angle-referenced signal is scaled in the x-direction by recording revolutions made. The x-coordinate starts at 0, is 0.5 after half a
revolution, after a whole revolution 1.0, after two it is 2.0 etc.

Sampling interval of result: 0.5 / OrderMax
The rotation speed's absolute value is used.
The function has no anti-aliasing filter. A preceding call of OtrTrackingLowPass() is necessary.

The function works well for:

OrderMax <= 30 / (SampleTime_Vibration * max (rotation speed)),

where SamplingTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value.

The rotation speed should change only slowly and should not fall far below 1% of capacity. If the rotation speed becomes far too high, the
calculation time required increases enormously without providing better results.
The rotation angle is obtained by integration (summation) of the tachometer signal. If the tacho signal itself is a rotation speed time-history
(not an impulse signal), the rotation speed must be available at good precision. Note that even an only slightly incorrect or imprecise
rotation speed signal when integrated can lead to a substantial deviation of the angle, thus in turn causing a creeping phase deviation.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
Before calling this function, OtrTachoMode() should be called at least once.

Examples:
A vibration signal "vib" is sampled every 0.5 ms. The rotation speed can reach 3000 RPM. The vibration is to be sampled over the rotation angle.
All components up to the 15th order are to be included.

OtrTachoMode (0, 0, 0, 0)
tlp = OtrTrackingLowPass (vib, speed, 8.0, 4) ; anti-aliasing filter
omax = 15.0
res = OtrResample (tlp, speed, omax, 2)

We have: OrderMax = 15.0 <= 30 / (0.0005 * 3000) = 20.0.

The result has a resolution of 0.5 / OrderMax = 0.0333 revolutions. There are 30 samples per revolution. The anti-aliasing filter is designed to
dampen by 3 dB at the 8th order and by 20 dB at the 14.4th order. At the 6.1th order the amplitude error is already less than 5%. A higher order
interpolation is used.

OtrTachoMode() is first used to set the tacho signal type used.

See also:
OtrResampleAAF, OtrTrackingLowPass, OtrTachoMode

imc FAMOS Func on Reference - 627 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrResampleAAF

Available in: Enterprise Edition and above (OrderTracking-Kit)

Sampling of a vibration signal over the rotation angle, given the tacho signal and using a tracking anti-aliasing filter.

Declaration:
OtrResampleAAF (Vibration, Tachometer signal, OrderMax, Order3dB, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Tachometer signal Rotation speed signal interpreted as per OtrTachoMode(). Default is time-history of rotation speed, scaled in rpm's.

OrderMax Maximum order line in the result

Order3dB Order (line), for which the low-pass filter dampens the signal by 3dB.

FilterOrder The filter order of the low-pass filter (1 ... 10)

Result

Result Vibration signal sampled over the rotation angle

Description:
The resulting angle-referenced signal is scaled in the x-direction by recording revolutions made. The x-coordinate starts at 0, is 0.5 after half a
revolution, after a whole revolution 1.0, after two it is 2.0 etc.

Sampling interval of result: 0.5 / OrderMax
The rotation speed's absolute value is used.
A Butterworth low-pass filter is used as the anti-aliasing filter.
3rd order interpolation is used to find intermediate values.

The function works well for:

OrderMax < 24 / (SampleTime_Vibration * max (rotation speed)),

where SampleTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) the maximum occurring RPM-value. Note
that the high-frequency components in the resulting signal are already strongly dampened.

Order3dB << OrderMax

<< indicates: much smaller.

The rotation speed should change only slowly and should not fall far below 1% of capacity. If the rotation speed becomes far too high, the
calculation time required increases enormously without providing better results.
The rotation angle is obtained by integration (summation) of the tachometer signal. If the tacho signal itself is a rotation speed time-history
(not an impulse signal), the rotation speed must be available at good precision. Note that even an only slightly incorrect or imprecise
rotation speed signal when integrated can lead to a substantial deviation of the angle, thus in turn causing a creeping phase deviation.
The upper cutoff frequency of the low-pass filter must always be far below half of the vibration signals sampling rate. Above approx. (0.4 *
sampling rate), filtering cannot be performed.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
The function can be replicated by calling OtrTrackingLowPass() and OtrResample().
Before calling this function, OtrTachoMode() should be called at least once.

Examples:
A vibration signal is sampled every 1 ms. The rotation speed can reach 4500 RPM. The vibration is to be sampled over the rotation angle. All
components up to the 5th order are to be included.

OtrTachoMode (0, 0, 0, 0)
omax = 5.0
o3dB = 2.7 ; The low-pass dampens by 3 dB for this order
fo = 8 ; an 8th order low-pass filter is used
res = OtrResampleAAF (vib, speed, omax, o3dB, fo)

We have: OrderMax = 5.0 <= 24 / (0.001 * 4500) = 5.33

The result has a resolution of 0.5 / OrderMax = 0.1 revolutions. There are 10 samples per revolution. the anti-aliasing filter is designed to dampen
the 2.7th order by 3 dB, and by 60 dB at the 5th order. At the 2.3th order the amplitude error is already below 5%.

OtrTachoMode() is first used to set the tacho signal type used.

See also:

imc FAMOS Func on Reference - 628 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTrackingLowPass, OtrResample, OtrTachoMode

imc FAMOS Func on Reference - 629 -

(c) 2024 imc Test & Measurement GmbH

OtrRpmOrder

Available in: Enterprise Edition and above (OrderTracking-Kit)

Finds the RMS (root mean square) value of an order line related to the rotation speed. The desired rotation speed range is divided into classes of
equal width. Calculation is preformed with the help of a tracking band-pass filter.

Declaration:
OtrRpmOrder (Vibration, Rotation speed, RPM_Min, RPM_Max, RPM_class_width, OrderCenter, WidthPercent,
FilterOrder, Interpolation) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed signal. Scaled in RPMs

RPM_Min Lower limit of desired rotation speed range. Scaled in rpm's.

RPM_Max Upper limit of desired rotation speed range. Scaled in rpm's.

RPM_class_width Width of rot.-speed class (interval). Scaled in rpm's.

OrderCenter Order (line) at which the band-pass' center frequency is located.

WidthPercent Overall width in percent. Recommended 10%...100%. Input range [0.01 ... 10000.0]. For example, at 30% width the ratio of
the upper to the lower cutoff frequency of the bandpass is 1.30.

FilterOrder The bandpass filter's order (2, 4, 6, 8, 10)

Interpolation How is the result interpolated?

0 : No interpolation

1 : Constant interpolation (centered at measured values)

2 : Linear interpolation

Result

Result RMS value of an order line related to the rotation speed

Description:
The rotation speed range starts at RPM_Min, the resolution is always RPM_class_width. The parameter RPM_Max is only used to determine the
amount of values in the result.

Every RPM-class (of width RPM_class_width) must contain a sufficient number of data points in the vibration signal. If there are no values at all,
the result in that RPM-class remains zero. Only if a nonzero interpolation is selected the unfilled RPM-classes are filled by interpolation of
adjacent values. If interpolation is selected, unfilled classes at the ends of the range are also filled by level linear extension.

The internally selected center frequency for the filter is

center frequency = OrderCenter* (Current_RPM / 60)

The upper cutoff frequency is above the center frequency and depends on the filter's width. The upper cutoff frequency is always significantly
below half of the vibration signal's sampling frequency. Above approx. 1 / (0.48 * sampling interval), no band-pass filtering can be performed.

The function works well for:

OrderMax << 28 / (SampleTime_Vibration * max (rotation speed)),

where SamplingTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value.

OrderMax = OrderCenter * sqrt (1 + WidthPercent / 100)

<< indicates that the order specified should be much smaller.

The rotation speed should change only slowly.
The resulting center frequency should not fall much below 0.1 percent of capacity. If either the rotation speed or OrderCenter becomes
much too big, the calculation time increases greatly without improving the results.
If the resulting center frequency falls too low, the result can become less precise.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
Note that band-passes need a certain amount of time for transients to subside. This time increases markedly for narrow-band filters. A band-
pass of width 1% is very narrow in this sense. A width of 25% corresponds to a 1/3 octave filter, a width of 100% to a 1/1 octave filter.

Examples:
We wish to use the 2.5th order line to obtain the RMS-value of this order line in relation to the rotation speed. We are given the vibration "vib"
with a sampling interval of 0.0005 ms and the rotation speed "speed".

imc FAMOS Func on Reference - 630 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

rpm_Min = 1000.0 ; minimum of rotation speed range
rpm_Max = 6000.0 ; maximum of rotation speed range
rpm_Delta = 100.0 ; width of individual rotation speed classes
om = 2.5 ; the 2.5th order is selected.
width = 30 ; 30% overall width
fo = 6 ; a 6th order band-pass filter is used
Interpolation = 0 ; 0 default (none)
OLine = OtrRpmOrder (vib, speed, rpm_Min, rpm_Max, rpm_Delta, om, width, fo, Interpolation)

We have: OrderMax = 2.5 * sqrt (1 + 30 / 100) = 2.9

and thus: OrderMax = 2.9 << 28 / (0.0005 * 6000) = 9.3

See also:

imc FAMOS Func on Reference - 631 -

(c) 2024 imc Test & Measurement GmbH

OtrRpmPresentation

Available in: Enterprise Edition and above (OrderTracking-Kit)

From the time-histories of a signal and the rotation speed, the signal referenced to the rotation speed is constructed. The desired RPM-range is
divided into evenly spaced classes.

Declaration:
OtrRpmPresentation (Vibration, Rotation speed, RPM_Min, RPM_Max, RPM_class_width, Calculation, Interpolation,
EndOpen) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed.

RPM_Min Lower limit of desired RPM-range

RPM_Max Upper limit of desired RPM-range.

RPM_class_width Width of an RPM-class (interval).

Calculation How all the values from a single RPM-class are summarized

0 : Root mean square (RMS) value (default)

1 : Arithmetical mean

2 : Minimum

3 : Maximum

4 : Minimum of absolute values

5 : Maximum of absolute values

6 : Mean of absolute values

7 : Sum

8 : Standard deviation, sqrt (1/N * ...)

9 : First value

10 : Last value

11 : Number of vibration signal data points

12 : Number of revolutions ("Vibration"-parameter must also contain rotation speed data! Rotation speed scaled in RPM!)

Interpolation How is the result interpolated?

0 : No interpolation

1 : Constant interpolation (centered at measured values)

2 : Linear interpolation

EndOpen Are the outer ends of the range considered open?

0 : Closed ends. Default. If the rotation speed is outside the desired range, vibration values are ignored.

1 : Open ends. Only for histogram applications. Everything < RPM_Min goes into the same class as RPM_Min, everything >
RPM_Max goes into the same class as RPM_Max

Result

Result Signal plotted in reference to rotation speed

Description:
The RPM-range always starts at RPM_Min, the resolution is always RPM_Class_width. The specification of RPM_Max is only used to find the
number of values in the result. The result partly has the character of a histogram, so that a bar graph or stair-step display is often useful.

The vibration and rotation speed may either both be time-based or angle-based.

The rotation speed need not be scaled in RPM. However, the rotation speed, RPM_Min, RPM_Max and RPM_Class_width must all have the same
scaling (y-unit).

Every RPM-class (of width RPM_class_width) must contain a sufficient number of data points in the vibration signal. If there are no values at all,
the result in that RPM-class remains zero. Only if a nonzero interpolation is selected the unfilled RPM-classes are filled by interpolation of
adjacent values. If interpolation is selected, unfilled classes at the ends of the range are also filled by level linear extension.

imc FAMOS Func on Reference - 632 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

Examples:
From the time-history of an order line we wish to obtain a representation of this order line's rms value referenced to the rotation speed. We are
given the vibration signal "vib" and the rotation signal "speed". Time-history of the 1.5th order line from the vibration

tbp = OtrTrackingBandPass (vib, speed, 1.5, 30, 4)
rpm_Min = 1000.0 ; minimum of rotation speed range
rpm_Max = 6000.0 ; maximum of rotation speed range
rpm_Delta = 100.0 ; width of the RPM-classes
Calc = 0 ; 0 = rms value
Interpolation = 0 ; 0 default (none)
EndOpen = 0 ; 0 Default (closed)
Order_rpm = OtrRpmPresentation (tbp, speed, rpm_Min, rpm_Max, rpm_Delta, Calc, Interpolation, EndOpen)

See also:
OtrRpmPresentVector

imc FAMOS Func on Reference - 633 -

(c) 2024 imc Test & Measurement GmbH

OtrRpmPresentFast

Available in: Enterprise Edition and above (OrderTracking-Kit)

From the time-histories of a spectrum and the rotation speed, the spectrum is referenced to the rotation speed. Especially for fast run-ups and
run-downs. The result is generally not evenly distributed along the RPM-axis.

Declaration:
OtrRpmPresentFast (Spectrum sequence, Rotation speed, RPM-change, RPM-resolution, Calculation) -> Result

Parameter:

Spectrum
sequence Spectrum time-history

Rotation
speed Time-history of (rapidly changing) rotation speed.

RPM-
change

Calculation only takes place if the rotation speed changes in the desired direction. Meaning: spectra are only counted either for
rising or for falling RPMs.

1 : Only rising speed

-1 : Only falling speed

RPM-
resolution

If the RPM-values of consecutive spectra are very close to each other, the different spectra can melt into one, and in graphical
display they would be indistinguishable. The RPM resolution specifies how far a spectrum's rotation speed must deviate before a
separate one is made.

Calculation
How are spectra of almost equal rotation speed summarized? If the rotation speeds of adjacent spectra are not further apart than
specified in the parameter RPM-resolution, they are summarized in one of the following ways. This returns a representative
spectrum.

0 : Root mean square (RMS) value (default)

1 : Arithmetical mean

2 : Minimum

3 : Maximum

4 : Minimum of absolute values

5 : Maximum of absolute values

6 : Mean of absolute values

7 : Sum

9 : First value

10 : Last value

Result

Result Spectra referenced to the rotation speed

Description:
The function is for analysis of a run-up or run-down of a machine.

As input data, the function takes a sequence of spectra (the time-history of a spectrum) and a matching sequence of RPM-values (The rotation
speed's time-history). An RPM value is thus associated with each spectrum. Each spectrum-RPM pair is written to the result-matrix. The result-
matrix contains a spectrum for every RPM.

The sequence of input data is a segmented data set where each segment represents a spectrum. Such data can be produced using, for instance,
the functions belonging to the Spectrum Kit, which return a time-sequence of frequency spectra. A separate data set of the corresponding
rotation speed values must also exist. The rotation speed is resampled appropriately, e.g. by a moving mean value with the function MvMean().

The sampling interval for the rotation speed signal is ignored. The function assumes that every spectrum pairs up with one RPM-value.

The result is a data set with Events (a matrix with additional properties). Each event represents a spectrum and is valid for a particular rotation
speed. One rotation speed is assigned to each event. The events are always sorted in order of increasing rotation speed.

The rotation speed need not be scaled in RPM. But the rotation speed and its resolution must take the same scaling (y-unit).

The rotation speed resolution can also be 0.0. For fast run-ups (or fast run-downs) of a machine, the RPM resolution is unimportant. In that case
0.0 is the best choice. Only in cases where the rotation speed changes very slowly or remains constant does the RPM-resolution play a role. There
are rotation speeds so close together that they can be considered as one in terms of measurement precision or for post analysis purposes. In a
run-up from 1000 RPM to 6000 RPM, it isn't relevant for distinguishing spectra whether the rotation speed is 3345 RPM or 3350 RPM. In that case
the resolution can be set to 5 RPM. If the resolution is very small, slow rot. speed changes can lead to data glut.

imc FAMOS Func on Reference - 634 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

If the rotation speed doesn't change from one spectrum to the next (or is less than the specified RPM-resolution), the spectra are summarized.
That means that a better or more representative spectrum can be found for such a rotation speed, for instance, by means of averaging.

The parameter "Calculation" is only important if the change in rotation speed from one spectrum to the next is less than the resolution. The
calculation determines how different individual spectra of the same rotation speed are summarized. The method specified may be, for instance,
a mean value or maximum.

For slow changing rot. speed, the function OtrRpmPresentVector() is to be preferred. There, the matrix is subdivided evenly along the RPM-axis,
which usually aids in display and analysis.

Run-up or run-down: The parameter RPM-change specifies whether to take either rising or falling rotation speed changes into account. For
example, if rising RPM is chosen and then the RPM falls, the resulting spectra are ignored and don't enter the results. For instance, if during a run-
up the RPM dips shortly before resuming to rise, only the spectra from the dip are ignored. When the RPM-values are again above the last value
in the rising region, the spectra count once more. The results are filled only once and in one direction. If, for instance, another run-up occurs it is
ignored. In such cases the function OtrRpmPresentVector() is to be preferred.

Examples:
Using a function from the Spectrum Kit, the time-history of a spectrum derived from the channel "Vibration" is determined. This channel is
sampled at intervals of 1ms. We wish to find spectra of length 1000 points with 75% overlap. The rotation speed is simultaneously sampled at the
same rate. We take a measurement of a fast run-up of a motor.

Spectra = AmpSpectrumRMS (Vibration, 1000, 0, 75, 1, 0, 0) ; from the Spectrum Kit
speed1 = MvMean (speed, 1.0, 0.25)
UpDown = 1 ; 1 run-up, -1 run-down
NResolution =0.0 ; RPM-resolution
Calc = 1 ; 1 = mean
RpmSpectrum = OtrRpmPresentFast (Spectra, speed1, UpDown, NResolution, Calc)

After every 250 values in the vibration channel, a spectrum is found, in other words after 250ms. Thus the rotation speed must be acquired every
250ms. This is to be averaged over 1000ms.

See also:
OtrRpmPresentVector

imc FAMOS Func on Reference - 635 -

(c) 2024 imc Test & Measurement GmbH

OtrRpmPresentVector

Available in: Enterprise Edition and above (OrderTracking-Kit)

From the time-histories of a spectrum and the rotation speed, the spectrum referenced to the rotation speed is constructed. The desired RPM-range is
divided into evenly spaced classes.

Declaration:
OtrRpmPresentVector (Spectrum sequence, Rotation speed, RPM_Min, RPM_Max, RPM_class_width, Calculation,
Interpolation, EndOpen, RPM-change) -> Result

Parameter:

Spectrum
sequence Spectrum time-history

Rotation speed Time-history of rotation speed

RPM_Min Lower limit of desired RPM-range

RPM_Max Upper limit of desired RPM-range.

RPM_class_width Width of an RPM-class (interval).

Calculation How all the values from a single RPM-class are summarized

0 : Root mean square (RMS) value (default)

1 : Arithmetical mean

2 : Minimum

3 : Maximum

4 : Minimum of absolute values

5 : Maximum of absolute values

6 : Mean of absolute values

7 : Sum

9 : First value

10 : Last value

Interpolation How is the result interpolated?

0 : No interpolation

1 : Constant interpolation (centered at measured values)

2 : Linear interpolation

EndOpen Are the outer ends of the range considered open?

0 : Closed ends. Default. If the rotation speed is outside the desired range, vibration values are ignored.

1 : Open ends. Only for histogram applications. Everything < RPM_Min goes into the same class as RPM_Min, everything >
RPM_Max goes into the same class as RPM_Max

RPM-change Calculation only proceeds if the rotation speed changes in the correct direction; either rising or falling

0 : No matter

1 : Only rising speed

-1 : Only falling speed

Result

Result Spectra referenced to the rotation speed

Description:
As input data, the function takes a sequence of spectra (the time-history of a spectrum) and a matching sequence of RPM-values (The rotation speed's
time-history). An RPM value is thus associated with each spectrum. Each spectrum-RPM pair is written to the result-matrix. The result-matrix contains a
spectrum for every RPM-range.

The sequence of input data is a segmented data set where each segment represents a spectrum. Such data can be produced using, for instance, the
functions belonging to the Spectrum Kit, which return a time-sequence of frequency spectra. A separate data set of the corresponding rotation speed
values must also exist. The rotation speed is resampled appropriately, e.g. by a moving mean value with the function MvMean().

The sampling interval for the rotation speed signal is ignored. The function assumes that every spectrum pairs up with one RPM-value.

The RPM-range always starts at RPM_Min, the resolution is always RPM_Class_width. The specification of RPM_Max is used only to determine the
number of values in the result. The result partly has the character of a histogram, so that a bar graph or stair-step display is often useful.

imc FAMOS Func on Reference - 636 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

The result is a segmented data set (matrix). Each segment represents one spectrum and is valid for a particular rotation speed.

The rotation speed need not be scaled in RPM. However, the rotation speed, RPM_Min, RPM_Max and RPM_Class_width must all have the same scaling
(y-unit).

Every RPM-class (of width RPM_class_width) must contain at least one spectrum. If there is no spectrum at all, the result in that RPM-class remains zero.
Only if a nonzero interpolation is selected the unfilled RPM-classes are filled by interpolation of adjacent values. If interpolation is selected, unfilled
classes at the ends of the range are also filled by level linear extension.

For very fast run-ups and coast-downs, this function is not well adapted since many RPM-regions of the matrix are unfilled or else a huge class width
must be used for the rotation speed. In such cases, the function OtrRpmPresentFast() is preferable.

Examples:
The time-history of the spectrum from the vibration signal "Vibration" is determined with the help of a Spectrum Kit function. The vibration channel as
a sampling interval of 1ms. Spectra with a of length of 1000 points with 50% overlap are to be computed. A rotation speed signal "speed" was captured
simultaneously at a sampling interval of 10ms.

Spectra = AmpSpectrumRMS (Vibration, 1000, 0, 50, 1, 0) ; from the Spectrum Kit
speed1 = MvMean (speed, 1.0, 0.5)
rpm_Min = 1000.0 ; minimum of rotation speed range
rpm_Max = 6000.0 ; maximum of rotation speed range
rpm_Delta = 100.0 ; width of the RPM-classes
Calc = 0 ; 0 = rms value
Interpolation = 0 ; 0 default (none)
Bounds = 0 ; 0 Default (closed)
UpDown = 0 ; Default (no matter what change)
RpmSpectrum = OtrRpmPresentVector (Spectra, speed1, rpm_Min, rpm_Max, rpm_Delta, Calc, Interpolation, Bounds, UpDown)

A spectrum is computed after every 500 data points in the vibration channel, in other words, after 500ms. Thus, a rotation speed is needed every 500ms.
This is to be averaged over 1000ms.

See also:
OtrRpmPresentation, OtrRpmPresentFast

imc FAMOS Func on Reference - 637 -

(c) 2024 imc Test & Measurement GmbH

OtrRpmSpectrum

Available in: Enterprise Edition and above (OrderTracking-Kit)

The FFT spectrum (RMS-values!) referenced to a rotation speed is determined from the time-histories of the vibration and the rotation speed.
The desired RPM-range is divided into equally spaced classes.

Declaration:
OtrRpmSpectrum (Vibration, Rotation speed, RPM_Min, RPM_Max, RPM_class_width, WindowWidth, WindowType,
AveragingType [, Base2]) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed signal. Scaled in RPMs

RPM_Min Lower limit of desired rotation speed range. Scaled in rpm's.

RPM_Max Upper limit of desired rotation speed range. Scaled in rpm's.

RPM_class_width Width of rot.-speed class (interval). Scaled in rpm's.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

AveragingType The method of summarizing all spectra of a single rpm-class.

0 : arithmet. mean

1 : arithmet. mean, 50% overlap

2 : arithmet. mean, 75% overlap

3 : Maximum

4 : Maximum, 50% overlap

5 : Maximum, 75% overlap

6 : Minimum

7 : Minimum, 50% overlap

8 : Minimum, 75% overlap

9 : first

10 : arithmet. mean, strict

11 : arithmet. mean, strict, 50% overlap

12 : arithmet. mean, strict, 75% overlap

13 : Maximum, strict

14 : Maximum, strict, 50% overlap

15 : Maximum, strict, 75% overlap

16 : Minimum, strict

17 : Minimum, strict, 50% overlap

18 : Minimum, strict, 75% overlap

19 : first, strict

20 : RMS

imc FAMOS Func on Reference - 638 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

21 : RMS, 50% overlap

22 : RMS, 75% overlap

23 : RMS, 90% overlap

24 : RMS, 95% overlap

25 : RMS, 98% overlap

26 : RMS, 99% overlap

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result FFT spectrum referenced to rotation speed

Description:
The window width need not be a power of 2. A window width of 500 or 1000, for example, would produce proper frequency line spacing.

The spectral lines are stated as RMS (root mean square) values.
The averaging is based only on the amplitude spectrum.

Strict performance of averaging:

A spectrum is only calculated if the instantaneous RPM signal remains within the bounds of one class for a set time interval. Thus, the RPM
may only change slowly. If you wish to compute spectra when the RPM signal changes quickly, select a correspondingly large
RPM_class_width!

Non-strict performance of averaging:

Class association is determined by the mean RPM-value during the set time interval for spectrum calculation. Precision is sacrificed if the
RPM signal changes quickly.

The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.

If no spectrum is found for a certain RPM-class, this spectrum is filled with zeroes.
The result is a segmented data set. Each segment is a spectrum.

Examples:
From the time history of a vibration "vib" and the rotation speed "speed", the spectrum referenced to the rotation speed is to be found.

rpm_Min = 1000.0 ; minimum of rotation speed range
rpm_Max = 6000.0 ; maximum of rotation speed range
rpm_Delta = 100.0 ; width of individual rotation speed classes
WindowSize = 1000 ; Width of window for FFT, in number of data points
WindowType = 0; 0 Rectangle
AvgType = 0 ; 0 (arithmet. mean)
RpmSpectrum = OtrRpmSpectrum (vib, speed, rpm_Min, rpm_Max, rpm_Delta, WindowSize, WindowType, AvgType, 0)

At a sampling interval of 0.5ms and a window width of 1000 points, a spectrum with the frequency line spacing of 2 Hz is calculated.

See also:
OtrRpmPresentVector, OtrRpmPresentFast, OtrRpmSpectrumFast

imc FAMOS Func on Reference - 639 -

(c) 2024 imc Test & Measurement GmbH

OtrRpmSpectrumFast

Available in: Enterprise Edition and above (OrderTracking-Kit)

The FFT-spectrum (root mean square values!), referenced to rotation speed, is determined from the time-histories of a vibration and rotation speed.
Especially suited to fast run-ups and run-downs. The result is generally not equally distributed along the RPM-axis.

Declaration:
OtrRpmSpectrumFast (Vibration, Rotation speed, WindowWidth, WindowType, Overlapping, RPM-change, RPM-resolution,
Calculation [, Base2]) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation
speed Time-history of (rapidly changing) rotation speed.

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in accordance
with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping Overlap in %, e.g. 0.0, 50 or 75. The individual time windows, from which the spectra are taken, overlap each other by this amount.

0 : no overlapping

50 : 50% overlap, or 1/2

75 : 75% overlap, or 3/4

RPM-change Calculation only takes place if the rotation speed changes in the desired direction. Meaning: spectra are only counted either for
rising or for falling RPMs.

1 : Only rising speed

-1 : Only falling speed

RPM-
resolution

If the RPM-values of consecutive spectra are very close to each other, the different spectra can melt into one, and in graphical
display they would be indistinguishable. The RPM resolution specifies how far a spectrum's rotation speed must deviate before a
separate one is made.

Calculation
How are spectra of almost equal rotation speed summarized? If the rotation speeds of adjacent spectra are not further apart than
specified in the parameter RPM-resolution, they are summarized in one of the following ways. This returns a representative
spectrum.

0 : Root mean square (RMS) value (default)

1 : Arithmetical mean

2 : Minimum

3 : Maximum

4 : Minimum of absolute values

5 : Maximum of absolute values

6 : Mean of absolute values

7 : Sum

9 : First value

10 : Last value

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is recommended.
If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

imc FAMOS Func on Reference - 640 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

Result Spectra referenced to the rotation speed

Description:
The function is for analysis of a (rapid) run-up or run-down of a machine.

The function's input data are the time-histories of a vibration signal and a rotation speed signal. The spectra are determined from the vibration signal.
For each spectrum, the average rotation speed is found. A matrix is formed from the spectrum-rotation speed pairs. This matrix represents the
spectrum referenced to the rotation speed.

The result is a data set with Events (a matrix with additional properties). Each event represents a spectrum and is valid for a particular rotation speed.
One rotation speed is assigned to each event. The events are always sorted in order of increasing rotation speed.

The rotation speed need not be scaled in RPM. But the rotation speed and its resolution must take the same scaling (y-unit).

The rotation speed resolution can also be 0.0. For fast run-ups (or fast run-downs) of a machine, the RPM resolution is unimportant. In that case 0.0 is
the best choice. Only in cases where the rotation speed changes very slowly or remains constant does the RPM-resolution play a role. There are
rotation speeds so close together that they can be considered as one in terms of measurement precision or for post analysis purposes. In a run-up
from 1000 RPM to 6000 RPM, it isn't relevant for distinguishing spectra whether the rotation speed is 3345 RPM or 3350 RPM. In that case the resolution
can be set to 5 RPM. If the resolution is very small, slow rot. speed changes can lead to data glut.

If the rotation speed doesn't change from one spectrum to the next (or is less than the specified RPM-resolution), the spectra are summarized. That
means that a better or more representative spectrum can be found for such a rotation speed, for instance, by means of averaging.

The parameter "Calculation" is only important if the change in rotation speed from one spectrum to the next is less than the resolution. The
calculation determines how different individual spectra of the same rotation speed are summarized. The method specified may be, for instance, a
mean value or maximum.

For slow changing rot. speed, the function OtrRpmSpectrum() is to be preferred. There, the matrix is subdivided evenly along the RPM-axis, which
usually aids in display and analysis.

Run-up or run-down:

The parameter RPM-change specifies whether to take either rising or falling rotation speed changes into account. For example, if rising RPM is
chosen and then the RPM falls, the resulting spectra are ignored and don't enter the results. For instance, if during a run-up the RPM dips shortly
before resuming to rise, only the spectra from the dip are ignored. When the RPM-values are again above the last value in the rising region, the
spectra count once more. The results are filled only once and in one direction. If, for instance, another run-up occurs it is ignored. In such cases
the function OtrRpmSpectrum() is to be preferred.

The channels Vibration and Speed may also have different sampling rates.

Examples:
The FFT spectrum of a fast motor run-up is to be determined in reference to the rotation speed. The measurement signals "Vibration" and "speed"
(rotation speed) are given. Calculate FFTs of width 1000 points.

WindowSize = 1000 ; Width of window for FFT, in number of data points
WindowType = 0; 0 Rectangle
Overlap = 75 ; Overlap in %
UpDown = 1 ; 1 run-up, -1 run-down
NResolution =0.0 ; RPM-resolution
Calc = 1 ; 1 = mean
FFT_Spectrum = OtrRpmSpectrumFast (Vibration, speed, WindowSize, WindowType, Overlap, UpDown, NResolution, Calc, 0)

A substantial time window overlap is selected for the FFT. This provides a larger number of spectra even for rapid run-ups.

See also:
OtrRpmPresentVector, OtrRpmPresentFast

imc FAMOS Func on Reference - 641 -

(c) 2024 imc Test & Measurement GmbH

OtrRpmThirds

Available in: Enterprise Edition and above (OrderTracking-Kit)

From the time-histories of a vibration and rotation speed, the 1/3 octave spectrum referenced to the rotation speed is determined. The desired
RPM-range is divided into equally spaced classes.

Declaration:
OtrRpmThirds (Vibration, Rotation speed, RPM_Min, RPM_Max, RPM_class_width, f1, f2, Frequency weighting) ->
Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed signal. Scaled in RPMs

RPM_Min Lower limit of desired rotation speed range. Scaled in rpm's.

RPM_Max Upper limit of desired rotation speed range. Scaled in rpm's.

RPM_class_width Width of rot.-speed class (interval). Scaled in rpm's.

f1 Center frequency of lowest 1/3 octave in Hz

f2 Center frequency of highest 1/3 octave in Hz

Frequency weighting Frequency weighting for the result

0 : linear

1 : A-weighting

2 : B-weighting

3 : C-weighting

4 : D-weighting

Result

Result 1/3 octave spectrum referenced to rotation speed

Description:
The two frequency limits f1 and f2 are to be given as the 1/3-octave center frequencies, e.g. f1 = 8 Hz and f2 = 12500 Hz. f1 < f2. The upper 1/3-oct.
with its frequency band must lie entirely within half of the sampling frequency.

The individual 1/3-octave values are stated as root mean square (RMS) values.

While the transients in the individual 1/3-octave (band-pass) filters are subsiding at the start of the measurement, the input signal's values are
ignored. The transient time for the 1kHz 1/3-octave is is assumed to be 35ms. This time interval is inversely proportional to the 1/3-octave
frequency. For very low 1/3-octaves, this time interval becomes considerable. A correspondingly long measurement must then be expected.

The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.

If there are no values in a certain RPM-class, this 1/3-octave spectrum is filled with zeroes. For sensible operation, every 1/3-octave class should
have enough measurement values. The lowest 1/3-octave bands deserve special attention in this regard.

The result is a segmented data set. Each segment contains one 1/3 octave spectrum. The x-coordinate of the result counts the 1/3-octave bands
(just like the Famos-function OctA). For good representation in the curve window, 1/3-octave labeling should be selected.

The 1/3-octave filter and analyses are in accordance with IEC 651 (sound level measurement), DIN 45652 (1/3-octave filter for electro-acoustic
measurements) and EN61260-1:2014 or IEC61260-1:2014 (band-pass filter for octaves and fractions of octaves, filter Class 1).

Examples:
From the time-histories of a vibration signal "vib" and of the rotational speed, the 1/3-octave spectrum referenced to the rotation speed is to be
found. The sampling interval for the vibration signal is 0.025 ms.

rpm_Min = 1000.0 ; minimum of rotation speed range
rpm_Max = 6000.0 ; maximum of rotation speed range
rpm_Delta = 100.0 ; width of individual rotation speed classes
fEval = 1 ; 0 (linear) 1 (A-weighting)
f1 = 10
f2 = 12500
Thirds = OtrRpmThirds (vib, speed, rpm_Min, rpm_Max, rpm_Delta, f1, f2, fEval)

See also:
OtrRpmSpectrum, SpecThirds, OctI

imc FAMOS Func on Reference - 642 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTachoMode

Available in: Enterprise Edition and above (OrderTracking-Kit)

Is the tacho signal a rotation speed or impulses from an encoder? The interpretation of the signal is specified for the purposes of other Kit
functions which use the tacho signal.

Declaration:
OtrTachoMode (Signal type, Encoder type, Encoder pulses, MinRPM)

Parameter:

Signal type Tacho signal type

0 : Rotation speed in RPM

1 : Number of impulses per sample step

2 : Cronos Mode Pulse instant

3 : Sampled rectangle signal

4 : Sinusoidal signal

Encoder type Encoder type. Does the encoder have all cogs?

0 : Default

1 : 1 cog missing

2 : 2 cogs missing

Encoder
pulses Number of encoder pulses. The encoder emits this many pulses per revolution. >= 1. Need not be an integer.

MinRPM Minimum rotation speed, scaled in RPM. >= 0. For encoders with missing teeth, the rotation speed at which the gap is still just
detectable.

Description:
What is the tacho signal's type, i.e., is it already a rotation speed, or pulses from an encoder? This sets the interpretation of the tacho signal for
other functions of the Kit for which it is a parameter. Thus, calling this function doesn't cause any action to be take per se, rather, the Kit's
memory receives the instruction how to treat the tacho signal in future function calls. Only such functions are affected which explicitly have a
parameter designated Tacho. Other functions which take a rotation speed signal as a parameter, expect a parameter scaled in RPM.

Signal type 0: Rotation speed in RPM

The tacho signal is a rotation speed signal permanently scaled in RPM.

Signal type 1: number of pulses per sampling step

The tacho signal contains a sequence of (whole) numbers. Each number represents the number of pulses already counted within the current
sampling step. Counting of the pulses has already been performed. It is assumed that the rotation speed is directly proportional to the
number of pulses counted. The function smoothes the rotation speed signal such as to provide an improved estimate of the rotation speed.
If the signal were to contain the sequence of values {, 3, 4, 4, 4, 3, 4, 4, 4, 3... }, then for this portion of the signal, a rotation speed of
approx. 3.75 is estimated. The function interprets each of the signal's values as a number of pulses. If the signal were to contain the
sequence of values { 0, 0, 1, 0, 1, 2, 1 }, then 5 pulses would have been detected. Note: from such a signal as this, the rotation speed can often
not be determined well.

Signal type 2: Cronos Mode Pulse instant

This signal type is only available if you are working with the measurement device imc-Cronos, in which case the device's incremental
encoder input must be set to "Mode/ Pulse instant". A very precise pulse acquisition is performed.

Signal type 3: Sampled rectangular signal

The encoder is assumed to have turned by one increment each time the signal makes a transition from "Less than or equal to 0.0" to "Greater
than 0.0". If the signal were to contain the sequence of values { 0, 0, 1, 1, 1, 0, 0, 1, 1, 0 }, then 2 pulses would have been detected. The
function returns a rotation speed time-history, scaled in RPM. If the measurement data do not correspond to the appropriate levels, the
signal can be re-shaped using, for example, the Schmitt-Trigger function stri().

imc FAMOS Func on Reference - 643 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

Signal type 4: Sinusoidal signal

Sinusoidal signals or other having a clear zero crossing in a positive edge can be processed. If the signal contains noise, it may be necessary to
perform smoothing first and then use a Schmitt-trigger. The encoder is assumed to emit a pulse upon a zero-crossing in the positive direction
(rising edge). If the signal were to contain the sequence of values { -3.0, -1.0, +1.5, +2.8, +1.3, +0.1, -0.6 }, then a pulse would be detected
upon the transition from -1.0 to +1.5.

Special features of encoders with missing pulses:

The encoder type = 0 is the default. Only in case the signal type is 2 (Cronos Mode Pulse instant), a different encoder type can be selected.
The number of encoder pulses must always be entered including the missing tooth and must be integer. For instance, for an encoder with
emits a pulse for every 10 degrees, and which should then actually have 36 cogs, 36 must be entered for the number of encoder pulses. But
the encoder only emits 35 pulses since one is missing. Another typical encoder has a pulse for every 6 degrees. Here; we enter 60 cogs
although 2 are missing so that there are really only 58. The first cog after the gap is taken to be the zero-pulse (which isn't relevant to this
function). Encoders with missing cogs can only be used in measurements with Cronos. Recognition of the missing cogs is only possible if the
rotation speed is more or less constant around the gap. Particularly with low rotation speeds, this can't be assured. Since recognition of the
gap is then not certain, the minimum rotation speed must be set to a non-zero value. For higher rotation speeds, the gap is usually clearly
recognized due to mechanical inertia. The function tries to re-synchronize itself after an error in the pulse sequence (or after a pulse
sequence interpreted apparently incorrectly). Nevertheless, incorrect values for the rotation speed can have occured now and then.

Minimum rotation speed:

The value can be 0.0 most of the time. The minimum rotation speed is important in order to distinguish between a standstill and crawling
rotation. Otherwise, in situations in which the drive stops, a tiny rotation greater than zero could seem to exist still. By setting the minimum
rotation speed to a value above zero, the rotation signal registers a definite zero if the rotation dips below this minimum. In general, it's no
longer possible to distinguish between standstill and very slow continuous motion if the distance between pulses is large. The minimum
rotation speed states what speed is the least which still matters. If the distance between pulses is greater than for this minimum rotation, a
rotation speed of 0.0 is assumed. For encoders with missing teeth, the minimum rotation speed must be greater than 0.0. Note: this artificial
setting of the rotation as zero changes (distorts) the integral over the rotation speed. Therefore, such a rotation speed signal should not be
subsequently used to find a rotation angle through integration.

Note:

Before functions which take "Tacho signal" as a parameter can be called, e.g. OtrTachoToSpeed(), it is necessary for the function
OtrTachoMode() to have been called at least once, so that the tacho signal's type is clearly defined. If OtrTachoMode() is not called, it is
assumed that Tacho represents a rotation speed in RPM. The respective most recent setting in OtrTachoMode() remains in effect until
OtrTachoMode() is next called. Note that the record in memory remains valid for the duratoin of the application. Therefore, to make a
sequence of commands (a routine) immune to historical artifacts (the effects of whatever the system did before), a call to OtrTachoMode()
should come at the start.

Examples:
The rotation speed of a cogwheel is to be determined. For this purpose, a rectangular voltage signal was generated by an inductive encoder. This
voltage was captured at a constant sampling rate of 1kHz and is located in the channel named "Signal". The voltage is the approx. 0V..1V in the
gap, and approx. 18V..22V when the cog's tip is near. The cogwheel has 8 cogs.

OtrTachoMode (3, 0, 8, 10.0)
EncoderPulses = stri (Signal, 15, 5)
Speed =OtrTachoToSpeed (EncoderPulses)

Since the voltage doesn't come in an appropriate form, it is altered to provide cleaner zero-crossings. If the signal is noisy, it may need to be
smoothed and/or subjected to a Schmitt-Trigger.

OtrTachoMode () is called once to set the tacho signal type. Afterwards, only OtrTachoToSpeed () neeeds to be called for various measurements
and channels.

The drive runs at rotation speeds in the range 500...3000 RPM. This returns a pulse frequency of up to 400Hz(8*50Hz). Rotation speeds under 10
RPM are not to be displayed; instead they are to be indicated by a straight zero level.

See also:
OtrOrderSpectrum, OtrResampleAAF, OtrResample, OtrTachoToSpeed, OtrTachoToDist, OtrEncoderRevs01

imc FAMOS Func on Reference - 644 -

(c) 2024 imc Test & Measurement GmbH

OtrTachoToDist

Available in: Enterprise Edition and above (OrderTracking-Kit)

From a tacho signal, provided as encoder pulses, for example, a data set recording the number of revolutions is calculated. Beforehand, the
function OtrTachoMode () must be used to set the tacho signal type.

Declaration:
OtrTachoToDist (Tachometer signal) -> Time-history of revolutions

Parameter:

Tachometer signal Tacho signal, interpreted as per previous call of OtrTachoMode().

Time-history of revolutions

Time-history of revolutions

Description:
This function integrates the encoder pulses. The result thus contains the cumulative sum of all pulses counted by then. The result is scaled as a
count of the drive's revolutions. If the result has a value of 1.0 somewhere, it means that one whole revolution was completed by then since the
beginning. If the value is later 2.0, then 2 whole revolutions have occurred 2. The function can return not only whole revolutions but also
fractions.

Integration generally begins at the first pulse. If the encoder is missing cogs, integration starts at the first pulse after the gap. This produces a
phase-correct rotation angle signal.

Integration of the rotation speed returned by OtrTachoToSpeed() will not (!) produce equivalent results.

To obtain a display in degrees, the result can be multiplied by 360 degrees.

Before calling this function, OtrTachoMode() should be called at least once.

Examples:
A rotor angle of a cogwheel on a camshaft is to be determined, which has 36 cogs with one gap. The rotation speed ranges between 800 and 7000
RPM. The data are captured using Cronos PL in Pulse instant mode, which provides a precise time for every single edge in the encoder signal.

OtrTachoMode (2, 1, 36, 500)
Revolutions =OtrTachoToDist (Tacho)

The result Revolutions states the revolutions counted. The tacho signal type must previously be set using OtrTachoMode ().

See also:
OtrOrderSpectrum, OtrResampleAAF, OtrResample, OtrTachoMode, OtrTachoToSpeed, OtrEncoderRevs01

imc FAMOS Func on Reference - 645 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTachoToSpeed

Available in: Enterprise Edition and above (OrderTracking-Kit)

From a tacho signal which may be available as encoder pulses, a rotation speed signal scaled in RPM is calculated. Before calling this function, the
function OtrTachoMode() must be used to state the tacho signal type.

Declaration:
OtrTachoToSpeed (Tachometer signal) -> Time-history of rotation speed

Parameter:

Tachometer signal Tacho signal, interpreted as per previous call of OtrTachoMode().

Time-history of rotation speed

Time-history of rotation speed

Description:
Before calling this function, OtrTachoMode() should be called at least once.

The rotation history obtained with this function should not be integrated. If the integral (consisting of rotation angle or revolutions) is needed,
the function OtrTachoToDist() should be used. The purely order analysis functions which sample over the rotation angle , e.g.
OtrOrderSpectrum(), should also not receive their rotation data from OtrTachoToSpeed(). Instead, OtrTachoMode() should be set appropriately
and the tacho signal directly passed to these functions. Other functions, by contrast, only need the rotation speed, not the angle, e.g.
OtrTrackingLowPass(). For these functions, the results of OtrTachoToSpeed() are well adapted.

Examples:
The rotation speed at a single cog is to be found. For this purpose, a rectangular voltage signal is generated by an inductive encoder. This voltage
was sampled at a constant rate of 100Hz and is exists on a channel named "Signal". The voltage is approx. 0V..1V in the gap, approx. 4V..4V at the
cog's tip. The cogwheel has 12 cogs.

OtrTachoMode (3, 0, 12, 0.0)
EncoderPulses = stri (Signal, 3.5, 1.5)
speed =OtrTachoToSpeed (EncoderPulses)

Since the voltage is not available in apprpriate form, it must be modified to achieve definite zero-crossings. Beforehand, the function
OtrTachoMode () must be used to set the tacho signal type.

See also:
OtrOrderSpectrum, OtrResampleAAF, OtrResample, OtrTachoMode, OtrTachoToDist, OtrEncoderRevs01, OtrTachoToSpeedX, PulseDuration

imc FAMOS Func on Reference - 646 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTachoToSpeedX

Available in: Enterprise Edition and above (OrderTracking-Kit)

The rotation speed signal is calculated from the tacho signal. The result gets the data type XY and is scaled in RPM. Before calling this function,
the function OtrTachoMode() must be used to state the tacho signal type.

Declaration:
OtrTachoToSpeedX (Tachometer signal) -> XY time plot of rotation speed

Parameter:

Tachometer signal Tacho signal, interpreted as per previous call of OtrTachoMode().

XY time plot of rotation speed

XY time plot of rotation speed

Description:
Before calling this function, OtrTachoMode() should be called at least once.

Only signal types 'Cronos Mode Pulse instant' and 'Sinusoidal signal' are supported.

Encoders with missing teeth are not supported.

With signal types 'Cronos Mode Pulse instant' only one pulse per sampling interval may occur. If there is more than one pulse, the function
returns -1 at the corresponding positions.

The result returned is an XY channel with time-stamps. For each pulse in the input data, an XY pair is generated.

The x-coordinate of the result provides all precise time-stamps of the pulses for further calculations.

The y-coordinate contains the speed values that are calculated from the distance to the next pulse. If the signal is displayed in steps, then each
RPM-value represents the speed for the complete interval. Since no speed can be calculated for the very last pulse, the speed value from the
preceeding pulse will be used.

Examples:
The rotation speed of a cogwheel is to be determined. The input channels contains 'Cronos Pulse Time' data.

OtrTachoMode (2, 0, 1, 0)
speed =OtrTachoToSpeedX (CronosPulseTimes)
pulse_times = speed.x

See also:
OtrTachoMode, OtrTachoToSpeed

imc FAMOS Func on Reference - 647 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTimeOrderSpectrum

Available in: Enterprise Edition and above (OrderTracking-Kit)

The order spectrum is determined from the plots of vibration and the tachometer signal over time.

Declaration:
OtrTimeOrderSpectrum (Vibration, Tachometer signal, dx, Resolution, OrderMax, WindowType, Speed_Low) -> Result

Parameter:

Vibration Time-history of vibration signal

Tachometer signal Rotation speed signal interpreted as per OtrTachoMode(). Default is time-history of rotation speed, scaled in rpm's.

dx Sampling interval/time resolution of the result. Order spectra are entered into the result at this distance from each other.

Resolution Resolution of the order spectrum. 0.1, if 0.1 orders is the distance between oder spectrum lines. The resolution must be an integral fraction of 1.0, thus: [1, 1/2, 1/3, 1/4, ..]

OrderMax The highest order (line) displayed in the order spectrum.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

6 : Hamming (RMS=1)

7 : Hanning (RMS=1)

8 : Blackman (RMS=1)

9 : Blackman / Harris (RMS=1)

10 : Flat Top (RMS=1)

Speed_Low Lower boundary of the rotation speed, expressed in revs/min. If the absolute value of the rotation speed is <= this value, the order spectrum is set to zero.

Result

Result Order spectrum in relation to time

Description:
This function determines an order spectrum for each time point in the result. The first one is assigned the time x0 of the vibration signal. Subsequent ones follow at intervals given by the parameter dx.

The inverse of the resolution states how many revolutions contribute to an order spectrum. For instance, with a resolution of 0.1 each spectrum is determined from 10 revolutions.

The spectral lines are stated as RMS (root mean square) values.

Since the FFT is calculated internally from a larger number of data (a power of two), some spectral lines are cut off. The visible spectrum thus no longer reflects the whole power of the signal. A rectangular window for
the FFT is highly recommended, if high resolution of the frequency is desired.

A tracking Butterworth low-pass filter is used as the anti-aliasing filter. The signal thus filtered is sampled over the rotation angle. Then an FFT is calculated. This procedure causes the signal to temporarily contain much
higher order lines than in the spectrum which is ultimately returned. The AAF's 3dB-order is far behind the order lines in the resulting spectrum.

The function works well for:

OrderMax < 10 / (SamplingTime_Vibration * max (rotation speed)),

where SamplingTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value.

A calculated order spectrum results from a certain time period of input data. Typically, there are multiple revolutions (corresponding to the RPM-signal) within this time period. At low RPM-values, this time period may
be long. The point in time at which an entry into the result is made is the center of this time period.

The parameter dx is typically selected such that at the highest expected RPM-value, there is a certain resulting overlap of order spectra. The typical overlap is between 50% and 90%. The shortest time duration for an
order spectrum is 60 / (Maximum_RPMs * Resolution). At 50% overlap, this duration is divided by 2; at 90% overlap, by 10. If the value of dx is too small, one obtains many order spectra which are (almost) the same. If too
large, it is possible for important order spectra to go missing.

dx is rounded to integer multiples of the vibration signal's sampling interval.

The parameter Speed_Low ensures that with long-term data sets, even low RPM-values or even standstills (RPM = 0) are treated. Since in such time regions, there is no sampling over the angle, no new order spectra are
generated. Old spectra will then no longer fill up this region. Instead, spectra with zeroes result.

If there is at least one RPM-value captured by Speed_Low within an order spectrum's time period, the entire order spectrum is set to zero.

At the beginning or the end of the entire time range, it can happen that there are no order spectra at the edge. In that case, the region up to the edge is filled with the next existing order spectrum.

If there are no new order spectra for middle time points of the result, the preceding one is used.

The moving antialiasing-filter has a certain settling time. The results of this filtering are ignored as long as the filter is still (strongly) affected by transient oscillations. For this reason, the initial measured values do not
affect the first order spectra.

The window function for the FFT used generally has 1 as its mean value. Only such which are denoted by RMS=1 have a root-mean-square value of 1.

In contrast to mean value=1, with RMS=1 the result is divided by sqrt(ENBW=Equivalent noise bandwidth) according to the window type used. E.g. division by sqrt(1.5) in the case of a Hanning window.

The rotation speed should change only slowly. If the rotation speed becomes far too high, the calculation time required increases enormously without providing better results.
The rotation angle is determined by integration (summing up) of the tachometer signal. If the tacho signal is itself a rotation speed signal (and not an impulse signal), the rotation speed must be available at good
precision.
The Tacho signal's sampling interval must be either equal to the vibration's sampling time or an integer multiple of it.
The result is a segmented waveform. Each segment is an order spectrum.
Before calling this function, OtrTachoMode() should be called at least once.
For the sampling, the absolute value of the rotation speed is used.

Examples:
An order spectrum's plot over time is to be calculated from the time-history of the rotation speed and of the vibration, vib. The time-based signals are sampled every 0.2 ms.

The maximum rotation speed present is 6000 revs/min.

OtrTachoMode (0, 0, 0, 0)
dx = 0.05 ; After the elapse of this many seconds, a new order spectrum appears in the result.
Resolution = 0.1 ; spectrum resolution, every 1/10 order is shown, calculated for 10 revolutions
OrderMax = 6.0 ; display spectral lines up to this order.
Windowtype = 0 ; 0 default (rectangle)
SpeedLow = 100 ; If the rotation speed decreases to this value or lower, this needs to be interpreted as a standstill. The result is set to zero within this time region.
OTime = OtrTimeOrderSpectrum (vib, speed, dx, Resolution, OrderMax, Windowtype, SpeedLow)

Here we have: OrderMax = 6.0 < 10 / (0.0002 * 6000) = 8.3

For resolution reasons, an order spectrum is calculated over 10 revolutions. At maximum rotation speed, these 10 revolutions take this many seconds: 10/(6000/60) = 0.1. For an assumed overlap of 50%, it is necessary to
select dx = 0.05 [seconds].

OtrTachoMode() is first used to set the tacho signal type used.

imc FAMOS Func on Reference - 648 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

See also:
OtrOrderSpectrum, OtrTachoMode

imc FAMOS Func on Reference - 649 -

(c) 2024 imc Test & Measurement GmbH

OtrTrackingBandPass

Available in: Enterprise Edition and above (OrderTracking-Kit)

Tracking band-pass filter. A vibration signal is band-pass filtered, and the filter's center frequency depends on the rotation speed. The time-
history of an order is determined.

Declaration:
OtrTrackingBandPass (Vibration, Rotation speed, OrderCenter, WidthPercent, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation
speed Time-history of rotation speed signal. Scaled in RPMs.

OrderCenter Order (line) at which the band-pass' center frequency is located.

WidthPercent Overall width in percent. Recommended 10%...100%. Input range [0.01 ... 10000.0]. For example, at 30% width the ratio of the
upper to the lower cutoff frequency of the bandpass is 1.30.

FilterOrder The bandpass filter's order (2, 4, 6, 8, 10)

Result

Result Time-signal with band-pass filtered signal

Description:
The function finds the time-history of the signal component belonging to a particular order. By means of a narrow band-pass, the time history of,
for instance, a fractional order can be found in this way. It may be appropriate to use the function OtrTrackingExpoRms() afterwards.

The rotation speed's absolute value is used.

The internally selected center frequency for the filter is

center frequency = OrderCenter* (Current_RPM / 60)

The upper cutoff frequency is above the center frequency and depends on the filter's width. The upper cutoff frequency is always significantly
below half of the vibration signal's sampling frequency. Above approx. 1 / (0.48 * sampling interval), no band-pass filtering can be performed.

The function works well for:

OrderMax << 28 / (SampleTime_Vibration * max (rotation speed)),

where SamplingTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value.

OrderMax = OrderCenter * sqrt (1 + WidthPercent / 100)

<< indicates that the order specified should be much smaller.

The rotation speed may change only slowly.
The resulting center frequency may not fall much below 0.1 percent of capacity. The sampling interval for the rotation speed must be either
the same as the vibration's sampling interval, or an integer multiple of it.
If the resulting center frequency falls too low, the result can become less precise.
Note that band-passes need a certain amount of time for transients to subside. This time increases markedly for narrow-band filters. A band-
pass of width 1% is very narrow in this sense. A width of 25% corresponds to a 1/3 octave filter, a width of 100% to a 1/1 octave filter.
The filter has Butterworth characteristics. For a constant rotation speed, it works comparably to the function FiltBp().

Examples:
A vibration signal "vib" is sampled at an interval of 0.5 ms. The rotation speed can reach 8000 RPM. Find the time-history of the 1.5th order.

om = 1.5 ; the 1.5th order is selected.
fo = 6 ; a 6th order band-pass filter is used
width = 30 ; 30% overall width
tbp = OtrTrackingBandPass (vib, speed, om, width, fo)

We have: OrderMax = 1.5 * sqrt (1 + 30 / 100) = 1.7

and thus: OrderMax = 1.7 << 28 / (0.0005 * 8000) = 7.0

Finding the moving root mean square (RMS)-value:

bp_rms = OtrTrackingExpoRms (tbp, rpm, 3.0)

See also:
OtrTrackingLowPass, OtrTrackingBandStop, OtrTrackingExpoRms, OtrRpmOrder, OtrFrequLine, FiltBp

imc FAMOS Func on Reference - 650 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTrackingBandPassZ

Available in: Enterprise Edition and above (OrderTracking-Kit)

Tracking band-pass filter without phase shift. A vibration signal is band-pass filtered, and the filter's center frequency depends on the rotation
speed.

Declaration:
OtrTrackingBandPassZ (Vibration, Rotation speed, OrderCenter, WidthPercent, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation
speed Time-history of rotation speed signal. Scaled in RPMs.

OrderCenter Order (line) at which the band-pass' center frequency is located.

WidthPercent Overall width in percent. Recommended 10%...100%. Input range [0.01 ... 10000.0]. For example, at 30% width the ratio of the
upper to the lower cutoff frequency of the bandpass is 1.30.

FilterOrder The bandstop filter's order (4, 8, 12, 16, 20)

Result

Result Time-signal with band-pass filtered signal

Description:
The function finds the time-history of the signal component belonging to a particular order. By means of a narrow band-pass, the time history of,
for instance, a fractional order can be found in this way. It may be appropriate to use the function OtrTrackingExpoRms() afterwards.

The rotation speed's absolute value is used.

The internally selected center frequency for the filter is

center frequency = OrderCenter* (Current_RPM / 60)

The upper cutoff frequency is above the center frequency and depends on the filter's width. The upper cutoff frequency is always significantly
below half of the vibration signal's sampling frequency. Above approx. 1 / (0.48 * sampling interval), no band-pass filtering can be performed.

The function works well for:

OrderMax << 28 / (SampleTime_Vibration * max (rotation speed)),

where SamplingTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value.

OrderMax = OrderCenter * sqrt (1 + WidthPercent / 100)

<< indicates that the order specified should be much smaller.

The rotation speed may change only slowly.
The resulting center frequency may not fall much below 0.1 percent of capacity. The sampling interval for the rotation speed must be either
the same as the vibration's sampling interval, or an integer multiple of it.
If the resulting center frequency falls too low, the result can become less precise.
Note that band-passes need a certain amount of time for transients to subside. This time increases markedly for narrow-band filters. A band-
pass of width 1% is very narrow in this sense. A width of 25% corresponds to a 1/3 octave filter, a width of 100% to a 1/1 octave filter.
The filter has Butterworth characteristics. At a constant rotation speed it operates comparably to the function FiltBpZ().

The waveform is filtered once forwards and once backwards. But for this purpose a filter is used which has the characteristics specified but whose
order is only one-half of that stated.

The amplitude-frequency response is standardized so that the damping is 3dB at the cutoff frequency.

The filter is not causal. For this reason, the chronological order between cause and effect no longer applies.

Transisnt effects in both directions exist, in particular not only at the beginning, but also at the end of the waveform.

Ideally, the value of the phase is zero. In practice, however, this only applies to the state after all transients have subsided, not to border areas.

Examples:
A vibration signal "vib" is sampled at an interval of 0.5 ms. The rotation speed can reach 8000 RPM. Find the time-history of the 1.5th order.

The filter must not cause a delay or phase shift.

om = 1.5 ; the 1.5th order is selected.
fo = 6 ; a 6th order band-pass filter is used
width = 30 ; 30% overall width
tbp = OtrTrackingBandPassZ (vib, speed, om, width, fo)

imc FAMOS Func on Reference - 651 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

We have: OrderMax = 1.5 * sqrt (1 + 30 / 100) = 1.7

and thus: OrderMax = 1.7 << 28 / (0.0005 * 8000) = 7.0

Finding the moving root mean square (RMS)-value:

bp_rms = OtrTrackingExpoRms (tbp, rpm, 3.0)

See also:
OtrTrackingLowPass, OtrTrackingBandStop, OtrTrackingExpoRms, OtrRpmOrder, OtrFrequLine, FiltBp

imc FAMOS Func on Reference - 652 -

(c) 2024 imc Test & Measurement GmbH

OtrTrackingBandStop

Available in: Enterprise Edition and above (OrderTracking-Kit)

Tracking band-stop filter. A vibration signal is band-stop filtered, and the filter's center frequency depends on the rotation speed.

Declaration:
OtrTrackingBandStop (Vibration, Rotation speed, OrderCenter, WidthPercent, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation
speed Time-history of rotation speed signal. Scaled in RPMs.

OrderCenter Order (line) at which the band-stop filter's center frequency is located.

WidthPercent Overall width in percent. Recommended: 10%...100%. Input range [0.01 ... 10000.0]. For example, at 30% width the ratio of
upper to lower cutoff frequency of the band stop is 1.30.

FilterOrder The band-stop filter's filter order (2, 4, 6, 8, 10)

Result

Result Band-stop filtered time-based signal

Description:
The function finds the time-history of signal components which do not belong to a particular order. In this way a narrow band-stop can be used,
for instance, to eliminate any desired order from the signal.

The rotation speed's absolute value is used.

The internally selected center frequency for the filter is

center frequency = OrderCenter* (Current_RPM / 60)

The upper cuttoff frequency is above the center frequency and depends on the filter's width. The upper cutoff frequency must always be far
below the half of the sampling frequency of the vibration signal. Above approx. 1 / (0.48 * sampling interval), band-stop filtering cannot be
performed.

The function works well for:

OrderMax << 28 / (SampleTime_Vibration * max (rotation speed)),

where SampleTime_Vibration is the vibration signal's sampling interval and max (rotation speed) is the maximum occurring RPM value.

OrderMax = OrderCenter * sqrt (1 + WidthPercent / 100)

<< indicates that the order specified should be much lower.

The rotation speed may change only slowly.
The resulting center frequency should not fall far below 0.1 percent of capacity.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
Note that the band-stop filter needs a certain amount of time for transients to subside. This time is especially long for narrow filters. A band-
stop filter of width 1% is an extremely narrow filter in this sense.
The filter has Butterworth characteristics. At a constant rotation speed, it works comparably to the function FiltBs(), but with a different
choice of initial values.

Examples:
A vibration signal "vib" is sampled at intervals of 1 ms. The rotation speed can reach 8000 RPM. The 2.5th order is to be eliminated.

om = 2.5 ; the 2.5th order is selected.
fo = 4 ; a 4th order band-stop filter is used.
width = 30 ; 30% overall width
tbs = OtrTrackingBandStop (vib, speed, om, width, fo)

We have: OrderMax = 2.5 * sqrt (1 + 30 / 100) = 2.9

and thus: OrderMax = 2.9 << 28 / (0.001 * 8000) = 3.5

See also:
OtrTrackingLowPass, OtrTrackingBandPass, OtrTrackingExpoRms, OtrRpmOrder, OtrFrequLine, FiltBs

imc FAMOS Func on Reference - 653 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTrackingBandStopZ

Available in: Enterprise Edition and above (OrderTracking-Kit)

Tracking band-stop filter without phase shift. A vibration signal is band-stop filtered, and the filter's center frequency depends on the rotation
speed.

Declaration:
OtrTrackingBandStopZ (Vibration, Rotation speed, OrderCenter, WidthPercent, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation
speed Time-history of rotation speed signal. Scaled in RPMs.

OrderCenter Order (line) at which the band-stop filter's center frequency is located.

WidthPercent Overall width in percent. Recommended: 10%...100%. Input range [0.01 ... 10000.0]. For example, at 30% width the ratio of
upper to lower cutoff frequency of the band stop is 1.30.

FilterOrder The band-stop filter's filter order (4, 8, 12, 16, 20)

Result

Result Band-stop filtered time-based signal

Description:
The function finds the time-history of signal components which do not belong to a particular order. In this way a narrow band-stop can be used,
for instance, to eliminate any desired order from the signal.

The rotation speed's absolute value is used.

The internally selected center frequency for the filter is

center frequency = OrderCenter* (Current_RPM / 60)

The upper cuttoff frequency is above the center frequency and depends on the filter's width. The upper cutoff frequency must always be far
below the half of the sampling frequency of the vibration signal. Above approx. 1 / (0.48 * sampling interval), band-stop filtering cannot be
performed.

The function works well for:

OrderMax << 28 / (SampleTime_Vibration * max (rotation speed)),

where SampleTime_Vibration is the vibration signal's sampling interval and max (rotation speed) is the maximum occurring RPM value.

OrderMax = OrderCenter * sqrt (1 + WidthPercent / 100)

<< indicates that the order specified should be much lower.

The rotation speed may change only slowly.
The resulting center frequency should not fall far below 0.1 percent of capacity.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
Note that the band-stop filter needs a certain amount of time for transients to subside. This time is especially long for narrow filters. A band-
stop filter of width 1% is an extremely narrow filter in this sense.
The filter has Butterworth characteristics. At a constant rotation speed it operates comparably to the function FiltBsZ(), but with a different
choice of initial values.

The waveform is filtered once forwards and once backwards. But for this purpose a filter is used which has the characteristics specified but whose
order is only one-half of that stated.

The amplitude-frequency response is standardized so that the damping is 3dB at the cutoff frequency.

The filter is not causal. For this reason, the chronological order between cause and effect no longer applies.

Transisnt effects in both directions exist, in particular not only at the beginning, but also at the end of the waveform.

Ideally, the value of the phase is zero. In practice, however, this only applies to the state after all transients have subsided, not to border areas.

Examples:
A vibration signal "vib" is sampled at intervals of 1 ms. The rotation speed can reach 8000 RPM. The 2.5th order is to be eliminated.

The filter must not cause a delay or phase shift.

om = 2.5 ; the 2.5th order is selected.
fo = 4 ; a 4th order band-stop filter is used.
width = 30 ; 30% overall width
tbs = OtrTrackingBandStopZ (vib, speed, om, width, fo)

imc FAMOS Func on Reference - 654 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

We have: OrderMax = 2.5 * sqrt (1 + 30 / 100) = 2.9

and thus: OrderMax = 2.9 << 28 / (0.001 * 8000) = 3.5

See also:
OtrTrackingLowPass, OtrTrackingBandPass, OtrTrackingExpoRms, OtrRpmOrder, OtrFrequLine, FiltBs

imc FAMOS Func on Reference - 655 -

(c) 2024 imc Test & Measurement GmbH

OtrTrackingExpoRms

Available in: Enterprise Edition and above (OrderTracking-Kit)

Calculation of the moving RMS value with exponentially weighted averaging, where the time constant depends on the rotation speed.

Declaration:
OtrTrackingExpoRms (Vibration, Rotation speed, SmoothingRevs) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed signal. Scaled in RPMs.

SmoothingRevs The time constant corresponds to this many revolutions.

Result

Result Smoothed time-history

Description:
If a time constant is specified for finding the exponential RMS-value with the function ExpoRms (), it is the time constant for the exponential
function. In the function OtrTrackingExpoRms (), the constant is not specified as a time interval but as a number of revolutions. The time constant
is then found based on the prevalent rotation speed. The resulting time constant is inversely proportional to the rotation speed.

Time constant = SmoothingRevs * Current_RotaSpeed / 60

SmoothingRevs is a real number.

The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.

At a constant rotation speed, the functions operates comparably to the function ExpoRms(), but with a different choice of initial values.

Examples:
By means of band-pass filtering, the vibration time-history of an order line is to be obtained. This time-history is to be represented as a root
mean square (RMS) value referenced to the time. We are given a vibration "vib" and a rotation speed "speed".

tbp = OtrTrackingBandPass (vib, speed, 1.5, 30, 4)
_Smooth = 3.0 ; number of revolutions
bp_rms = OtrTrackingExpoRms (tbp, speed, _Smooth)

For obtaining the moving RMS-value, the time constant used is 3 revolutions.

See also:
OtrTrackingBandPass, OtrTrackingBandStop, ExpoRms

imc FAMOS Func on Reference - 656 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTrackingHighPass

Available in: Enterprise Edition and above (OrderTracking-Kit)

Tracking high-pass filter. A vibration signal is high-pass filtered, where the filter's cutoff frequency depends on the rotation speed.

Declaration:
OtrTrackingHighPass (Vibration, Rotation speed, Order3dB, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed signal. Scaled in RPMs

Order3dB Order (line), for which the high-pass filter dampens the signal by 3dB.

FilterOrder The highpass filter's order (1 ... 10)

Result

Result Filtered vibration signal.

Description:
The rotation speed's absolute value is used.

The filter's internally selected cutoff frequency is

Cutoff frequency = Order3dB * (current rotation speed / 60)

The cutoff frequency must always be much less than one half of the vibration signal's sampling frequency in order to achieve a filtering effect.
The function works well for:

Order3dB <<24 / (SampleTime_Vibration * max (rotation speed))

where SampleTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value. <<
indicates that the order specified must be much smaller. Conversely, it means that the maximum rotation speed may not become too high.

The rotation speed should change only slowly and may not fall much below 1% of capacity.
The high-pass filter's upper cutoff frequency must always be far less than the half of the vibration signal's sampling frequency. Above
approx. (0.4 * sampling frequency) filtering can no longer be performed.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
The filter has Butterworth characteristics. At a constant rotation speed it operates comparably to the function FiltHp(), but with a different
choice of initial values.

Examples:
A vibration signal "vib" is sampled at a rate of 0.2 ms. The rotation speed "speed" can reach 6000 RPM. Components below the 10th order are to
be suppressed.

o3dB = 10.0 ; the high-pass filter dampens by 3dB for this order
fo = 2 ; a 2nd order high-pass filter is used
tlp = OtrTrackingHighPass (vib, speed, o3dB, fo)

We have: OrderMax = 10.0 << 24 / (0.0002 * 6000) = 20.0.

The filter is dimensioned to dampen by 3 dB at the 10th order.

See also:
OtrTrackingBandPass, OtrTrackingLowPass, OtrResampleAAF, OtrRpmPresentation, FiltHp

imc FAMOS Func on Reference - 657 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTrackingHighPassZ

Available in: Enterprise Edition and above (OrderTracking-Kit)

Tracking high-pass filter without phase shift. A vibration signal is low-pass filtered, where the filter's cutoff frequency depends on the rotation
speed.

Declaration:
OtrTrackingHighPassZ (Vibration, Rotation speed, Order3dB, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed signal. Scaled in RPMs

Order3dB Order (line), for which the high-pass filter dampens the signal by 3dB.

FilterOrder The highpass filter's order (2, 4, 6, .. 20)

Result

Result Filtered vibration signal.

Description:
The rotation speed's absolute value is used.

The filter's internally selected cutoff frequency is

Cutoff frequency = Order3dB * (current rotation speed / 60)

The cutoff frequency must always be much less than one half of the vibration signal's sampling frequency in order to achieve a filtering effect.
The function works well for:

Order3dB <<24 / (SampleTime_Vibration * max (rotation speed))

where SampleTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value. <<
indicates that the order specified must be much smaller. Conversely, it means that the maximum rotation speed may not become too high.

The rotation speed should change only slowly and may not fall much below 1% of capacity.
The high-pass filter's upper cutoff frequency must always be far less than the half of the vibration signal's sampling frequency. Above
approx. (0.4 * sampling frequency) filtering can no longer be performed.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
At a constant rotation speed the filter operates comparably to the function FiltHpZ(), but with a different choice of initial values.

The waveform is filtered once forwards and once backwards. But for this purpose a filter is used which has the characteristics specified but whose
order is only one-half of that stated.

The amplitude-frequency response is standardized so that the damping is 3dB at the cutoff frequency.

The filter is not causal. For this reason, the chronological order between cause and effect no longer applies.

Transisnt effects in both directions exist, in particular not only at the beginning, but also at the end of the waveform.

Ideally, the value of the phase is zero. In practice, however, this only applies to the state after all transients have subsided, not to border areas.

Examples:
A vibration signal "vib" is sampled at a rate of 0.2 ms. The rotation speed "speed" can reach 6000 RPM. Components below the 10th order are to
be suppressed.

The filter must not cause a delay or phase shift.

o3dB = 10.0 ; the high-pass filter dampens by 3dB for this order
fo = 2 ; a 2nd order high-pass filter is used
thp = OtrTrackingHighPassZ (vib, speed, o3dB, fo)

We have: OrderMax = 10.0 << 24 / (0.0002 * 6000) = 20.0.

The filter is dimensioned to dampen by 3 dB at the 10th order.

See also:
OtrTrackingHighPass, OtrTrackingLowPassZ, OtrResampleAAF, OtrRpmPresentation, FiltHpZ, FiltHp

imc FAMOS Func on Reference - 658 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTrackingLowPass

Available in: Enterprise Edition and above (OrderTracking-Kit)

Tracking low-pass filter. A vibration signal is low-pass filtered, where the filter's cutoff frequency depends on the rotation speed.

Declaration:
OtrTrackingLowPass (Vibration, Rotation speed, Order3dB, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed signal. Scaled in RPMs

Order3dB Order (line), for which the low-pass filter dampens the signal by 3dB

FilterOrder The filter order of the low-pass filter (1 ... 10)

Result

Result Filtered vibration signal.

Description:
The rotation speed's absolute value is used.

The filter's internally selected cutoff frequency is

Cutoff frequency = Order3dB * (current rotation speed / 60)

The cutoff frequency must always be much less than one half of the vibration signal's sampling frequency in order to achieve a filtering effect.
The function works well for:

Order3dB <<24 / (SampleTime_Vibration * max (rotation speed))

where SampleTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value. <<
indicates that the order specified must be much smaller. Conversely, it means that the maximum rotation speed may not become too high.

The rotation speed should change only slowly and may not fall much below 1% of capacity.
The upper cutoff frequency of the low-pass filter must always be far below half of the vibration signals sampling rate. Above approx. (0.4 *
sampling rate), filtering cannot be performed.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
The filter has Butterworth characteristics. At a constant rotation speed it operates comparably to the function FiltLp(), but with a different
choice of initial values.

Examples:
A vibration signal "vib" is sampled at a rate of 0.2 ms. The rotation speed "speed" can reach 6000 RPM. Components above the 10th order are to
be suppressed.

o3dB = 10.0 ; the low-pass filter dampens by 3dB for this order
fo = 6 ; a 6th order low-pass filter is used
tlp = OtrTrackingLowPass (vib, speed, o3dB, fo)

We have: OrderMax = 10.0 << 24 / (0.0002 * 6000) = 20.0.

The low-pass filter is dimensioned to dampen by 3 dB at the 10th order, by 40 dB at the 22nd order. Below the 8.3th order, the amplitude error is
already below 5%.

See also:
OtrTrackingBandPass, OtrResampleAAF, OtrRpmPresentation, FiltLP

imc FAMOS Func on Reference - 659 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

OtrTrackingLowPassZ

Available in: Enterprise Edition and above (OrderTracking-Kit)

Tracking low-pass filter without phase shift. A vibration signal is low-pass filtered, where the filter's cutoff frequency depends on the rotation
speed.

Declaration:
OtrTrackingLowPassZ (Vibration, Rotation speed, Order3dB, FilterOrder) -> Result

Parameter:

Vibration Time-history of vibration signal

Rotation speed Time-history of rotation speed signal. Scaled in RPMs

Order3dB Order (line), for which the low-pass filter dampens the signal by 3dB

FilterOrder The lowpass filter's order (2, 4, 6, .. 20)

Result

Result Filtered vibration signal.

Description:
The rotation speed's absolute value is used.

The filter's internally selected cutoff frequency is

Cutoff frequency = Order3dB * (current rotation speed / 60)

The cutoff frequency must always be much less than one half of the vibration signal's sampling frequency in order to achieve a filtering effect.
The function works well for:

Order3dB <<24 / (SampleTime_Vibration * max (rotation speed))

where SampleTime_Vibration is the sampling interval for the vibration signal and max (rotation speed) is the maximum occurring RPM-value. <<
indicates that the order specified must be much smaller. Conversely, it means that the maximum rotation speed may not become too high.

The rotation speed should change only slowly and may not fall much below 1% of capacity.
The upper cutoff frequency of the low-pass filter must always be far below half of the vibration signals sampling rate. Above approx. (0.4 *
sampling rate), filtering cannot be performed.
The sampling interval for the rotation speed must be either the same as the vibration's sampling interval, or an integer multiple of it.
At a constant rotation speed the filter operates comparably to the function FiltLpZ(), but with a different choice of initial values.

The waveform is filtered once forwards and once backwards. But for this purpose a filter is used which has the characteristics specified but whose
order is only one-half of that stated.

The amplitude-frequency response is standardized so that the damping is 3dB at the cutoff frequency.

The filter is not causal. For this reason, the chronological order between cause and effect no longer applies.

Transisnt effects in both directions exist, in particular not only at the beginning, but also at the end of the waveform.

Ideally, the value of the phase is zero. In practice, however, this only applies to the state after all transients have subsided, not to border areas.

Examples:
A vibration signal "vib" is sampled at a rate of 0.2 ms. The rotation speed "speed" can reach 6000 RPM. Components above the 10th order are to
be suppressed.

The filter must not cause a delay or phase shift.

o3dB = 10.0 ; the low-pass filter dampens by 3dB for this order
fo = 6 ; a 6th order low-pass filter is used
tlp = OtrTrackingLowPassZ (vib, speed, o3dB, fo)

We have: OrderMax = 10.0 << 24 / (0.0002 * 6000) = 20.0.

The filter is dimensioned to dampen by 3 dB at the 10th order.

See also:
OtrTrackingLowPass, OtrTrackingBandPassZ, OtrResampleAAF, OtrRpmPresentation, FiltLpZ, FiltLP

imc FAMOS Func on Reference - 660 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/OrdertrackingKit.pdf

ParametersPassed?

The function returns the number of parameters that were passed when calling a sequence or a sequence function.

Declaration:
ParametersPassed? () -> Number

Parameter:

Number

Number The number of parameters passed when calling the sequence or sequence function.

Description:
In a sequence functions with optional parameters: before using an an optional parameter in the code you should first check whether this
parameter was passed by the caller and thus the corresponding variable even exists. The number of parameters actually passed can be
determined using the ParametersPassed?() function. The missing parameters can then, for example, either be created yourself with standard
values or their use can be prevented by the conditional execution of code branches. The first example demonstrates relevant techniques.

Even when calling classic sub-sequences with the SEQUENCE command, the number of parameters actually passed is only known at runtime.
ParametersPassed?() also provides the number of parameters passed and thus information about how many of the formal parameters PA1 ..
PA20 are valid.

The function returns -1 if it is not called within a sequence function or in a sequence started with the SEQUENCE command.

Examples:
A sequence function "CalcSum" is defined with 4 parameters, the last 2 being optional. The function should calculate the sum over all specified
parameters.

Declaration:

!CalcSum(summand1, summand2 [, summand3] [, summand4]) => totalSum

The code of the sequence function must therefore take into account that [summand3] and/or [summand4] were not passed by the caller.
Accessing these two parameters in the code would then lead to an error because the variables are then not known at runtime.

Variant #1: Conditional execution of code branches, depending on the number of parameters passed:

parCount = ParametersPassed?()
; parCount has the value 2, 3 or 4

totalSum = summand1 + summand2
SWITCH parCount
 CASE 3
 ; ; the 4th parameter is missing
 totalSum = summand1 + summand2 + summand3
 CASE 4
 ; all parameters available
 totalSum = summand1 + summand2 + summand3 + summand4
END

Variant #2: Create parameters that were not transferred yourself and initialize them with standard values:

parCount = ParametersPassed?() ; 2, 3 or 4

IF parCount < 3
 ; the 3rd parameter is missing, initialize with default value
 summand3 = 0
END
IF parCount < 4
 ; the 4th parameter is missing, initialize with default value
 summand4 = 0
END

totalSum = summand1 + summand2 + summand3 + summand4

Variant #3: The parameters passed are processed in a loop. Requires that the parameter naming follows the "FixedName" + sequential number
scheme and can be useful for a larger number of optional parameters.

parCount = ParametersPassed?() ; 2, 3 or 4
totalSum = summand1 + summand2

FOR i = 3 TO parCount
 txParName = "summand"+ TForm(i, "")

imc FAMOS Func on Reference - 661 -

(c) 2024 imc Test & Measurement GmbH

 totalSum = totalSum + <txParName>
END

The following subsequence applies a low-pass filter (Butterworth, 4th order) to the first parameter passed. The second parameter specifies the
cutoff frequency. If this is omitted, the default value of 10Hz is used. If no parameters or more than 2 parameters were passed, the sequence
terminates with an error message.

OnError("ReturnFail")
parCount = ParametersPassed?()

SWITCH parCount
 CASE 1
 f_cutoff = 10 ; default value
 CASE 2
 f_cutoff = PA2
 DEFAULT
 ThrowError("Unexpected number of passed parameters!")
END
PA1 = FiltLP(PA1, 0, 0, 4, f_cutoff)

See also:
SEQUENCE, BoxVarSelector, VarGetInit

Supported since:
Version 2024

imc FAMOS Func on Reference - 662 -

(c) 2024 imc Test & Measurement GmbH

PAUSE

Execution of the sequence is interrupted and a message is displayed which must be acknowledged by the user.

Declaration:
PAUSE OutputText

Parameter:

OutputText Arbitrary text, which is displayed

Description
The sequence is halted and a dialog box with the buttons "OK" and "Cancel", as well as the specified text is displayed. You can then view
intermediate resuls within the sequence or intervene in the sequence in other ways. If you select the button "OK", the sequence is executed
further. If you select the button "Cancel", execution of the sequence is cancelled.

Alternatively, you can also use the function BoxOutput() in order to display information for the user. For entering texts or values by the user,
the functions BoxValue?() and BoxText?() are available. For simple decisions ('Yes'/'No'-prompts), you can use the function BoxMessage().
In order to interrupt execution of the sequence for a specified delay time, you can use the function Sleep().
Multithreading: The function may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e. within
sequence functions that are executed in a separate thread) is not permitted.

Examples:

SHOW x
PAUSE First Step
x = x + 1
PAUSE Continue calculation?
x = x + 2

The original data set x and the first intermediate results can be viewed at leisure.

See also:
BoxOutput, BoxMessage, BoxValue?, Sleep, EXITSEQUENCE

imc FAMOS Func on Reference - 663 -

(c) 2024 imc Test & Measurement GmbH

Peaks

Returns the number of peaks (oscillations) in the data set.

Declaration:
Peaks (Data) -> SvCount

Parameter:

Data Data set under investigation. Permitted data types: [ND]

SvCount

SvCount Count of peaks (oscillations)

Description:
The Peaks() function counts the number of peaks in a data set. A peak begins when the values of a data set become greater than zero and ends
when the values become smaller than or equal to zero. Therefore, they are counted with a half-peak resolution.

A data set with the values 0, 0, 0, 1, 0, 0 would then contain one peak, as would the data set with the values 1, 2, 1, -1, -1, 2.

A data set with the values 0, 1, 0, 1 would contain 1.5 peaks, a data set with the values -1, 1, -1, 1, -1exactly 2 peaks.

Before applying the Peaks() function, the signal should be conditioned appropriately by subtracting its offset and smoothing or by using the
Schmitt trigger function.

Examples:

three = Peaks(cos(Ramp(0, 0.1, 200)))

A cosine-shaped data set contains 3 full periods of the cosine oscillation.

_peaks = Peaks(Smo5(NDdata) - 5)

A data set whose peaks are combined with a y-offset of 5, is smoothed and the y-offset is cleared before the peaks are counted. Smoothing
should prevent the function from counting distortions as peaks.

_peaks = Peaks(sTri(NDdata, 5, 10))

The peak counting is especially reliable when the peaks are shaped with the Schmitt trigger function before counting.

frequ = Peaks(NDdata)/(Leng?(NDdata) * xDel?(NDdata))

The peak frequency is determined by dividing the number of peaks by the duration.

See also:
STri, PulseDuration, OtrTachoToSpeed, Smo

imc FAMOS Func on Reference - 664 -

(c) 2024 imc Test & Measurement GmbH

Perio

This is a versatile function which can be used to compute any of the following properties in a periodic data set: mean values, standard deviation,
upper/ lower envelope curve across all the periods; or a particular period in the data set is outputted.

Declaration:
Perio (Data, SvPeriodLength, SvOption) -> Result

Parameter:

Data Periodic data set to be processed; allowed data types: [ND]

SvPeriodLength Number of values in a period

SvOption Defines the calculation type

-1 : Output of the mean values over all periods

-2 : Output of the standard deviations over all periods

-3 : Output of the upper envelope curve over all periods (maxima)

-4 : Output of the lower envelope curve over all periods (Minima)

>=0 : Output of the period entered

Result

Result Result corresponding to [SvOption]

Description:
The data set NDData is divided into periods. A period contains the number of values specified as the parameter [SvPeriodLength]. This is also the
number of values contained in the data set NDPeriod, which will be returned. Depending on the specification of the parameter SvOption, the
mean values, standard deviation, the upper or lower envelope curve is calculated over all periods or a special period is returned.

When -1 is selected for the parameter SvOption, the mean values over all periods are calculated and returned. The total number of mean values
determined is the same number of values contained in a period. The first mean value returned is the mean value of all first values in all periods;
the second mean value returned is the mean value of all second values in all periods, etc.

When -2 is specified for the parameter [SvOption], the standard deviation over all periods is calculated and returned. The number of standard
deviation values determined is the same number of values contained in a period. The first standard deviation value returned is the standard
deviation for all first values in all periods; the second standard deviation value is the standard deviation for all second values in all periods, etc.

By selecting -3 for the parameter [SvOption], the upper envelope curve over all periods is calculated and returned. The total number of upper
envelope curve values (maxima) is the same as the number of values contained in a period. The first upper envelope curve value returned is the
maximum of all first values in all periods; the second upper envelope curve value returned is the maximum of all second values in all periods,
etc.

Selecting -4 for the parameter [SvOption] calculates and returns the lower envelope curve over all periods. The total number of lower envelope
curve values is the same as the number of values in a period. The first lower envelope curve value returned is the minimum of all first values in
all periods; the second lower envelope curve value returned is the minimum for all second values in all periods, etc.

When an integer greater than or equal to zero is selected for the parameter [SvOption], the period corresponding to this number is returned. For
example, when 0 is selected, the first period is returned; when 1 is selected, the second period is returned, etc.

If the period length if greater than the length of the data set, selecting -2 for the parameter SvChoice sets the standard deviation value to 0;
when -1, -3 , -4 or 0 is selected for the parameter SvChoice, the resulting data set NDPeriod is extended with zeros.
Even if the length of the data set is not a multiple of the period length, entries of -1, -2, -3 or -4 for the parameter SvPeriod consider all
values occurring in the data set for calculation; when the value corresponding to the last period is specified (>= 0), the resulting data set
NDPeriod is extended with zeros.

Examples:
The data set NDData illustrated below is to be processed using the Perio function. The data set consists of 120 values; a period is specified as
consisting of 40 values:

imc FAMOS Func on Reference - 665 -

(c) 2024 imc Test & Measurement GmbH

NwMean = Perio(NwData, 40, -1)
NwStDev = Perio(NwData, 40, -2)

The result of applying the Perio function with a [SvOption] parameter of -1 (calculation of mean values) is shown in the graph on the left, as the
data set NDMean. The selection of -2 for the parameter [SvOption] (calculation of standard deviation) is returned in imc FAMOS in the graph on
the right, as the data set NDStDev:

NwTop = Perio(NwData, 40, -3)
NwBottom = Perio(NwData, 40, -4)

The result of applying the Perio function with the [SvOption] parameter set to -3 (calculation of the upper envelope curve) is returned in imc
FAMOS as the data set NDTop in the left graph; selection of -4 for the parameter [SvOption] (calculation of the lower envelope curve) is returned
in imc FAMOS as the data set NDBot in the right graph:

Nw2nd = Perio(NwData, 40, 1)

The result of applying the function Perio with a value of 1 for the parameter [SvOption] (returns the second period) is returned in the following
graph as the data set NDSpeci:

imc FAMOS Func on Reference - 666 -

(c) 2024 imc Test & Measurement GmbH

PhaseContinuous

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

The course of a signal phase is made continuous. This function eliminates all jumps of 360 degrees.

Declaration:
PhaseContinuous (Phase) -> Result

Parameter:

Phase
The function can be applied to complex waveforms which are represented in magnitude/phase format. In that case, only the phase is
processed. Segmented waveforms in particular are also allowed. The function can also be applied directly to phase plots (not only to
complex waveforms).

Result

Result Corrected phase

Description:
Since FFT calculations and certain other analytical functions only can determine the phase as multiples of 360 degrees, phase jumps seem to
occur, e.g. from -180 degrees to + 180 degrees. But it should be possible to specify an angle beyond -180 degrees, e.g. -270 degrees.

This function eliminates all jumps of more than 180 degrees by adding multiples of 360 degrees. the phase's y-unit is used as the indication of
whether the correction is made in terms of degrees (360 degrees) or arc (2*PI).

The phase of the first data point, however, is ignored. This is because at a frequency of 0 this is the steady component (DC), of which the phase is
either 0 or 180 degrees. Therefore, the jump between the first and second values remains uncorrected.

Examples:

Phase = PhaseContinuous (Phase)

Here, the phase plot is recorded in a waveform. The 360 degree jumps are eliminated.

frf = FrequencyResponse (in, out, 1000, 0, 50, 0)
frf = PhaseContinuous (frf)

Here, the phase of an FRF function is made continuous.

See also:
PhaseMod, NorthCorrection, mod, FrequencyResponse

imc FAMOS Func on Reference - 667 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

PhaseMod

Available in: Professional Edition and above

Wind directions, angles, or phases are transformed into a customary value range, e.g. 0 .. 360 degrees

Declaration:
PhaseMod (Data [, Range]) -> Result

Parameter:

Data input data

Range Range (optional , Default value: "360")

"360" : 0..360 degrees

"180" : -180..+180 degrees

"2pi" : 0..2*pi

"pi" : -pi..pi

Result

Result Result

Description:
Angles are transformed back into the desired value range by addition of an appropriate multiple of 360°, without changing the angle's actual
content.

For the range 0..360 degrees, for example, when the angle is above 360 degrees, 360 is subtracted, and for angles below 0, the number 360 is
added.

The function replaces a suitable modulo calculation

If the phase of a complex data set is corrected, its component .P must be specified as an inpunt data set.

Only equidistant input data are supported. If the input data have a time track, the function must be applied to .Y of the data set.

Examples:
Transforms phase after a calculation into the range -180 to +180 degrees

Phase = PhaseMod(Phase, "180")

Calculation of the moving wind direction averaged over 10s.

NC = NorthCorrection(Channel, 10)
NC_Mean = MvMean(NC, 10, 10)
Wind = PhaseMod(NC_Mean, "360")

See also:
NorthCorrection, mod, PhaseContinuous

imc FAMOS Func on Reference - 668 -

(c) 2024 imc Test & Measurement GmbH

PI

Circle constant PI = 3.1415...

Examples:
The constant PI as the measure of an angle in radians corresponds to 180 degrees:

Degree180 = PI * INDEGR

Generating a data set showing exactly the first half cycle of a sine function:

HalfWave = sin(Ramp(0, PI/100, 100))

See also:
PI2

imc FAMOS Func on Reference - 669 -

(c) 2024 imc Test & Measurement GmbH

PI2

2 * circle constant PI = 6.2831...

Examples:
The constante PI2 as a measure for an angle expressed in radians corresponds to 360 degrees:

Degree360 = PI2 * INDEGR

Generating a data set showing exactly the first cycle of a sin function:

wave = sin(Ramp(0, PI2/100, 100))

See also:
PI

imc FAMOS Func on Reference - 670 -

(c) 2024 imc Test & Measurement GmbH

PnClose

Closes the active Panel

Declaration:
PnClose (SvOption)

Parameter:

SvOption Options parameter or return value of a Panel dialog

Description:
Closes the active Panel or all Panels.

The meaning of the Options parameter depends on the call's context:

Call within an event sequence of a Panel-dialog which had been started by the function Dialog():

The Panel-dialog is closed and the parameter passed is used as the return value of the Dialog()-command. The function thus behaves analogously
to the function DlgCloseDialog() for user-defined dialogs.

Else:

A value of 0 signifies that the active Panel is to be closed. A 1 closes all open panels.

The Panels will not be saved; any canges will be lost.

This function was introduced with FAMOS V2022 and replaces the function DbClosePanel() of older versions.

Examples:
A Panel file is opened. A variety of updates are performed, after which the Panel is printed and then closed again.

err = PnLoad("d:\templates\result.panel")
IF err <> 0
 BoxMessage("Error", GetLastError(), "!1")
ELSE
 ; various updates
 ; ...
 PnPrint(0)
 PnClose(0)
END

A Panel 'InputValue.panel' consists of, among other things, an input box "input" for entering a positive numerical value, as well as 2 buttons 'OK'
and 'Cancel'. The Dialog()-command returns the entered value, or -1 to cancel.

Event-sequence 'Button pressed' for the 'OK'-button:

value = PnGetValue("input")
PnClose(value)

Event-sequence 'Button pressed' for the 'Cancle'-button

PnClose(-1)

Event-sequence 'Close' (user utilizes system menu to close):

; Same behavior as for the 'Cancel'-button
PnClose(-1)

Calling the dialog:

value = Dialog("InputValue.panel", "", 0)
IF value < 0
 EXITSEQUENCE 0
END
;Continue with sequence...
...

See also:
PnLoad, DbShow, Dialog

Supported since:
Version 2022

imc FAMOS Func on Reference - 671 -

(c) 2024 imc Test & Measurement GmbH

PnDeleteItem

Scope: Panels

Deletes one or all entries (listbox, droplist etc.)

Declaration:
PnDeleteItem (TxElementName, Index)

Parameter:

TxElementName Name of the element to be changed

Index Index of the entry to be deleted. The first entry has the index 1. To delete all entries, enter a 0.

Applies to:
Listbox, Droplist, Combobox

Examples:
In a list box with multi-selection, all selected entries are deleted:

Count = PnGetItemCount("list1")
i = Count
WHILE i > 0
 IF PnIsItemSelected("list1", i)
 PnDeleteItem("list1", i)
 END
 i = i - 1
END

See also:
PnGetItemCount, PnGetItemText, PnSetItemText, PnInsertItem, PnFindItem

imc FAMOS Func on Reference - 672 -

(c) 2024 imc Test & Measurement GmbH

PnEnable

Scope: Panels

The specified element is disabled (and thus not operable by the user), or enabled again

Declaration:
PnEnable (TxElementName, Task)

Parameter:

TxElementName Name of the Panel element to be displayed.

Task Task

0 : Disable element

1 : Enable element

Description:
Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Examples:
A Panel page with the name 'Filter' contains a button 'Execute', with which a currently selected channel (1st measurement/1st channell) is to be
filtered. If no such channel is selected in either the Measurement or Channel lists, the button is disabled.

Event sequence 'Data selection changed''

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 PnEnable("Filter.Execute", 1)
ELSE
 PnEnable("Filter.Execute", 0)
END

See also:
PnShow

imc FAMOS Func on Reference - 673 -

(c) 2024 imc Test & Measurement GmbH

PnExportGraphics

Scope: Panels

A page of the active Panel is exported to a selectable graphics format.

Declaration:
PnExportGraphics (TxFileName, PageSelection, Format, Resolution, ColorCount, Zero) -> Success

Parameter:

TxFileName Filename under which to save the exported file

PageSelection Selection of the page to be exported.

-1 : The active page is exported.

>=1 : Page number; only the specified page is exported.

Format Graphics-Format

0 : Portable Networks Graphic-FileFormat (*.png)

1 : JPEG-FileFormat (*.jpg)

2 : Windows Bitmap (*.bmp)

3 : Windows Enhanced Metafile (*.emf)

Resolution Specifies the resolution to be selected for the Bitmap-formats. The unit is 'dpi' (Dots per Inch). Typical values include 150dpi or
300dpi. The value must lie within the range 72 - 1200dpi. For [Format] = 3 (metafile), this value should be set to 0.

ColorCount Specifies the color type to be generated for the Bitmap-formats. For [Format] = 3 (metafile), this should be set to 0.

0 : Not used (EMF)

1 : Truecolor

2 : 256 colors

Zero Reserved, always set to 0

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
A page of the active Panel is exported under the specified filename to the selected graphics format.

If the specified filename does not have any extension, the default extension for the selected file format is used.

If no full pathname is provided, the if there is an active project the current project folder is used. Otherwise, the default folder for Panel files set
in the FAMOS presettings is used.

Examples:
A Panel page contains a button 'Export'. When the button is pressed by the user, then in the associated event-sequence a text box on the same
page is first filled with the current date and time, and next this page is exported in the PNG-format. Resolution: 300dpi, 24 *10^6 colors).

Event-sequence 'Pressed' of the 'Export'-button

TxDate = TimeToText(TimeSystem?(), 3)
PnSetText("Date", TxDate)
PnExportGraphics("d:\exports\panel.png", -1, 0, 300, 1, 0)

See also:
PnPrint, PnExportPDF

imc FAMOS Func on Reference - 674 -

(c) 2024 imc Test & Measurement GmbH

PnExportPDF

Scope: Panels

The active Panel is exported as a PDF document.

Declaration:
PnExportPDF (TxFilename, PageSelection, Option [, Method]) -> Success

Parameter:

TxFilename Name of the file to be created

PageSelection Selection of the page(s) to be exported

-1 : The active page is exported.

0 : The entire Panel (all pages) are exported.

>=1 : Page number; only the specified page is exported.

Option Option parameter

0 : If the file already exists, it is overwritten.

1 : If the file already exists, new pages are appended.

Method Export method (optional , Default value: 0)

0 : The global default setting ("Options"/"File export"/"PDF") is used.

1 : Automatic selection of the procedure which ensures that the resulting file's size is as small as possible.

2 : Bitmap: The entire page is saved as a bitmap and embedded in the PDF-document. Compatible with FAMOS-versions <= 7.2

3 : Vector graphic preferred: The individual graphics objects embedded individually in the PDF-document as much as possible.
Provides best quality.

4 : Vector graphic preferred. Alternative export method with the virtual printer driver "Win2PDF". This provides improvements
in speed in many scenarios and can reduce the size of the PDF-file generated. The driver needs to have been installed prviously
(https://www.win2pdf.com). A free 30-day trial version is available. The setting "Printout quality" in "Control Panel"->"Printers
& Scanners"->"Win2PDF" is applied. 300 DPI are normally a good compromise between file size and quality.

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
The active Panel is exported under the specified filename to the PDF format.

If the specified filename has no name extension, '.pdf' is appended.

If no complete pathname is specified, then if there is an active project the current project folder is used. Otherwise, the default folder for Panel
files specified in the FAMOS presettings is used.

Examples:
A Panel page contains a button 'Generate Report'. When the buton is pressed by the user, then in the associated event-sequence a text box on
the same page is first filled with the current date and time, and next all pages of this Panel are exported to a PDF file.

Event-sequence 'Pressed' of the 'Generate Report'-button

TxDate = TimeToText(TimeSystem?(), 3)
PnSetText("Date", TxDate)
PnExportPDF("d:\reports\report.pdf", 0, 0)

See also:
PnPrint, PnExportGraphics

imc FAMOS Func on Reference - 675 -

(c) 2024 imc Test & Measurement GmbH

PnFindItem

Scope: Panels

Finds a (list-) entry with the specified contents.

Declaration:
PnFindItem (TxElementName, TxContents) -> Index

Parameter:

TxElementName Name of the element in question

TxContents Text for the entry for which to search

Index

Index Index of the entry to be found; (>=0) if found. 0 otherwise.

Description:
The function is not case-sensitive

Applies to:
Listbox, Droplist, Combobox, CCV Selector

Examples:
Looks for an entry in a list box (with single-selection). If the entry exists, it is selected and scrolled into view, if necessary.

i = PnFindItem("list", "100.0")
IF i > 0
 PnSelectItem("list", i)
END

See also:
PnGetItemCount, PnGetItemText, PnSetItemText, PnInsertItem, PnDeleteItem

imc FAMOS Func on Reference - 676 -

(c) 2024 imc Test & Measurement GmbH

PnGetActivePage

Scope: Panels

The page number of the currently active (visible) page in the current Panel is determined.

Declaration:
PnGetActivePage () -> PageNumber

Parameter:

PageNumber

PageNumber Current page number

Description:

Examples:
A Panel contains multiple pages with a button '>>'. Upon clicking on the button, the respective next page is to be turned.

Page = PnGetActivePage()
IF Page < PnGetPageCount()
 PnSetActivePage(Page +1)
END

See also:
PnSetActivePage

imc FAMOS Func on Reference - 677 -

(c) 2024 imc Test & Measurement GmbH

PnGetFileSelection

Scope: Panels

The current selection in a File Explorer element's file list is requested.

Declaration:
PnGetFileSelection (TxElementName, ReturnFormat) -> Selection

Parameter:

TxElementName Name of the File Explorer element requested

ReturnFormat Governs in which format the selected entries are returned.

0 : Complete pathname

1 : Filename + extension

2 : Display name in the file list

Selection

Selection The currently selected file (data type: Text; for file lists with single selection) of the selected files (data type. Text array; for
lists with multi-selection). Empty text/text array of length 0, if no selection can be found.

Description:
With this function, the current selection in the file list is requested.

Folder names are returned without concluding '\'.

Special case: If the file list is not visible (mode: "Directory tree only") and the tree diagram is configured for display of files, the selection in the
tree is requested. This can be either a folder or a file.

Path-/filename vs. displayed name: The name of afile or folder may deviate from the name displayed, for example for special folders in which a
localized name is displayed (e.g. Windows with input language "German", displayed name "c:\Programme", actual path: "c:\Program files") or
with files in which the file extension mayhave been omitted (depending on the Windows-Explorer setting "Hide file extensions for known [data]
types").

Examples:
The currently selected data files in a FileExplorer widget are loaded:

Widget with single selection:

TxFileName = PnGetFileSelection("FileExplorer1", 0)
FileLoad(TxFileName, "", 0)

Widget with multiple selection:

SelectedFiles = PnGetFileSelection("FileExplorer1", 0)
FOREACH ELEMENT TxFileName in SelectedFiles
 FileLoad(TxFileName, "", 0)
END

See also:
PnGetFolder, PnSetFolder, PnSetFileSelection

imc FAMOS Func on Reference - 678 -

(c) 2024 imc Test & Measurement GmbH

PnGetFolder

Scope: Panels

Gets the File Explorer's current folder.

Declaration:
PnGetFolder (TxElementName) -> Folder

Parameter:

TxElementName Name of the File Explorer element requested

Folder

Folder Current folder

Description:
The actual path in the file system is always returned. This may deviate from the name displayed, for example for special folders in which a
localized name is displayed (e.g. Windows with input language "German", displayed name "c:\Programme", actual path: "c:\Program files").

The folder name is returned with a concluding '\'.

If a node is selected which does not correspond to an actual folder (e.g. "This PC" or "Network (places)"), an empty text is returned.

Examples:
The currently choosen folder of a FileExplorer widget will be used as new standard folder for data files:

TxFolder = PnGetFolder("FileExplorer1")
SetOption("Dir.DataFiles", TxFolder)

See also:
PnSetFolder, PnGetFileSelection, PnSetFileSelection

imc FAMOS Func on Reference - 679 -

(c) 2024 imc Test & Measurement GmbH

PnGetItemCount

Scope: Panels

Determines the number of entries in the specified panel element (listbox, droplist etc.)

Declaration:
PnGetItemCount (TxElementName) -> Count

Parameter:

TxElementName Name of the element to be queried.

Count

Count Number of entries

Applies to:
Listbox, Droplist, Combobox, CCV Selector, Radiogroup

Examples:
In a list box with multi-selection, all selected entries are deleted:

Count = PnGetItemCount("list1")
i = Count
WHILE i > 0
 IF PnIsItemSelected("list1", i)
 PnDeleteItem("list1", i)
 END
 i = i - 1
END

See also:
PnGetItemText, PnSetItemText, PnInsertItem, PnFindItem, PnDeleteItem

imc FAMOS Func on Reference - 680 -

(c) 2024 imc Test & Measurement GmbH

PnGetItemText

Scope: Panels

Returns the text for a list item.

Declaration:
PnGetItemText (TxElementName, Index) -> TxContents

Parameter:

TxElementName Name of the element to be queried.

Index Index of the entry to be queried. The first entry has the index 1.

TxContents

TxContents Text for the specified entry

Applies to:
Listbox, Droplist, Combobox, CCV Selector, Radiogroup

Examples:
The currently selected entry is read out of a list containing names of measurement files in FAMOS-format, and the corresponding file is opened.

i = PnGetSelectedItem("listFiles")
IF i > 0
 FileName$ = PnGetItemText("listFiles", i)
 fh = FileOpenDSF(FileName$,0)
 IF fh > 0
 ;...
 FileClose(fh)
 END
END

See also:
PnGetItemCount, PnSetItemText, PnInsertItem, PnFindItem, PnDeleteItem

imc FAMOS Func on Reference - 681 -

(c) 2024 imc Test & Measurement GmbH

PnGetPageCount

Scope: Panels

Determines how many pages there are in the active Panel.

Declaration:
PnGetPageCount () -> Pagecount

Parameter:

Pagecount

Pagecount Page count

Description:

Examples:
The current Panel contains multiple pages which all contain a text box named 'Date' in the text box. All these boxes are updated with the current
date.

Page = PnGetPageCount()
TxDate = TimeToText(TimeSystem?(), 3)
WHILE Page > 0
 PnSetActivePage(Page)
 PnSetText("Date", TxDate)
 Page = Page-1
END

See also:
PnSetActivePage

imc FAMOS Func on Reference - 682 -

(c) 2024 imc Test & Measurement GmbH

PnGetPageIndex

Scope: Panels

For the active panel, the associated page number is determined for a page name.

Declaration:
PnGetPageIndex (PageName) -> PageNumber

Parameter:

PageName Name (title) of the page to be queried.

PageNumber

PageNumber The number (> = 1) of the corresponding page. 0 if no page with the specified name exists.

Description:
Page names in the panel are case-sensitive. The page name must therefore be specified exactly in this regard.

Examples:
In the active panel, the page named "Final report" is exported to a PDF file.

PnExportPDF("d:\reports\report.pdf", PnGetPageIndex("Final report"), 0)

See also:
PnGetPageName

Supported since:
Version 2022

imc FAMOS Func on Reference - 683 -

(c) 2024 imc Test & Measurement GmbH

PnGetPageName

Scope: Panels

For the active panel, the associated page name is determined for a page number.

Declaration:
PnGetPageName (PageNumber) -> PageName

Parameter:

PageNumber Number of the page to be queried (> = 1).

PageName

PageName The name (title) of the page.

Description:

Examples:
Before printing the active page, the user is asked whether he really wants to print the selected page.

PageIndex = PnGetActivePage()
PageName = PnGetPageName(PageIndex)
ok = BoxMessage("Print", "Do you really want to print the page [" + PageName + "]?","?2")
IF ok = 1
 PnPrint(PageIndex)
END

See also:
PnGetPageIndex

Supported since:
Version 2022

imc FAMOS Func on Reference - 684 -

(c) 2024 imc Test & Measurement GmbH

PnGetPosition

Scope: Panels

Queries the specified element's position.

Declaration:
PnGetPosition (TxElementName, Position) -> Position

Parameter:

TxElementName Name of the Panel element to be queried

Position Positionsparameter

0 : X-coodinate of left upper corner

1 : Y-coodinate of left upper corner

2 : Width

3 : Height

Position

Position Current position [in millimeter] of the Panel element.

Description:
This function queries the Panel element's position and size on the Panel page.

Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Examples:
A Panel page with the name 'Calculation' contains a multiline editbox 'Status', which is shifted 3.3 mm to the top and its height is increased by 3.3
mm. The X-coordinate and the width remain unchanged.

X = PnGetPosition("Calculation.Status", 0))
Y = PnGetPosition("Calculation.Status", 1)
Height = PnGetPosition("Calculation.Status", 3)
PnSetPosition("Calculation.Status", X, Y - 3.3, 0, Height + 3.3)

See also:
PnSetPosition

imc FAMOS Func on Reference - 685 -

(c) 2024 imc Test & Measurement GmbH

PnGetSelectedItem

Scope: Panels

Determines the entry currently selected in a list with single-selection.

Declaration:
PnGetSelectedItem (TxElementName) -> Index

Parameter:

TxElementName Name of the element in question

Index

Index Index of the selected entry (>=0). 0, if no entry is selected.

Applies to:
Listbox (Single selection), Droplist, Combobox, CCV Selector, Radiogroup

Examples:
The currently selected entry is read out of a list containing names of measurement files in FAMOS-format, and the corresponding file is opened.

i = PnGetSelectedItem("listFiles")
IF i > 0
 FileName$ = PnGetItemText("listFiles", i)
 fh = FileOpenDSF(FileName$,0)
 IF fh > 0
 ;...
 FileClose(fh)
 END
END

See also:
PnSelectItem, PnIsItemSelected

imc FAMOS Func on Reference - 686 -

(c) 2024 imc Test & Measurement GmbH

PnGetSelectedItemCount

Scope: Panels

Determines the number of selected entries in a list with multi-selection.

Declaration:
PnGetSelectedItemCount (TxElementName) -> Count

Parameter:

TxElementName Name of the element in question

Count

Count Number of selected entries. 0, if no entry is selected.

Description:

Applies to:
Listbox (Multiple selection)

Examples:
The selected entries in a list box with multi-selection are to be evaluated at the push of a button. The button is only to be enabled if at least one
entry is selected. For this purpose, the amount of entries selected in the event 'Selected' is checked:

--> The list box's event-sequence 'Selected'

Count = PnGetSelectedItemCount(PA1)
PnEnable("Button1", Count > 0)

See also:
PnIsItemSelected, PnSetItemSelection, PnGetSelectedItem

imc FAMOS Func on Reference - 687 -

(c) 2024 imc Test & Measurement GmbH

PnGetText

Scope: Panels

Queries the content or caption of the specified element.

Declaration:
PnGetText (TxElementName) -> TxText

Parameter:

TxElementName Name of the Panel element to be queried

TxText

TxText Current content or labeling of the element

Description:
The function can only be applied to elements which have labeling or whose current state can be expressed by a text. Interpretation of the text
depends on the element's type, e.g.:

Element Meaning
Button Button caption

Label Content of the text box

Editbox (single line) Content of the input box

Droplist Currently selected entry

Combination box Content of the input box
Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Examples:
In a Panel, there is an input box for entering comments on a variable, and a button 'Apply'. When this button is pressed, the current content of
the input box is to be entered as commentary in that variable which is currently selected in the Variables list (Measurements) as 1st
measurement/1st channel.

Event-sequence 'Pressed' of the 'Apply'-button

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 TxComment = PnGetText("Comment")
 SetComm(<TxVarName>, TxComment)
END

See also:
PnGetValue, PnSetText, PnSetActivePage

imc FAMOS Func on Reference - 688 -

(c) 2024 imc Test & Measurement GmbH

PnGetValue

Scope: Panels

Queries the specified element's current numerical value.

Declaration:
PnGetValue (TxElementName) -> Value

Parameter:

TxElementName Name of the Panel element to be queried

Value

Value Current value of the Panel-element

Description:
The function can only be applied to Panel elements whose current value can be expressed as a number. The interpretation of the value depends
on the element type.

Element Meaning
Input boxes If the text in the input box can be converted to a number, this number is returned. Otherwise 0.

Switch Returns 1 if the switch is pressed or 'checked', else 0.

Radiogroup Returns the index of the selected option.

RangeEdit, TimeSpan Returns the lower limit of the range set.
Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Examples:
A Panel has a page 'Filter', used for setting low-pass filter parameters. Two input boxes 'Order' and 'Input_Freq' serve to make the specifications
for the filter order and the cutoff frequency. A switch 'Bessel' specifies whether to perform the calculation with Butterworth- or Bessel-
characteristics (switch ON). When loading the Panel, the boxes are initialized with default values. Upon pressing the button, filtering is then
performed for the current selection in the Variables list (Measurements), here: 1st channel/1st measurement.

Event-sequence 'Panel initialization'

PnSetValue("Filter.Order", 4)
PnSetValue("Filter.Input_Freq", 100)
PnSetValue("Filter.Bessel", 1)

Event-sequence 'Pressed' of the 'Filter!'-button

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 Order = PnGetValue("Order")
 Freq = PnGetValue("Input_Freq")
 Type = PnGetValue("Bessel")
 IF Order > 1 AND Freq > 0
 IF Type = 1 ; Bessel
 filtrat = FiltLP(<TxVarName>, 1, 0, Order, Freq)
 ELSE ; Butterworth
 filtrat = FiltLP(<TxVarName>, 0, 0, Order, Freq)
 END
 END
END

See also:
PnSetValue, PnGetText

imc FAMOS Func on Reference - 689 -

(c) 2024 imc Test & Measurement GmbH

PnGetValue2

Scope: Panels

Queries the current 2nd numerical value of the element specified.

Declaration:
PnGetValue2 (TxElementName) -> Value

Parameter:

TxElementName Name of the Panel element to be queried

Value

Value Current 2nd value of Panel-element

Description:
This function can only apply to such Panel element whose current state can be expressed by two numbers.

Element Meaning
TimeSpan Returns the upper boundary of the range selected in the imc FAMOS time format.

RangeEdit Returns the upper boundary of the range selected.
Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
TimeSpan, RangeEdit

Examples:
A Panel contains a Timespan-widget "dateRange" and a list box "list". The list box presents all files belonging to a given folder, whose file
creation time lies within the range specified by "dateRange". A button "Update!" causes the currently set date range to be read out and the file
list to be updated.

Event-sequence 'Pressed' of the 'Update!'-button

t_min = PnGetValue("dateRange")
t_max = PnGetValue2("dateRange")

PnDeleteItem("list", 0)
fileList = FsGetFileNames("c:\data", "*.*", 0, 0, 1)
FOREACH ELEMENT path in fileList
 t_file = FsGetFileTime(path)
 IF t_file >= t_min AND t_file <= t_max
 PnInsertItem("list", 0, FsSplitPath(path, 4), 0)
 END
END

See also:
PnGetValue, PnSetValue, PnSetValue2

imc FAMOS Func on Reference - 690 -

(c) 2024 imc Test & Measurement GmbH

PnInsertItem

Scope: Panels

Adds new entries to an element (list box, pop-down list, etc.).

Declaration:
PnInsertItem (TxElementName, Index, TxContents, Option)

Parameter:

TxElementName Name of the element to be changed

Index Insert position. The first entry has the index 1. To append the entry to the end, enter a 0.

TxContents New entry/entries. The data types allowed are Text and Text array.

Option Option parameter

0 : Default

1 : The new entry is scrolled into view (if necessary).

Description:
If a text array is specified as the 3rd parameter, all elements of the text array are inserted in succession.

When the list is sorted, the given position will be ignored and the new entry is inserted.according to the selected sort order.

Applies to:
Listbox, Droplist, ComboBox

Examples:
A list box is filled with the names of all files located in the specified folder.

Dir$ = FsDlgSelectDirectory("Select folder", "", 0)
FileListID = FsFileListNew(Dir$, "*.*", 0, 0, 0)
FileCount = FsFileListGetCount(FileListID)
i = 1
WHILE i <= FileCount
 File$ = FsSplitPath(FsFileListGetName(FileListID, i), 4)
 PnInsertItem("listFiles", i, File$, 0)
 i = i + 1
END
FsFileListClose(FileListID)

Same task, but more effective due to the use of a text array variable:

Dir$ = FsDlgSelectDirectory("Select folder", "", 0)
Files$ = FsGetFileNames(Dir$,"*.*", 0, 0, 0)
Files$ = TxRegExMatch(Files$, "^(.+)\\([^/]+)$", "", 0, 2)
PnInsertItem("listFiles", 0, Files$, 0)

A list box is filled with the names of all variables which are in the FAMOS variables list when the program is started. Subsequently, the first entry
is selected.

Count = VarGetInit(0)
i = 1
WHILE i <= Count
 PnInsertItem("ListVariables", i, VarGetName?(i), 0)
 i = i + 1
END
PnSelectItem("ListVariables", 1)

A list box is filled with all values belonging to a (short) data set.

Count = leng?(MyData)
i = 1
WHILE i <= Count
 TxVal = TForm(MyData[i], "")
 PnInsertItem("list1", 0, TxVal, 0)
 i = i + 1
END

See also:

imc FAMOS Func on Reference - 691 -

(c) 2024 imc Test & Measurement GmbH

PnGetItemCount, PnGetItemText, PnSetItemText, PnFindItem, PnDeleteItem

imc FAMOS Func on Reference - 692 -

(c) 2024 imc Test & Measurement GmbH

PnInsertPage

Scope: Panels

A new page is inserted into the active Panel.

Declaration:
PnInsertPage (TxTemplateFile, PageNumber, PageName, InsertPosition) -> Success

Parameter:

TxTemplateFile Filename of the Panel file containing the template for the new page to insert. If the parameter is empty, the current Panel is
used.

PageNumber Determines which page from [TxTemplateFile] to use.

PageName The name of the new page. If a page with the same name already exists, the function returns an error message. If an empty
string is returned, the name of the new page is generated automatically.

InsertPosition The new page is placed at the position specified here. A 0 means that it is appended at the end.

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
Using this function, a new page can be added to the current Panel. The new page can either be another page's duplicate or be imported from
another Panel file.

If no complete path is specified with the filename of the template file, the system searches for the file in these folders according to this order:

Project folder: When a project is active, the search is conducted initially in the current project's folder.
Default folder for Panel-files: FAMOS-presettings for Panels/dialogs/sequences

Examples:
The data set "u0" is to be documented in the form of a 2-column table (x,y). The Panel file 'table_template.panel' serves as the page template,
which contains, among other things, a table object with 50 lines. According to how long the data set is, the required amount of pages is generated
and subsequently saved under a new name.

Length = leng?(u0)
Rows = 50
FirstSample = 1
WHILE FirstSample <= Length
 IF FirstSample = 1
 ; Open template
 PnLoad("table_template")
 ELSE
 ; append new page
 PnInsertPage("table_template", 1, "", 0)
 END
 ; cut y-files for table
 y = CutIndex(u0, FirstSample, FirstSample+Rows-1)
 PnTableSetColumn("table1", 2, 1, y)
 ; build x-Data for table
 x = Ramp((FirstSample-1)*xdel?(u0)+ xoff?(u0), xdel?(u0), leng?(y))
 PnTableSetColumn("table1", 1, 1, x)
 FirstSample = FirstSample+Rows
END
PnPrint(0)
PnClose(0)

See also:
PnLoad, PnSave

imc FAMOS Func on Reference - 693 -

(c) 2024 imc Test & Measurement GmbH

PnIsItemSelected

Scope: Panels

Determines whether an entry in the list is selected

Declaration:
PnIsItemSelected (TxElementName, Index) -> IsSelected

Parameter:

TxElementName Name of the element in question

Index Index of the entry to be verified. the first entry has the index 1.

IsSelected

IsSelected The entry's selection status

0 : Not selected

1 : Selected

Applies to:
Listbox (Multiple selection)

Examples:
A listbox in a panel is filled with all of the values of a (short) data set. At the push of a button, all selected values are set to 0.

--> Event-sequence 'Panel initialization'

;Fills the list box with the data set's values:
Count = leng?(MyData)
i = 1
WHILE i <= Count
 TxVal = TForm(MyData[i], "")
 PnInsertItem("list1", 0, TxVal, 0)
 i = i + 1
END

--> Event sequence 'Button pressed'

;The selected samples are set to 0.
Count = PnGetItemCount("list1")
i = 1
WHILE i <= Count
 IF PnIsItemSelected("list1", i)
 MyData[i] = 0
 PnSetItemText("list1", 1, "0")
 END
 i = i + 1
END

See also:
PnGetSelectedItemCount, PnSetItemSelection, PnGetSelectedItem

imc FAMOS Func on Reference - 694 -

(c) 2024 imc Test & Measurement GmbH

PnLoad

A Panel-file is loaded and displayed.

Declaration:
PnLoad (TxFilename) -> Success

Parameter:

TxFilename Name of the Panel file to be opened

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
Loads the Panel-file specified.

If the specified filename has no name extension, then the system assumes ".panel".

If no complete path is specified with the filename, the system searches for the file in this sequence of folders:

Project folder: When a project is active, the search is conducted initially in the current project's folder.
Default folder for Panel-files: FAMOS presettings for Panels/dialogs/sequences

To start a Panel in Dialog-mode, use the command Dialog().

This function was introduced with FAMOS V2022 and replaces the function DbLoadPanel() of older versions.

Multithreading: All functions for Panel remote control can be called anywhere and have a global effect. The Panel loaded here can therefore be
used from all execution threads.

Examples:
A Panel file is opened. A variety of updates are performed, after which the Panel is printed and then closed again.

err = PnLoad("d:\templates\result.panel")
IF err <> 0
 BoxMessage("Error", GetLastError(), "!1")
ELSE
 ; various updates
 ; ...
 PnPrint(0)
 PnClose(0)
END

See also:
PnClose, Dialog

Supported since:
Version 2022

imc FAMOS Func on Reference - 695 -

(c) 2024 imc Test & Measurement GmbH

PnPrint

Scope: Panels

Prints the active Panel

Declaration:
PnPrint (PageSelection)

Parameter:

PageSelection Selection of page(s) to print

-1 : The active page is printed

0 : The entire Panel (all pages) is printed.

>=1 : Page number; only the specified page is printed.

Description:
Prints the active Panel. The current printer settings ("File"/"Print") are taken into account.

Examples:
A Panel page contains a button 'Print'. When the button is pressed by the user, then in the associated event-sequence a text box on the same
page is first filled with the current date and time, and next this page is exported in the PNG-format

-> Event-sequence 'Pressed' of the 'Print'-button

TxDate = TimeToText(TimeSystem?(), 3)
PnSetText("Date", "Printed: " + TxDate)
PnPrint(-1)

See also:
PnExportPDF, PnExportGraphics

imc FAMOS Func on Reference - 696 -

(c) 2024 imc Test & Measurement GmbH

PnRemovePage

Scope: Panels

A page in the active Panel is deleted.

Declaration:
PnRemovePage (PageNumberOrTitle) -> Success

Parameter:

PageNumberOrTitle Specifies the page number (1..) or the caption of the page to be deleted.

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
By means of this function, a page in the active Panel is deleted. The page to be deleted can be specified by either its name or its index.

Examples:
Deletes the page having the name "Intro":

PnRemovePage("Intro")

A Panel contains 10 pages for the display of a maximum of 10 channels to be loaded from a file.

Any superfluous pages are deleted, depending on the count of channels actually present:

fh = FileOpenDSF(MyFileName, 0)
channelCount = FileObjNum?(fh)
...
FOR i = 10 TO channelCount+1 STEP -1
 PnRemovePage(i)
END

See also:
PnShowPage

imc FAMOS Func on Reference - 697 -

(c) 2024 imc Test & Measurement GmbH

PnSave

Scope: Panels

Saves the active Panel

Declaration:
PnSave (TxFileName) -> Success

Parameter:

TxFileName Filename, under which the Panel is to be saved

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
The active Panel is saved under the specified filename.

If the specifed filename doesn't have any name extension, '.panel' is appended.

If no full pathname is specified, then if there is an active project the current project folder is used. Otherwise, the default folder for Panel file
specified in the FAMOS presettings is used.

Examples:
The data set "u0" is to be documented in the form of a 2-column table (x,y). The Panel file 'table_template.panel' serves as the page template,
which contains, among other things, a table object with 50 lines. According to how long the data set is, the required amount of pages is generated
and subsequently saved under a new name.

Length = leng?(u0)
Rows = 50
FirstSample = 1
WHILE FirstSample <= Length
 IF FirstSample = 1
 ; Open template
 PnLoad("table_template")
 ELSE
 ; append new page
 PnInsertPage("table_template", 1, "", 0)
 END
 ; cut y-files for table
 y = CutIndex(u0, FirstSample, FirstSample+Rows-1)
 PnTableSetColumn("table1", 2, 1, y)
 ; build x-Data for table
 x = Ramp((FirstSample-1)*xdel?(u0)+ xoff?(u0), xdel?(u0), leng?(y))
 PnTableSetColumn("table1", 1, 1, x)
 FirstSample = FirstSample+Rows
END
TxFileName = BoxText?("Select filename", "", 0)
PnSave(TxFileName)
PnClose(0)

See also:
PnLoad, PnExportPDF

imc FAMOS Func on Reference - 698 -

(c) 2024 imc Test & Measurement GmbH

PnSelectItem

Scope: Panels

Selects an entry in a list with single-selection

Declaration:
PnSelectItem (TxElementName, Index)

Parameter:

TxElementName Name of the element.

Index Index of the entry to be selected. The first entry has the index 1.

Applies to:
Listbox (Single selection), Droplist, Combobox, CCV Selector, Radiogroup

Examples:
Looks for an entry in a list box (with single-selection). If the entry exists, it is selected and scrolled into view, if necessary.

i = PnFindItem("list", "100.0")
IF i > 0
 PnSelectItem("list", i)
END

See also:
PnGetSelectedItem, PnSetItemSelection

imc FAMOS Func on Reference - 699 -

(c) 2024 imc Test & Measurement GmbH

PnSetActivePage

Scope: Panels

Determines the active (visible) page.

Declaration:
PnSetActivePage (PageNumber)

Parameter:

PageNumber Determines the page number (1..) of the page to be activated.

Description:
Multithreading: The functions for Panel remote control can be called anywhere and have a global effect. The Page selected here is therefore
valid for all execution threads.

Examples:
The current Panel contains multiple pages which all contain a text box named 'Date' in the text box. All these boxes are updated with the current
date.

Page = PnGetPageCount()
TxDate = TimeToText(TimeSystem?(), 3)
WHILE Page > 0
 PnSetActivePage(Page)
 PnSetText("Date", TxDate)
 Page = Page-1
END

See also:
PnGetPageCount

imc FAMOS Func on Reference - 700 -

(c) 2024 imc Test & Measurement GmbH

PnSetFileSelection

Scope: Panels

Sets the selection in a file explorer's file list.

Declaration:
PnSetFileSelection (TxElementName, TxNewSelection, Format) -> Success

Parameter:

TxElementName Name of the File Explorer element to be changed

TxNewSelection Filenames to select. Data type Text or Text Array (if the element multi-selection is supported). Empty text, in order to delete
the selection.

Format Specifies in what format the new selection is stated.

0 : Pathname. Either the complete path or only filename + extension can be specified.

2 : Display name in the file list

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
The function sets the current selection in the file list. Both files and subfolders can be selected. These must be present in the current folder and
currently visible, i.e. no changing of the current folder occurs. If the file list is configured for multi-selection, it is also possible to pass a text array
with multiple files to be selected.

Special case: If the file list is not visible (mode: "Directory tree only") and the tree diagram is configured for display of files, the selection is
performed in the tree. In this case, only the option 0 (complete filename) is permitted. If the filename is valid, the tree is expanded accordingly
and the file is selected; if applicable, the current folder is changed.

Path-/filename vs. displayed name: The name of afile or folder may deviate from the name displayed, for example for special folders in which a
localized name is displayed (e.g. Windows with input language "German", displayed name "c:\Programme", actual path: "c:\Program files") or
with files in which the file extension mayhave been omitted (depending on the Windows-Explorer setting "Hide file extensions for known [data]
types").

Examples:
The current folder for a FileExplorer widget is set. All files with the extension "raw" are selected.

DatFolder = "c:\Experiment001\data"
AllDatFiles = FsGetFileNames(DatFolder, "*.raw", 0, 0, 0)
PnSetFolder("FileExplorer1", DatFolder)
PnSetFileSelection("FileExplorer1", AllDatFiles, 0)

See also:
PnGetFolder, PnSetFolder, PnSetFileSelection

imc FAMOS Func on Reference - 701 -

(c) 2024 imc Test & Measurement GmbH

PnSetFolder

Scope: Panels

Sets the file Explorer's current folder to the path specified.

Declaration:
PnSetFolder (TxElementName, TxNewFolder) -> Success

Parameter:

TxElementName Name of the File Explorer element to be changed

TxNewFolder Full pathname of the desired folder

Success

Success Successful function execution. 0 if the function performs sucessfully, -1 in case of error. In case of error, the cause can be
determined using the function GetLastError().

Description:
The function sets the File Explorer's current folder to the path specified.

It is necessary to always specify the actual path in the file system. This may deviate from the name displayed, for example for special folders in
which a localized name is displayed (e.g. Windows with input language "German", displayed name "c:\Programme", actual path: "c:\Program
files").

Note:To set the root folder (the initial folder for the folder hierarchy displayed), use the function PnSetProperty(.., "Rootfolder", ..).

Examples:
The current folder of a FileExplorer widget is set to the standard path for data files in FAMOS:

TxFolder = GetOption("Dir.DataFiles")
PnSetFolder("FileExplorer1", TxFolder)

See also:
PnGetFolder, PnGetFileSelection, PnSetFileSelection, PnSetProperty

imc FAMOS Func on Reference - 702 -

(c) 2024 imc Test & Measurement GmbH

PnSetItemSelection

Scope: Panels

Sets of cancels the selection for an entry in a list with multi-selection.

Declaration:
PnSetItemSelection (TxElementName, Index, OnOff)

Parameter:

TxElementName Name of the element in question

Index Index of the entry to be changed. The first entry has the index 1. In order to (de-)select all entries, enter 0.

OnOff Selection On/ Off

0 : Cancel selection

1 : Selects an entry

Applies to:
Listbox (Multiple selection)

Examples:
Inverts the current selection in a list with multi-selection:

Count = PnGetItemCount("list1")
i = 1
 WHILE i <= Count
 Sel = PnIsItemSelected("list1", i)
 PnSetItemSelection("list1", i, NOT(Sel))
 i = i + 1
END

See also:
PnGetSelectedItemCount, PnIsItemSelected, PnSelectItem

imc FAMOS Func on Reference - 703 -

(c) 2024 imc Test & Measurement GmbH

PnSetItemText

Scope: Panels

Replaces an entry (listbox, droplist etc.) with the specified text.

Declaration:
PnSetItemText (TxElementName, Index, TxNewContents)

Parameter:

TxElementName Name of the element to be changed

Index Index of the entry to be replaced. The first entry has the index 1.

TxNewContents New text for the entry to be replaced

Applies to:
Listbox, Droplist, Combobox, Radiogroup

Examples:
A listbox in a panel is filled with all of the values of a (short) data set. At the push of a button, all selected values are set to 0.

--> Event-sequence 'Panel initialization'

;Fills the list box with the data set's values:
Count = leng?(MyData)
i = 1
WHILE i <= Count
 TxVal = TForm(MyData[i], "")
 PnInsertItem("list1", 0, TxVal, 0)
 i = i + 1
END

--> Event sequence 'Button pressed'

;The selected samples are set to 0.
Count = PnGetItemCount("list1")
i = 1
WHILE i <= Count
 IF PnIsItemSelected("list1", i)
 MyData[i] = 0
 PnSetItemText("list1", i, "0")
 END
 i = i + 1
END

See also:
PnGetItemCount, PnGetItemText, PnInsertItem, PnFindItem, PnDeleteItem

imc FAMOS Func on Reference - 704 -

(c) 2024 imc Test & Measurement GmbH

PnSetPosition

Scope: Panels

Sets the position und the size for the specified element.

Declaration:
PnSetPosition (TxElementName, left, top, wide, high)

Parameter:

TxElementName Name of the Panel element to be displayed.

left X-coodinate of left upper corner

top Y-coodinate of left upper corner

wide Width

high Height

Description:
With this function the position and size of a Panel-Elemente can be set. These values are given in millimeters.

If [wide] oder [high] are 0, the current width and height remain unchanged and only the position is changed.

Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Examples:
A Panel page with the name 'Calculation' contains a multiline editbox 'Status', which is shifted 3.3 mm to the top and its height is increased by 3.3
mm. The X-coordinate and the width remain unchanged.

X = PnGetPosition("Calculation.Status", 0))
Y = PnGetPosition("Calculation.Status", 1)
Height = PnGetPosition("Calculation.Status", 3)
PnSetPosition("Calculation.Status", X, Y - 3.3, 0, Height + 3.3)

See also:
PnGetPosition, PnShow

imc FAMOS Func on Reference - 705 -

(c) 2024 imc Test & Measurement GmbH

PnSetProperty

Scope: Panels

A property of the selected element is reset

Declaration:
PnSetProperty (TxElementName, TxPropID, Value)

Parameter:

TxElementName Name of the Panel element

TxPropID Identifier of the property to set

"FillColor" : Background color

"FrameColor" : Frame color

"TextColor" : Text color

"Image" : Image file

"RootFolder" : Root folder

"FileFilter" : File filter

"Minimum" : Minimum

"Maximum" : Maximum

"Increment" : Stepwidth

"Resolution" : Resolution

"SortOrder" : Sort order

"SortColumn" : Sort column

Value Numerical value or string to which the property is to be set

Description:
The property to set is delected by pre-defined identifiers. The adjustable properties depend on the type of the PanelPanel element.

The following properties have been defined thus far:

Identifier Meaning Applicable to:
"FillColor" Background color (RGB-value) All elements with background color

"FrameColor" Frame color (RGB-value) All elements with colored frame

"TextColor" Text color (RGB-value) Elements with text display

"Image" Image file 'Image' element

"RootFolder" Root folder 'FileExplorer' element

"FileFilter" File filter 'FileExplorer' element (e.g. "*.raw" or "*.raw;*.dat")

"Minimum" Minimum of the range to be set 'Slider' element, 'Spin', 'RangeEdit', 'TimeSpan'

"Maximum" Maximum of the range to be set 'Slider' element, 'Spin', 'RangeEdit', 'TimeSpan'

"Increment" Stepwidth in conjunction with value
changes 'Spin' element

"Resolution" Resolution of the value- or time-range 'RangeEdit' element, 'TimeSpan' (0: seconds; 1: minutes; 2: hours; 3: days; 4: week; 5:
month; 6: year)

"SortOrder" Sort order 'FileExplorer' element (1: ascending 2: descending)

"SortColumn" Index of the column to be sorted 'FileExplorer' element
Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event sequence and the event can be assigne to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

imc FAMOS Func on Reference - 706 -

(c) 2024 imc Test & Measurement GmbH

Examples:
A Panel page contains a text box 'Max' for displaying the maximum value of the currently selected variable (1st measurement, 1st channel). Upon
every change of the selection in the Measurement or Channel list, the box is updated accordingly. If the maximum value exceeds a certain limit,
the box's background color changes to red.

Event-sequence 'Data selection changed''

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 maxval = Max(<TxVarName>)
 PnSetValue("Page1.Max", maxval)
 IF maxval > 10
 ; Limit exceeded (red background)
 PnSetProperty("Page1.Max", "FillColor", RGB(255, 0, 0)))
 ELSE
 ; Default (white background)
 PnSetProperty("Page1.Max", "FillColor", RGB(255, 255, 255)))
 END
END

In an experiment setup, multiple trials were run, each of whose results were saved in separate folders on the hard drive. Additionally, each
folder contains a photo of the setup at the time of measurement, under the name "test.jpg". The data are now subsequently visualized in a one-
page Panel which in addition to a curve window also contains an image object 'pic'. The associated photo is to be displayed with the channel
(1.Kanal/1.Messung) display.

Event sequence 'Data selection changed''

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 ; name of the associated file
 FileName = FileName?(<TxVarName>)
 IF FileName <> ""
 ; construct filename for photo file
 PicFileName = FsGetParentDirectoryName(FileName)+ "\test.jpg"
 PnSetProperty("pic", "Image", PicFileName)
 END
END

See also:
PnGetValue, PnGetText

imc FAMOS Func on Reference - 707 -

(c) 2024 imc Test & Measurement GmbH

PnSetText

Scope: Panels

Sets a new content or caption of the specified element.

Declaration:
PnSetText (TxElementName, TxText)

Parameter:

TxElementName Name of the Panel element to be changed.

TxText Text to which the element is to be set

Description:
The function can only be applied to elements which have labeling or whose current state can be expressed by a text. Interpretation of the text
depends on the element type, e.g.:

Element Meaning
Button Button caption

Label Content of the text box

Editbox (single line) Content of the input box

Droplist Sets the selection to the specified text (which must be available in the selection list).

Combination box Content of the input box
The function can not be applied to elements which are linked to a variable.

Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Examples:
A Panel page contains various text boxes which display some characteristic values of a currently selected variable (1st measurement, 1st
channel). Upon every change of the selection in the Measurement or Channel list, the boxes are updated accordingly.

Event-sequence 'Data selection changed''

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 PnSetText("Page1.Name", TxVarName)
 PnSetText("Page1.Comment", Comm?(<TxVarName>))
 PnSetText("Page1.YUnit", Unit?(<TxVarName>, 1))
 PnSetText("Page1.XUnit", Unit?(<TxVarName>, 0))
END

See also:
PnGetText, PnSetValue

imc FAMOS Func on Reference - 708 -

(c) 2024 imc Test & Measurement GmbH

PnSetTimer

Scope: Panels

The timer associated with a Panel page is started/ reconfigured/ stopped.

Declaration:
PnSetTimer (PageNumber, Interval)

Parameter:

PageNumber Determines the page number (1..) of the timer to be controlled.

Interval States the interval (in seconds) at which the timer is to 'tick'. Set to 0 in order to stop the timer.

Description:
For each Panel page, it is possible to activate a timer which works at a user-specified time interval. After each elapse of the interval, the "Timer"-
event is generated, which triggers the running of an event-sequence defined to correspond to it.

To use the timer for a page, proceed as folllows:

Activate the time during the page's Design stage (set property 'Timer' to 'active')
In the FAMOS Sequence Editor you will find the event-sequence 'Timer' for the corresponding page. Here, enter the sequence of commnads
to be run cyclically.
Starts the timer with the desired time interval by means of the function PnSetTimer. For instance, you can start the timer automatically
already when opening the Panel (call the function in the event-sequence 'Panel Initialization'), or the user can start it manually by clicking on
a button (event-sequence 'Button Pressed').

FAMOS attempts to conform to the interval set as well as possible, but can not guarantee that the event will be triggered at exactly the clock rate
specified. If either the operating system or FAMOS is currently busy with other tasks, then generation of the timer event may be subject to
unpredictable delays. In particular, the event-sequence 'Timer' can only be performed if FAMOS is not currently (or no longer) performing any
other sequences. If Timer events occur while a different sequence is running, the event-sequence asigned to the Timer are performed exactly
one time, as soon as FAMOS has completed running the current sequence.

In consequence, it is clear that no time-consuming routines should be programmed to run within one Timer event-sequence. For example, a
timer with a clock rate of 1s is practically impossible to realize if it takes more than 1s to run the associated evet-sequence.

Examples:
On a Panel page, measurement of the preceding data set 'speed' is to be simulated and the growing data set is to be displayed in a curve window.
Along with the curve window, the page is also supplied with a button to use for starting/stopping the simulation; the button caption alternates
between 'Start' and 'Stop'.

The curve window displays a temporary file 'Speed_Sim', to which the respective values of the original data set are appended cyclically
(governed by the timer).

Event-sequence 'Panel Initialization'

SimIsRunning = 0
Speed_Sim = EMPTY

Event-sequence 'Pressed' belonging to the 'Start/Stop'-button

IF NOT(SimIsRunning)
 ; Start
 Speed_Sim = EMPTY
 PnSetTimer(1, 0.5) ; Update-Intervall 500ms
 SimIsRunning = 1
 PnSetText("Button1", "Stop")
ELSE
 ; Stop
 PnSetTimer(1, 0)
 SimIsRunning = 0
 PnSetText("Button1", "Start")
END

Event-sequence 'Timer'

ori_len= leng?(Speed)
next_index= leng?(Speed_Sim)+1
IF next_index <= ori_len
 ; appending 5 new values every 0.5s...
 Speed_Sim = Join(Speed_Sim, CutIndex(Speed, next_index, LowerValue(next_index+5, ori_len)))
ELSE
 ; Done, stopping timer...

imc FAMOS Func on Reference - 709 -

(c) 2024 imc Test & Measurement GmbH

 PnSetTimer(1, 0)
 SimIsRunning = 0
 PnSetText("Button1", "Start")
END

imc FAMOS Func on Reference - 710 -

(c) 2024 imc Test & Measurement GmbH

PnSetValue

Scope: Panels

Sets a new value for the specified element.

Declaration:
PnSetValue (TxElementName, Value)

Parameter:

TxElementName Name of the Panel-element to set

Value Numerical value to which the Panel-element is to be set

Description:
The function can only be used on Panel elements whose current state can be expressed as a number. The interpretation of the value depends on
the element type, e.g.:

Element Meaning
Label The numerical value is entered as the content of the text box.

Switch With a 0, the status of the switch is set to "Off", otherwise to "On".

Radiogroup The option with the specified index is selected.

RangeEdit, TimeSpan Specifies the lower boundary of the range set.
The function can not be applied to elements linked to a variable.

Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event sequence and the event can be assigne to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Examples:
A Panel has a page 'Filter', used for setting low-pass filter parameters. Two input boxes 'Order' and 'Input_Freq' serve to make the specifications
for the filter order and the cutoff frequency. A switch 'Bessel' specifies whether to perform the calculation with Butterworth- or Bessel-
characteristics (switch ON). When loading the Panel, the boxes are initialized with default values. Upon pressing the button, filtering is then
performed for the current selection in the Variables list (Measurements), here: 1st channel/1st measurement.

Event-sequence 'Panel initialization'

PnSetValue("Filter.Order", 4)
PnSetValue("Filter.Input_Freq", 100)
PnSetValue("Filter.Bessel", 1)

Event-sequence 'Pressed' of the 'Filter!'-button

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 Order = PnGetValue("Order")
 Freq = PnGetValue("Input_Freq")
 Type = PnGetValue("Bessel")
 IF Order > 1 AND Freq > 0
 IF Type = 1 ; Bessel
 filtrat = FiltLP(<TxVarName>, 1, 0, Order, Freq)
 ELSE ; Butterworth
 filtrat = FiltLP(<TxVarName>, 0, 0, Order, Freq)
 END
 END
END

See also:
PnGetValue, PnGetText, PnSetText

imc FAMOS Func on Reference - 711 -

(c) 2024 imc Test & Measurement GmbH

PnSetValue2

Scope: Panels

Sets the 2nd numerical value of the element specified.

Declaration:
PnSetValue2 (TxElementName, Value)

Parameter:

TxElementName Name of the Panel-element to set

Value Numerical value to which the Panel-element is to be set

Description:
The function can only be applied to such Panel-elements whose current state can be expressed by two numbers.

Element Meaning

TimeSpan The value denotes the upper limit of the range selected. The time value provided must be expressed in the imc FAMOS time format
which is generated by such functions as Time?(), TimeSystem?() and TimeJoin().

RangeEdit This value specifies the upper boundary of the range selected.
The function can not be applied to elements linked to a variable.

Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event sequence and the event can be assigne to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
TimeSpan, RangeEdit

Examples:
A range is to be excised out of a data set 'channel1'. The indices for the beginning and end end of the excerpt are specified by a range selection
widget 'Range'. After loading the data set, the widget is initialized to correspond to the maximum allowable value for the data set length (= index
of last value). The initial selection set is the middle fifth of the data set.

len = Leng?(channel1)
PnSetProperty("Range", "Minimum", 1)
PnSetProperty("Range", "Maximum", len)
PnSetValue("Range", floor(len*0.4))
PnSetValue2("Range", floor(len*0.6))

See also:
PnSetValue, PnGetValue2

imc FAMOS Func on Reference - 712 -

(c) 2024 imc Test & Measurement GmbH

PnShow

Scope: Panels

Controls the visibility of the specified element

Declaration:
PnShow (TxElementName, Task)

Parameter:

TxElementName Name of the Panel element to be displayed.

Task Task

0 : Hide element

1 : Show element

Description:
Selection of the element to be addressed can either take the form [page name].[element name], or by using only the element name. If the page
is not stated explicitly, the system seraches for the element as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Examples:
A Panel page with the name 'Filter' contains a button 'Execute', with which a currently selected chanel (1st measurement/1st channell) is to be
filtered. If no such channel is selected in either the Measurement or Channel lists, the button is hidden.

Event sequence 'Data selection changed''

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 PnShow("Filter.Execute", 1)
ELSE
 PnShow("Filter.Execute", 0)
END

See also:
PnEnable

imc FAMOS Func on Reference - 713 -

(c) 2024 imc Test & Measurement GmbH

PnShowPage

Scope: Panels

Controls the visibility of a panel page.

Declaration:
PnShowPage (PageNumberOrTitle, Task)

Parameter:

PageNumberOrTitle Determines the page number (1..) of the title of the page to be controlled.

Task Task

0 : Hide page

1 : Show page disabled

2 : Show page normally

Description:

Examples:
After a panel having many pages is loaded, only the first 3 pages are displayed initially. Any additional page is blocked.

Event-sequence 'Panel Initialization'

PnShowPage("Report", 1)
FOR iPage = 4 TO PnGetPageCount()
 PnShowPage(iPage, 0)
END

See also:
PnGetPageCount, PnSetActivePage

imc FAMOS Func on Reference - 714 -

(c) 2024 imc Test & Measurement GmbH

PnTableColumns?

Scope: Panels

Finds the number of columns in a table

Declaration:
PnTableColumns? (TxTableName) -> Result

Parameter:

TxTableName Name of the Panel table to be queried

Result

Result Number of columns

Description:
Finds the number of columns in the specified table of the active Panel.

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Table, Datagrid

Examples:
The columns of a table are filled with the individual events of an event-based data set.

Count = PnTableColumns?("Tab1")
CountEvn = EventNum?(Data)
IF CountEvn < Count
 Count = CountEvn
END
i = 1
WHILE i <= Count
 PnTableSetColumn("Tab1",i,2, Daten[i])
 i = i + 1
END

See also:
PnTableRows?, PnTableSetCell, PnTableSetColumn, PnTableSetRow

imc FAMOS Func on Reference - 715 -

(c) 2024 imc Test & Measurement GmbH

PnTableGetCellText

Scope: Panels

Queries the content of a table cell.

Declaration:
PnTableGetCellText (TxTableName, Column, Row) -> TxContents

Parameter:

TxTableName Name of the Panel table to be queried

Column Column (1..)

Row Row (1..)

TxContents

TxContents Content of the specified table cell

Description:
Gets the content of a cell in the specified table of the active Panel.

The inputs for the row and column determine the position of the cell to be read; the top left is [1,1]

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Table

Examples:
Gets the content of a table cell (top left). This contains a placeholder "xxx" fot the name. The placeholder is replaced and updated in the table
cell.

Tx$= PnTableGetCellText("Tab1", 1, 1, 0)
Tx$= TErsetze(Tx$,"xxx","Heinz Muster")
err= PnTableSetCell("Tab1", 1, 1, Tx$, 0)

See also:
PnTableSetColumn, PnTableSetRow, PnTableSetCell

imc FAMOS Func on Reference - 716 -

(c) 2024 imc Test & Measurement GmbH

PnTableGetCellValue

Scope: Panels

Queries the numerical value of a table cell

Declaration:
PnTableGetCellValue (TxTableName, Column, Row) -> Value

Parameter:

TxTableName Name of the Panel table to be queried

Column Column (1..)

Row Row (1..)

Value

Value Value in the specified table cell

Description:
Gets the content of a cell in the specified table of the active Panel.

The inputs for the row and column determine the position of the cell to be read; the top left is [1,1]

If the content can not be converted to a number, a 0 is returned.

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Table

Examples:
Gets the content of a table cell (top left). This contains a placeholder "xxx" fot the name. The placeholder is replaced and updated in the table
cell.

The inputs for the row and column determine the position of the first cell to be queried; the top left is [1,1]

Tx$= PnTableGetCellText("Tab1", 1, 1, 0)
Tx$= TErsetze(Tx$,"xxx","Heinz Muster")
PnTableSetCell("Tab1", 1, 1, Tx$, 0)

See also:
PnTableSetColumn, PnTableSetRow, PnTableSetCell

imc FAMOS Func on Reference - 717 -

(c) 2024 imc Test & Measurement GmbH

PnTableGetSelectedRows

Scope: Panels

Finds the currently selected rows in a Datagrid.

Declaration:
PnTableGetSelectedRows (TxElementName) -> Result

Parameter:

TxElementName Name of the Panel element

Result

Result Data set containing the indices of the selected rows

Description:
The data set retuned can have as its length 0 (no row selected), 1 (one row selected) or > 1 (for multi-selection).

The indices found refer to the absolute position in the data set displayed. The visible index of the selected row may deviate in some
circumstances, for instance if sorting had been applied to the table.

The order of the indices found corresponds to the visible order of the entries selected in the table, from top to bottom.

The index of the first row is 1.

The selection of the table to be accessed may either be made in the form [PageName].[ElementName], or be made via only the element name. If
the page is not specified explicitly, the system searches for the element as follows:

If the function is called within an event sequence and the event can be assigned to a Page (e.g. a botton's event 'Pressed'), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Datagrid

Examples:
A Panel-page contains a 2-column data grid 'tab'. Here, the data sets 'channel_x' and 'channel_y' are displayed. When confirmed by clicking on the
button 'Execute!', the currently selected columns are imported and used to construct a new XY-data set.

Event-sequence 'Panel Initialization'

PnTableSetColumn("tab1", 1, 1, channel_x)
PnTableSetColumn("tab1", 2, 1, channel_y)

Event-sequence 'Pressed' of the 'Execute!'-button

sel = PnTableGetSelectedRows("tab1")
IF leng?(sel) = 0
 BoxMessage("Error", "Please first select the desired rows in the table!", "!1")
ELSE
 sel = Sort(sel, 1) ; if table is sortable
 x = EMPTY
 y = EMPTY
 FOR I = 1 TO leng?(sel)
 index = sel[I]
 x = Join(x, Channel_x[index])
 y = Join(y, Channel_y[index])
 END
 Result = xyOf(x,y)
END

See also:
PnTableSetColumn

imc FAMOS Func on Reference - 718 -

(c) 2024 imc Test & Measurement GmbH

PnTableRows?

Scope: Panels

Finds the number of rows in a table

Declaration:
PnTableRows? (TxTableName) -> Result

Parameter:

TxTableName Name of the Panel table to be queried

Result

Result Number of rows

Description:
Finds the number of rows in the specified table of the active Panel.

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Table, Datagrid

Examples:
The rows of a table are filled with the individual segments of a segment-based data set.

Count = PnTableRows?("Tab1")
CountSeg = leng?(Data) / SegLen?(Data)
IF CountSeg < Count
 Count = CountSeg
END
i = 1
WHILE i <= Count
 PnTableSetRow ("Tab1",1,i, Data[i])
 i = i + 1
END

See also:
PnTableColumns?, PnTableSetCell, PnTableSetColumn, PnTableSetRow

imc FAMOS Func on Reference - 719 -

(c) 2024 imc Test & Measurement GmbH

PnTableSetCell

Scope: Panels

Sets the content of a table cell

Declaration:
PnTableSetCell (TxTableName, Column, Row, Contents)

Parameter:

TxTableName Name of the Panel table to be controlled.

Column Column (1..)

Row Row (1..) or 0 for column header

Contents Number or string to transfer

Description:
A cell of the specified table in the active panel is occupied with a string or a single value.

The inputs for the row and column determine the position of the cell to which to write data; the top left is [1,1]

If a data set is specified for [Content] which is over 1 in length, the data set's last value is used.

The function can not be applied to table cells which are linked to a variable.

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

This function can also be used to set the column header text for elements of the type [Datagrid]. For [Row], 0 must be entered, for [Content] only
text is allowed.

Applies to:
Table, Datagrid (Column header only)

Examples:
The second column of a table is filled with a data set which has just been calculated. The first row contains the variable name, the second row the
data set's maximum value in a fixed format. The numerical values start as of the 3rd row.

Kanal1= ...
PnTableSetCell("Tab1", 2, 1, "Kanal1")
TxMax$ = TForm(Max(Kanal1), "f32")
PnTableSetCell("Tab1", 2, 2, TxMax$)
PnTableSetColumn("Tab1", 2, 3, Kanal1)

See also:
PnTableSetColumn, PnTableSetRow, PnTableGetCellText

imc FAMOS Func on Reference - 720 -

(c) 2024 imc Test & Measurement GmbH

PnTableSetColumn

Scope: Panels

Sets the content of a table column.

Declaration:
PnTableSetColumn (TxTableName, Column, Row, Contents)

Parameter:

TxTableName Name of the Panel table to be controlled.

Column Column (1..)

Row Row (1..)

Contents Permitted data types: Normal Waveform, Text Box

Description:
One column of the specified table in the active Panel is filled with a data set. The individual numbers/texts are entered according to the
formatting specified for the table. The first number is entered at the specified position, all others below it.

The inputs for the row and column determine the position of the first cell to be filled; the top left is [1,1]

As many values are transferred as needed until either the last value of the data set or the last table row has been reached.

To transfer text to a table cell, use the function PnTableSetCell().

The function can not be applied to table cells which are linked to a variable.

If it is a data grid, the parameter [Row] must be set to 1.

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Table, Datagrid

Examples:
The columns of a table are filled with the individual events of an event-based data set.

Count = PnTableColumns?("Tab1")
CountEvn = EventNum?(Data)
IF CountEvn < Count
 Count = CountEvn
END
i = 1
WHILE i <= Count
 PnTableSetColumn("Tab1",i,2, Daten[i])
 i = i + 1
END

See also:
PnTableSetRow, PnTableSetCell

imc FAMOS Func on Reference - 721 -

(c) 2024 imc Test & Measurement GmbH

PnTableSetDim

Scope: Panels

Sets the number of columns and rows of a table.

Declaration:
PnTableSetDim (TxElementName, Columns, Rows, Option)

Parameter:

TxElementName Name of the Panel element

Columns New number of columns

Rows New number of rows

Option Option for the control of the table size.

0 : The current table size remains unchanged.

1 : The table size is changed.

Description:
With this function it is possible to set the number of columns and rows of a table.

If [Columns] or [Rows] are 0, the current number of columns or rows remain unchanged.

With [Option] the table size can be controlled as follows:

0: The current table position and size remain unchanged. The current column widths and row heights are changed proportionally.

1: The table size is adapted (the position left/top remains unchanged):

Increasing number of columns: The width of the table increases. The new columns get the width and futher properties (not the content)
from the previous last column.
Increasing number of rows: The height of the table increases. The new rows get the height and futher properties (not the conten) from the
previous last row.
At decreasing the number of rows and columns, the surplus cells were removed. The height/width of the table is decreasing, while the
remaining cells keep their size.

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Table

Examples:
The columns of a table are filled with the individual events of an event-based data set. The number of columns is set to the number of events
and number of rows is set to the maximum length of the events + 1. Therefore the complete data set can be shown in the table, starting from the
2. row.

eventCount = EventNum?(data)
maxEventLength = 0
FOREACH EVENT event IN data
 maxEventLength = UpperValue(maxEventLength, Leng?(event))
END
PnTableSetDim("Tab1", eventCount, maxEventLength + 1, 1)
i = 1
WHILE i <= eventCount
 PnTableSetColumn("Tab1", i, 2, data[i])
 i = i + 1
END

See also:
PnTableColumns?, PnTableRows?, PnTableSetCell, PnSetProperty

imc FAMOS Func on Reference - 722 -

(c) 2024 imc Test & Measurement GmbH

PnTableSetProperty

Scope: Panels

A property of the selected table value is re-set.

Declaration:
PnTableSetProperty (TxElementName, Column, Row, TxPropName, Value)

Parameter:

TxElementName Name of the Panel element

Column Column (1..)

Row Row (1..)

TxPropName Identifier of the property to set

"FillColor" : Background color

"FrameColor" : Frame color

"TextColor" : Text color

Value Numerical value or string to which the property is to be set

Description:
The property to be set is selected by pre-defined identifiers.

The following properties have been defined thus far:

Identifier Meaning
"FillColor" Background color (RGB-value)

"FrameColor" Frame color (RGB-value)

"TextColor" Text color (RGB-value)
The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Table

Examples:
A Panel page contains a table 'tab' for displaying various characteristic values of the currently selected variables (1st measurement, 1st channel).
With each change of the selection in the Measurement or Channels list, the table is updated accordingly. Among other things, the maximum of
the data set is found and entered in the 3rd line of the 2nd column. If the value exceeds a certain limit, the cell's background color is changed to
red.

Event-sequence 'Data selection changed''

TxVarName = SelBuildVarName(1, 1, 0)
IF TxVarName <> ""
 maxval = Max(<TxVarName>)
 PnTableSetCell("Page1.tab", 2, 3, maxval)
 IF maxval > 10
 ; Limit exceeded (red background)
 PnTableSetProperty("Page1.tab", 2, 3, "FillColor", RGB(255, 0, 0)))
 ELSE
 ; Default (white background)
 PnTableSetProperty("Page1.tab", 2, 3, "FillColor", RGB(255, 255, 255)))
 END
 ; ... fill further lines in the table
END

See also:
PnSetValue, PnSetProperty

imc FAMOS Func on Reference - 723 -

(c) 2024 imc Test & Measurement GmbH

PnTableSetRow

Scope: Panels

Sets the content of a table row

Declaration:
PnTableSetRow (TxTableName, Column, Row, Data)

Parameter:

TxTableName Name of the Panel table to be controlled.

Column Column (1..)

Row Row (1..)

Data Permitted data types: Normal Waveform, Text Box

Description:
One row of the specified table in the active Panel is filled with a data set. The individual numbers/texts are entered according to the formatting
specified for the table. The first number is entered at the specified position, all others to the right of it.

The inputs for the row and column determine the position of the first cell to be filled; the top left is [1,1]

As many values are transferred as needed until either the last value of the data set or the last table column has been reached.

To transfer text to a table cell, use the function PnTableSetCell().

The function can not be applied to table cells which are linked to a variable.

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event-sequence and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Table

Examples:
The rows of a table are filled with the individual segments of a segment-based data set.

Count = PnTableRows?("Tab1")
CountSeg = leng?(Daten) / SegLen?(Daten)
IF CountSeg < Count
 Count = CountSeg
END
i = 1
WHILE i <= Count
 PnTableSetRow ("Tab1",1,i, Data[i])
 i = i + 1
END

See also:
PnTableSetColumn, PnTableSetCell

imc FAMOS Func on Reference - 724 -

(c) 2024 imc Test & Measurement GmbH

PnTableShowColumn

Scope: Panels

Controls the visibility of a datagrid column

Declaration:
PnTableShowColumn (TxTableName, Column, Task)

Parameter:

TxTableName Name of the Panel table to be controlled.

Column Column (1..)

Task Task

0 : Hide column

1 : Show column

Description:
Controls the visibility of a column of the specified table in the active Panel.

The selection of the table to be addressed can either take the form [page name].[element name], or be acomplished using on the element name.
If the page is not stated explicitly, the element is found as follows:

If the function is called within an event sequence and the event can be assigned to a Page (e.g. a botton's event 'Pressed'), then the system
searches for an element with the specified name on this page.
Otherwise, the system searches on the active (visible) page.

Applies to:
Datagrid

Examples:
At design time, a data grid with 10 columns was defined. At runtime, the columns were filled with the individual events of an event-based data
set. If the data set contains fewer than 10 events, the unnecessary columns are hidden.

NumberOfCols = PnTableColumns?("Grid1")
CountEvn = EventNum?(Data)
IF NumberEvn > NumberOfCols
 NumberEvn = NumberColumns
END
i = 1
WHILE i <= NumberEvn
 PnTableSetColumn("Grid1",i,1, Data[i])
 i = i + 1
END
WHILE i <= NumberColumns
 PnTableShowColumn("Grid1",i, 0)
 i = i + 1
END

See also:
PnTableSetColumn, PnTableColumns?

imc FAMOS Func on Reference - 725 -

(c) 2024 imc Test & Measurement GmbH

PnTreeDeleteNode

Scope: Panels

Deletes nodes in a Treeview

Declaration:
PnTreeDeleteNode (TxElementName, Node, ChildPosition)

Parameter:

TxElementName Name of the tree view element

Node Absolute index or unique key of the node to be deleted, or of the associated parent node. Enter a -1 in order to delete all
nodes. With a 0, you address a node on the root level; the next parameter then specifies the position within the root level.

ChildPosition Child-position

0 : [Node] directly identifes the node(s) to be deleted.

-1 : All child nodes of [Node] are deleted. If [Node] = 0, all nodes except the root node are deleted.

>=1 : Position of the desired node among the immediate child nodes of [Node], or respectively within the root level, if a 0
was specified for [Node].

Description:

Examples:

; Deletes the entire content of the Treeview
PnTreeDeleteNode("TreeView1", -1, 0)

; Deletes all nodes except the root level
PnTreeDeleteNode("TreeView1", 0, -1)

; Deletes the 2nd node of the root level completely
PnTreeDeleteNode("TreeView1", 0, 2)

; Deletes the 3rd child node in the 2nd node of the root node
index = PnTreeGetNodeState("TreeView1", 0, 2, "AbsoluteIndex")
PnTreeDeleteNode("TreeView1", index, 3)

; Deletes all child nodes in the 2nd node of the root level
index = PnTreeGetNodeState("TreeView1", 0, 2, "AbsoluteIndex")
PnTreeDeleteNode("TreeView1", index, -1)

; Deletes the node having the key "#node11"
PnTreeDeleteNode("TreeView1", "#node_11", 0)

; Deletes all children of the node having the key "#node11"
PnTreeDeleteNode("TreeView1", "#node_11", -1)

; Searches for a node having the caption "Mr. Smith" and deletes the entire branch
; in which the node is located
index = PnTreeFindNodes("TreeView1", 0, 0, "Mr. Smith", "Caption")
IF leng?(index) = 1
 rootIndex = PnTreeGetNodeState("TreeView1", index, 0, "RootNode")
 PnTreeDeleteNode("TreeView1", rootIndex, 0)
END

See also:
PnTreeInsertNode, PnTreeSetNodeProp

Supported since:
Version 2023

imc FAMOS Func on Reference - 726 -

(c) 2024 imc Test & Measurement GmbH

PnTreeFindNodes

Scope: Panels

Search for nodes in a Treeview which meet a specified condition.

Declaration:
PnTreeFindNodes (TxElementName, ParentNode, Option, TxPattern, TxCondition) -> NodeIndizes

Parameter:

TxElementName Name of the tree view element

ParentNode Absolute index or unique key of the node among whose children the search is to be performed. Enter a 0 to search
throughout all nodes or respectively within the root node.

Option Search area

0 : Search among all child nodes. For [ParentNode] = 0, the search is performed throughout all of the tree's nodes.

1 : Only search among direct child nodes. For [ParentNode] = 0, the search is performed throughout the tree's root nodes.

TxPattern Pattern for which to search

TxCondition What condition must be met?

"Caption" : The node caption exactly matches the search pattern. There is no case sensitivity.

"NodeKey" : The node key exactly matches the search pattern. There is no case sensitivity.

"Caption*" : The node's caption matches the search pattern. The search pattern can contain the wildcard characters "*" (any
amount of any characters) and "?" (any one character). If the first character in the search pattern is a "!", the condition is
negated; so all nodes are found which do NOT match the search pattern. There is no case-sensitivity.

"NodeKey*" : The node-key matches the search pattern. The search pattern can contain the wildcard characters "*" (any
amount of any characters) and "?" (any one character). If the first character in the search pattern is a "!", the condition is
negated; so all nodes are found which do NOT match the search pattern. There is no case-sensitivity.

NodeIndizes

NodeIndizes Data set containing the absolute indices of the nodes found. The first node in the tree has the index 1. Empty data set
(length: 0), when no node meets the condition.

Description:

Examples:
Searches for a node having the caption "Mr. Smith" and deletes the entire branch in which the nodes are located:

index = PnTreeFindNodes("TreeView1", 0, 0, "Mr. Smith", "Caption")
rootIndex = PnTreeGetNodeState("TreeView1", index, 0, "RootNode")
PnTreeDeleteNode("TreeView1", rootIndex, 0)

In a Tree-widget, the system finds all entries which are direct children of the node having the key "#datafiles" and whose captions end with
".dat". The captions found are saved in a text array.

TxDatFiles = TxArrayCreate(0)
fileNodeIndex = PnTreeFindNodes("TreeView1", 0, 0, "#datafiles", "NodeKey")
nodeIndizes = PnTreeFindNodes("TreeView1", fileNodesIndex, 1, "*.dat", "Caption*")
count = leng?(nodeIndizes)
FOR i = 1 TO count
 TxDatFiles[i] = PnTreeGetNodeProp("TreeView1", nodeIndizes[i], 0, "Caption")
END

See also:
PnTreeGetNodeProp, PnTreeGetNodeState, PnTreeGetNodes

Supported since:
Version 2023

imc FAMOS Func on Reference - 727 -

(c) 2024 imc Test & Measurement GmbH

PnTreeGetNodeCount

Scope: Panels

Gets the count of nodes in a Treeview.

Declaration:
PnTreeGetNodeCount (TxElementName, ParentNode, Option) -> Count

Parameter:

TxElementName Name of the tree view element

ParentNode Absolute index or unique key of the node whose child nodes are to be counted. Enter a 0 to find the count of all nodes, or
respectively the count of all root nodes.

Option Option

0 : Include all child nodes. For [ParentNode] = 0, the system gets the count of all nodes in the tree diagram.

1 : Include only the direct child nodes. For [ParentNode] = 0, the system gets the count of all root nodes.

Count

Count Node count

Description:

Examples:

; Getting the total count of all nodes in the tree diagram:
count = PnTreeGetNodeCount("TreeView1", 0, 0)

; Gets count of root nodes
root_count = PnTreeGetNodeCount("TreeView1", 0, 1)

; Gets the count of direct children of the last root node:
lastroot_index = PnTreeGetNodeState("TreeView1", 0, root_count, "AbsoluteIndex")
lastroot_children_count = PnTreeGetNodeCount("TreeView1", lastroot_index, 1)

; Getting the count of direct children of the node labeled "Source Files":
file_group_index = PnTreeFindNodes("TreeView1", 0, 0, "Source Files", "Caption")
file_count = PnTreeGetNodeCount("TreeView1", file_group_index, 1)

See also:
PnTreeGetNodeProp, PnTreeGetNodeState, PnTreeGetNodes

Supported since:
Version 2023

imc FAMOS Func on Reference - 728 -

(c) 2024 imc Test & Measurement GmbH

PnTreeGetNodeProp

Scope: Panels

Gets a property of the specified node.

Declaration:
PnTreeGetNodeProp (TxElementName, Node, ChildPosition, TxPropertyID) -> TxText

Parameter:

TxElementName Name of the tree view element

Node Absolute index or unique key of the node to be used, or respectively of the associated parent node. With a 0, you address a
node on the root level; the next parameter then specifies the position within the root node.

ChildPosition Child-position

0 : [Node] directly identifies the node to be used.

>=1 : Position of the desired node among the immediate child nodes of [Node], or respectively within the root level, if a 0
was specified for [Node].

TxPropertyID Selection of the property to get

"Caption" : Caption of the node

"NodeKey" : Key/supplemental text. The text specified in this parameter can be used as a key so that later it is easy to
specify this node in other functions for controlling the tree view. In this usage, the key naturally needs to be unique. There is
no case sensitivity with keys. Alternatively, the text can also be used to save additional information with the node. For
instance, it would be possible when filling the tree diagram with filenames to display only the "short" filename as the
caption, while saving the complete file path with the key.

"ImageKey" : Image-key. Specifies the miniature image to be displayed for this node. The available images must be defined,
together with a unique identifying key, at Design-time in the tree view's property "Impage list". Enter an empty text "" in
order to display no image.

TxText

TxText Current value of the property queried

Description:
For the purpose of addressing the desired node, a variety of possibilites are available:

Absolute index: The absolute index of the node among all existing nodes. Corresponds to the row number in which the node is located if all
nodes are expanded. The first node of the root level has the index 1.
Key: Upon creating a node, the user can define an optional textual key, by means of which the node can be addressed later. The assigned key
should therefore be absolutely unique. There is no case-sensitivity.
Child-position: Specifies the position of the node among all immediate child nodes of a specific parent node. For nodes on the root level,
the position within the root level (corresponds to the row number, if all nodes are collapsed). The first child node has the position 1.

Examples:
The captions of all of a Treeview's checked nodes are written to a text array.

indizes = PnTreeGetNodes("TreeView1", 0, 0, "Selected")
count = leng?(indizes)
TxaCheckedNodes = TxArrayCreate(count)
FOR i = 1 TO count
 caption = PnTreeGetNodeProp("TreeView1", indizes[i], 0, "Caption")
 TxaCheckedNodes[i] = caption
END

To all nodes of the root level which previously had no miniature image, a default images is assigned. This had been defined along with the key
"GenericFileIcon" in the property "Image list" upon designing the Treeview.

count = PnTreeGetNodeCount("TreeView1", 0, 1)
FOR i = 1 TO count
 imagekey = PnTreeGetNodeProp("TreeView1", 0, i, "ImageKey")
 IF imageKey = ""
 PnTreeSetNodeProp("TreeView1", 0, i, "ImageKey", "GenericFileIcon")
 END
END

The captioning of all nodes ending with ".dat" is converted to upper case letters.

imc FAMOS Func on Reference - 729 -

(c) 2024 imc Test & Measurement GmbH

indizes = PnTreeFindNodes("TreeView1", 0, 0, "*.dat", "Caption*")
FOREACH SAMPLE index in indizes
 caption = PnTreeGetNodeProp("TreeView1", index, 0, "Caption")
 PnTreeSetNodeProp("TreeView1", index, 0, "Caption", TConv(caption, 2))
END

See also:
PnTreeInsertNode, PnTreeSetNodeProp

Supported since:
Version 2023

imc FAMOS Func on Reference - 730 -

(c) 2024 imc Test & Measurement GmbH

PnTreeGetNodes

Scope: Panels

Gets the currently selected/checked nodes, the root nodes, or the respective child nodes for a given parent node in the Treeview.

Declaration:
PnTreeGetNodes (TxElementName, ParentNode, Option, TxCondition) -> NodeIndizes

Parameter:

TxElementName Name of the tree view element

ParentNode Absolute index or unique key of the node among whose children the search is to be performed. Enter a 0 to search
throughout all nodes or respectively within the root node.

Option Sets the search depth

0 : Include all child nodes.

1 : Include only direct child nodes

TxCondition What condition must be met?

"Selected" : All selected nodes are returned.

"Checked" : All checked nodes are returned.

"All" : For a given parent node, all associated child nodes are returned. For [ParentNode]=0 and [Option]=1, all of the root
level's nodes are returned.

NodeIndizes

NodeIndizes Data set containing the absolute indices of the nodes found. The first node in the tree has the index 1. Empty data set
(length: 0), when no node meets the condition.

Examples:

; Gets the absolute indices of all selected nodes on the root level
sel_nodes_root = PnTreeGetNodes("TreeView1", 0, 1, "Selected")

; Gets the absolute indices of all checked nodes in the entire tree diagram:
checked_nodes_global = PnTreeGetNodes("TreeView1", 0, 0, "Checked")

; Gets the absolute indices of all root nodes
root_nodes = PnTreeGetNodes("TreeView1", 0, 1, "all")

; Gets all checked direct children of the node labeled "Source Files"
files_group_index = PnTreeFindNodes("TreeView1", 0, 0, "Source Files", "Caption")
files_checked = PnTreeGetNodes("TreeView1", file_group_index, 1, "Checked")

; Allowed, but pointless: Finds the absolute indices of all nodes
The result contains the integers from 1 to the total node count
all_nodes = PnTreeGetNodes("TreeView1", 0, 0, "all")

See also:
PnTreeGetNodeProp, PnTreeGetNodeState, PnTreeFindNodes

Supported since:
Version 2023

imc FAMOS Func on Reference - 731 -

(c) 2024 imc Test & Measurement GmbH

PnTreeGetNodeState

Scope: Panels

Gets the current state of a tree node.

Declaration:
PnTreeGetNodeState (TxElementName, Node, ChildPosition, TxStateID) -> State

Parameter:

TxElementName Name of the tree view element

Node Absolute index or unique key of the node to be used, or respectively of the associated parent node. With a 0, you address a
node on the root level; the next parameter then specifies the position within the root node.

ChildPosition Child-position

0 : [Node] directly identifies the node to be used.

>=1 : Position of the desired node among the immediate child nodes of [Node], or respectively within the root level, if a 0
was specified for [Node].

TxStateID Which state property is to be returned?

"Selected" : 1, if the node is selected. Else 0.

"Checked" : 1, if the node is checked. 0 if not. -1 for uncertain check state (possible for parent nodes when "Check-Mode"=
"recursive").

"Expanded" : 1, if the node is expanded. Else 0

"Level" : Level (indentation) of the node. Root nodes have the level 0.

"ParentNode" : Absolute index of the parent node, or 0 if the node is not located in the root level.

"RootNode" : Absolute index of the associated root node.

"Position" : Position of the node among the direct children of the parent node. With nodes of the root level, the position
within the root level.

"AbsoluteIndex" : Absolute index of the node in the tree

"IsLeaf" : 1, if the node is a leaf, so it is an end point in the hierarchy, without its own children. Else 0. Inverse of
"HasChildren".

"HasChildren" : 1, if the node has child nodes; else 0. Inverse of "IsLeaf".

State

State State returned; integer and >-1. Interpretation depends on [TxStateID].

Description:
For the purpose of addressing the desired node, a variety of possibilites are available:

Absolute index: The absolute index of the node among all existing nodes. Corresponds to the row number in which the node is located if all
nodes are expanded. The first node of the root level has the index 1.
Key: Upon creating a node, the user can define an optional textual key, by means of which the node can be addressed later. The assigned key
should therefore be absolutely unique. There is no case-sensitivity.
Child-position: Specifies the position of the node among all immediate child nodes of a specific parent node. For nodes on the root level,
the position within the root level (corresponds to the row number, if all nodes are collapsed). The first child node has the position 1.

Examples:
Gets the count of direct children of the 2nd root node.

index = PnTreeGetNodeState("TreeView1", 0, 2, "AbsoluteIndex")
children_count = PnTreeGetNodeCount("TreeView1", index, 1)

The captions of all selected nodes which are direct children of a root node are written in a text array.

selected_entries = TxArrayCreate(0)
all_selected_nodes = PnTreeGetNodes("TreeView1", 0, 0, "Selected")
FOREACH SAMPLE node IN all_selected_nodes
IF PnTreeGetNodeState("Treeview1", node , 0, "Level") = 1
 selected_entries = TxArrayInsert(selected_entries, PnTreeGetNodeProp("TreeView1", node, 0, "Caption"), -1)
END

imc FAMOS Func on Reference - 732 -

(c) 2024 imc Test & Measurement GmbH

A tree widget contains, among other things, a "Data files" branch in which measured value files are listed in various sub-branches. Double-
clicking on a leaf node loads the associated file.

Event-sequence 'Double-clicked' for the tree-widget:

selected_index = PA2
root_index = PnTreeGetNodeState(PA1, selected_index, 0, "RootNode")
IF PnTreeGetNodeProp(PA1, root_index, 0, "Caption") = "Data files"
 ; OK, the double click happened within the desired branch
 filename = PnTreeGetNodeProp(PA1, selected_index, 0, "Caption")
 FileLoad(filename, "", 0)
END

See also:
PnTreeGetNodeProp, PnTreeGetNodeState

Supported since:
Version 2023

imc FAMOS Func on Reference - 733 -

(c) 2024 imc Test & Measurement GmbH

PnTreeInsertNode

Scope: Panels

Adds a new node to a treeview.

Declaration:
PnTreeInsertNode (TxElementName, ParentNode, ChildPosition, TxCaption [, TxKeyOrData] [, TxImageKey]) -> Index

Parameter:

TxElementName Name of the treeview-widget

ParentNode Absolute index or key of the parent node to which the new node is to be appended. Enter a 0 in order to create a node in the
root level.

ChildPosition
Position of the new node among the direct children of the specified parent node. For nodes on the root level, the position
within the root level (corresponds to the row number, if all nodes are collapsed). The first child's index is 1. Enter a 0 in order
to append the new node as the last child.

TxCaption Caption of the new node

TxKeyOrData Additional text saved with the node, e.g. as a key for later identification of the node or additonally noted data in textual
form. (optional , Default value: "")

TxImageKey
Specifies the miniature image to be displayed for this node. The image is displayed at the left of the caption. The available
images must be defined, together with a unique identifying key, at Design-time in the tree view's property "Impage list".
Enter an empty text "" in order to display no image. (optional , Default value: "")

Index

Index Absolute index of the newly created node.

Description:
In order to address the desired parent node, there are two different possibilities available for the parameter [ParentNode]:

Absolute index: The absolute index of the node among all existing nodes. Corresponds ot the row number in which the node is located, if all
nodes are expanded. The first node of the root level has the index 1.
Key: Upon creating a node, the user can define an optional textual key, by means of which the node can be addressed later. The assigned key
should therefore be absolutely unique. There is no case-sensitivity.

Parameter [TxKeyOrData]: The text specified in this parameter can be used as a key so that later it is easy to specify this node in other functions
for controlling the tree view. In this usage, the key naturally needs to be unique. There is no case sensitivity with keys. Alternatively, the
parameter can also be used to save additional information with the node. For instance, it would be possible when filling the treeview with
filenames to display only the "short" filename as the caption, while saving the complete file path with the key.

Examples:
Inserting a new root node at the last position in the root level with two child nodes. The root node is expanded and the second child node is
selected.

index = PnTreeInsertNode("TreeView1", 0, 0, "Result data")
PnTreeInsertNode("TreeView1", index, 0, "Highpass10Hz")
PnTreeInsertNode("TreeView1", index, 0, "Highpass20Hz")
PnTreeSetNodeState("TreeView1", index, 0, "Expanded", 1)
PnTreeSetNodeState("TreeView1", index, 2, "Selected", 1)

The names of the sample files included standard with FAMOS are displayed in a treeview. All files having the extension "dat" are sorted under
the root node "imc files"; all other files under the root node "Other files". What is displayed is the filename, the complete path name is saved as
supplemental information. The two root nodes display miniature images (which were defined in the tree view's property "image list" upon
designing the panels). The "imc files"-node is expanded. The node "Other files" was additionally provided with a key as an easy way to address
when inserting its child nodes (addressing it by its absolute index would be more trouble because that index is not constant and would need to
be found again upon each call).

PnTreeDeleteNode("Treeview1", -1, 0); clear content
PnTreeInsertNode("TreeView1", 0, 0, "imc files", "", "ImcFileIcon")
PnTreeInsertNode("TreeView1", 0, 0, "Other files", "#other", "GenericFileIcon")
files = FsGetFileNames("C:\Users\Public\Documents\imc\imc FAMOS_Demo Projects_Demo Files\dat", "*.*", 0, 0, 1)
FOREACH ELEMENT path IN files
 ext = FsSplitPath(path, 3)
 file = FsSplitPath(path, 4)
 IF ext = ".dat"
 PnTreeInsertNode("TreeView1", 1, 0, file, path)
 ELSE

imc FAMOS Func on Reference - 734 -

(c) 2024 imc Test & Measurement GmbH

 PnTreeInsertNode("TreeView1", "#other", 0, file, path)
 END
END
PnTreeSetNodeState("TreeView1", 1, 0, "Expanded", 1)

See also:
PnTreeDeleteNode, PnTreeSetNodeProp, PnTreeSetNodeState

Supported since:
Version 2023

imc FAMOS Func on Reference - 735 -

(c) 2024 imc Test & Measurement GmbH

PnTreeSetNodeProp

Scope: Panels

Sets a property of the specified node.

Declaration:
PnTreeSetNodeProp (TxElementName, Node, ChildPosition, TxPropertyID, TxText)

Parameter:

TxElementName Name of the tree view element

Node Absolute index or unique key of the node to be used, or respectively of the associated parent node. With a 0, you address a
node on the root level; the next parameter then specifies the position within the root node.

ChildPosition Child-position

0 : [Node] directly identifies the node to be used.

>=1 : Position of the desired node among the immediate child nodes of [Node], or respectively within the root level, if a 0
was specified for [Node].

TxPropertyID Selection of the property to be set

"Caption" : Caption

"NodeKey" : Node-key

"ImageKey" : Image key

"ChildCheckStyle" : Check-style of the child nodes

TxText New value. The meaning depends on [TxPropertyID]:

"ChildCheckStyle" : Check style of the child nodes. For [Node]=0 and [ChildPosition]=0, the check style is set for all root
nodes.

"Standard" The corresponding global setting for the widget is used.

"None" No check element

"Check" Checkbox

"Radio" Options group (radio group).

Description:

Examples:
To all nodes of the root level which previously had no miniature image, a default images is assigned. This had been defined along with the key
"GenericFileIcon" in the property "Image list" upon designing the Treeview.

count = PnTreeGetNodeCount("TreeView1", 0, 1)
FOR i = 1 TO count
 imagekey = PnTreeGetNodeProp("TreeView1", 0, i, "ImageKey")
 IF imageKey = ""
 PnTreeSetNodeProp("TreeView1", 0, i, "ImageKey", "GenericFileIcon")
 END
END

The captioning of all nodes ending with ".dat" is converted to upper case letters.

indizes = PnTreeFindNodes("TreeView1", 0, 0, "*.dat", "Caption*")
FOREACH SAMPLE index IN indizes
 caption = PnTreeGetNodeProp("TreeView1", index, 0, "Caption")
 PnTreeSetNodeProp("TreeView1", index, 0, "Caption", TConv(caption, 2))
END

See also:
PnTreeInsertNode, PnTreeGetNodeProp, PnTreeSetNodeState

Supported since:
Version 2023

imc FAMOS Func on Reference - 736 -

(c) 2024 imc Test & Measurement GmbH

PnTreeSetNodeState

Scope: Panels

The current state of a tree node is changed.

Declaration:
PnTreeSetNodeState (TxElementName, Node, ChildPosition, TxStateID, StateValue)

Parameter:

TxElementName Name of the tree view element

Node
Absolute index or key of the desired node or of the associated parent node. Specifying 0 means that a node of the root level
is to be addresed; the next parameter then specifies the desired position within the root level. Specifying -1 means that the
operation is to be applied to all tree nodes. The next parameter should then be set to 0.

ChildPosition Child-position

0 : Not used. [Node] directly identifiies the node to be used. If a 0 was specified for [Node], the operation is applied to all
root nodes.

-1 : All child nodes. The operation is applied to all child nodes of [Node]. If a 0 was specified for [Node], the operation is
applied to all direct children of the root node.

>=1 : Position of the desired node among the immediate child nodes of [Node], or respectively within the root level, if a 0
was specified for [Node].

TxStateID Which state property is to be changed?

"Selected" : The selection for the specified node is swichted on/off. Explicit deactivation is only allowed for trees having
multiselection.

"Checked" : The checked state of the node is switched on/off.

"Expanded" : The node is expanded/collapsed.

"Selected>" : The selection for the selected node and all its child nodes is switched on/off. Only allowed for trees having
multiselection.

"Checked>" : The check state of the node and of all its child nodes is switched on/off.

"Expanded>" : The node and all its child nodes are expanded or collapsed.

"Visible" : The system ensures that the node is visible to the user. For this purpose, if necessary all parent nodes are
expanded and the node is scrolled into the visible region. [StateValue] must take the value 1.

StateValue New state

0 : Deactivates the selected property.

1 : Activates the selected property.

Description:

Examples:
Collapsing all nodes in a Treeview:

PnTreeSetNodeState("TreeView1", 0, 0, "Expanded>", 0)

Checking of all direct child nodes having the key "#files". The node is then made visible to the user (if applicable, by expanding all parent nodes
and scrolling to the visible region).

PnTreeSetNodeState("TreeView1", "#files", -1, "Checked", 1)
PnTreeSetNodeState("TreeView1", "#files", 0, "Visible", 1)

Inserting a new root node at the last position in the root level with 2 child nodes. The root node is expanded and the 2nd child node is selected.

index = PnTreeInsertNode("TreeView1", 0, 0, "Result data")
PnTreeInsertNode("TreeView1", index, 0, "Highpass10Hz")
PnTreeInsertNode("TreeView1", index, 0, "Highpass20Hz")
PnTreeSetNodeState("TreeView1", index, 0, "Expanded", 1)
PnTreeSetNodeState("TreeView1", index, 2, "Selected", 1)

See also:
PnTreeSetNodeProp, PnTreeGetNodeState

imc FAMOS Func on Reference - 737 -

(c) 2024 imc Test & Measurement GmbH

Supported since:
Version 2023

imc FAMOS Func on Reference - 738 -

(c) 2024 imc Test & Measurement GmbH

Pol

Transformation of a complex data set to polar coordinates (Magnitude/Phase).

Declaration:
Pol (ComplexData) -> ComplexAsMP

Parameter:

ComplexData Complex data set to be transformed [BP], [DP] or [RI]

ComplexAsMP

ComplexAsMP Resulting complex data set in polar coordinates [BP]

Description:
A complex data set is transformed to polar coordinates, i.e. a display with magnitude and phase. If the data set is already expressed in polar
coordinates, it remains unchanged; if the data set is expressed with magnitude in dB and phase, the magnitude is recalculated as linear.

When the data set is expressed in rectangular coordinates, the phase is calculated in degrees.
If the data set to be transformed is the type Dp, the function Pol has the same effect as the function idB.
The parameter may be structured (events/segments).

Examples:
A spectrum is transformed to the usually more graphically clear display style BP:

MPspectrum = Pol(RIspectrum)

Corrects the values in a spectrum, which due to multiple calculations, may contain phases outside the range of -180° to +180° or magnitudes less
than zero. The actual content of the spectrum remains unchanged.

MPcorr = Pol(Rect(BPspectrum))

See also:
Rect, dB, idB, Compl

imc FAMOS Func on Reference - 739 -

(c) 2024 imc Test & Measurement GmbH

Poly

Polynomial approximation of a data set's values

Declaration:
Poly (Data, SvOrder, SvOption) -> ResultPolynom

Parameter:

Data Data set to be approximated by a polynomial; allowed data types: [ND], [XY]

SvOrder Order of the approximating polynomial

SvOption Defines the calculation type

1 : Output of the function values

2 : Output of the coefficients

ResultPolynom

ResultPolynom Function values/coefficients of the approximating polynomial

Description:
Polynomial approximation of the data set passed is performed; the data set is approximated by a polynomial of the specified order, using the
method of least squares. The approximating polynomial can assume any order m from 1 to 9 (for XY-data, from 1 to 7) . The order m is specified as
the parameter SvOrder.

The Poly function uses the following procedure: a measurement channel is given with the values g(x[i]) (i = 0, ..., data set length - 1). The
measurement channel should be approximated by a polynomial of the mth order. Using the Poly function, the coefficients c[0], ..., c[m] are
determined according to the method of least squares, so that the condition

is met for all i.

According to the entry for the parameter [SvOption], either the data set of the approximating polynomial or the data set of the coefficients of the
approximating polynomial is returned.

Entering 1 for the parameter [SvOption] means that the function values of the approximating polynomial are returned. For the data type [ND],
the curve returned has the same resolution as the source data set. With the data type [XY], the curve returned has 1000 points and is defined over
the same X-domain as the source data set.

Entering 2 for the [SvOption] parameter means that the coefficients of the approximating polynomial are returned. The coefficients are returned
in the order corresponding to the ascending exponents of the polynomial: the constant is returned first, and the coefficient belonging to the
highest exponent of the polynomial is returned last.

The parameter [SvOrder] must be entered as an integer between 1 and 9 (data type: ND) or 7 (data type: XY).
The length of the data set to be approximated must be at least 2.
The function Poly is a special case of the Appro() function.

Influence of x-values on numerical analysis:

For purposes of numerical analysis, it is best if all x-values are distributed as closely around 0 as possible. The quality of the results is negatively
affected the more x-values are distant from 0.

To obtain a rough estimate, the following expression can be evaluated:

A1 = X0 ; or the lowest x-value for XY-data
A2 = X0 + DeltaX * (data set length-1); or the highest x-value for XY-data
A = |A1 + A2| / (2*(A2-A1))

The greater the value of A, the less precise the result becomes.

The following approximate boundaries apply for A as a rule of thumb (depending on the order; with XY-data, approximately uniform distribution
of x-coordinates is assumed):

Order A
1 A <= 100000

2 A <= 100

3 A <= 10

4 A <= 5

5 A <= 3

imc FAMOS Func on Reference - 740 -

(c) 2024 imc Test & Measurement GmbH

6 A <= 2
Accuracy

In application of the method of least squares, the products (c* x) are weighted against each other and the c is determined so that the squared
error of the equation is minimized. It is possible that some of these products supply no meaningful information for the sum of all products. In this
case, a very small c is calculated, which cannot be determined with any accuracy. Internal calculations are made with 15 places after the decimal,
but it is a fact of the numeric method that irrelevant quantities are often the ones with the least accuracy. Even if the parameter c has the same
magnitude, it is not the value of c, rather the product (c*x) which is important for this determination. For example, c1 = c2 = 1, but (c1*x) is
approximately 10, while (c2* x *x) equals 1000. It is for this reason that it is safe to assume that the first product is a factor 100 less important for
the summation of the products, and that the error of c1 thus can be 100 times greater than that of c2.

Examples:

NwFunctionValues = Poly(NwData, 2, 1)
NwCoeff = Poly(NwData, 2, 2)

The data set NDData, belonging to the left graph, is to be approximated by a second order polynomial. The data set NDData consists of 100 values.
Entering 1 as the parameter [SvOption] (output of the function value of the approximating polynomial) yields the polynomial approximation
result displayed at the right, the data set NDFctVal (function value):

Selecting 2 as the [SvOption] parameter (output of the coefficients of the approximating polynomial) yields the data set NDCoeff (coefficients);
this data set contains 3 values:

koeff0 = 8.0577 , koeff1 = -162.87E-3 and koeff2 = 1.3804E-3

This is how to obtain the individual coefficients::

SvCoeff0 = NwCoeff[1]
SvCoeff1 = NwCoeff[2]
SvCoeff2 = NwDoeff[3]

See also:
Appro, ApproNonLin, eFit, LFit, Value

imc FAMOS Func on Reference - 741 -

(c) 2024 imc Test & Measurement GmbH

PolynomRoots

Available in: Professional Edition and above

Zeroes/roots of a polynomial

Declaration:
PolynomRoots (Polynomial) -> Zeroes

Parameter:

Polynomial Polynomial

Zeroes

Zeroes Zeroes

Description:
The result is a list of the roots. The polynomial has as many roots as its degree indicates.

The roots are determined as complex numbers and returned in the form Real part / Imaginary part. If the root is a real number, the imaginary part
is 0.

Interpretation of a polynomial having the coefficients p[i], where the coefficients in the data set are ordered according to increasing exponent:

Polynomial = p[1] + p[2] * x + p[3] * x^2 + p[4] * x^3 +...

The maximum degree supported is 20.

The polynomial must be real (not complex).

The function locates the roots by means of the eigenvalues of the companion matrix.

Examples:
Roots of a quadratic equation/2nd-degree polynomial

P = [24, -14, 2] ; test data, 24-14x+2x^2=0
z = PolynomRoots (P)
z_r = z.r
; z = [3, 4]

complex roots of a quadratic equation/2nd-degree polynomial

P = [58, -8, 2] ; test data, 58-8x+2x^2=0
z = PolynomRoots (P)
; z.r = [2, 2]
; z.i = [5, -5]
; 2+5i, 2-5i

See also:
All0

imc FAMOS Func on Reference - 742 -

(c) 2024 imc Test & Measurement GmbH

Pos

Returns the first position (X-coordinate) of a specified Y-value.

Declaration:
Pos (Data, SvLevel) -> EwPosition

Parameter:

Data Data set to be examined. Types allowed: [ND],[XY].

SvLevel Y-value whose X-coordinate is to be determined

EwPosition

EwPosition The X-coordinate determined

Description:
The x-coordinate (x-position) corresponding to a specified y-value in a data set is determined. The data set is assumed to be linear-interpolated
between its sample values, so the specified y-value need not be a sample value. As a result, the x-coordinate generally will not fall exactly on a
sample point.

The function thus determines the position of a value more precisely than the sampling interval.

If a y-value occurs more than once in a data set, only the first occurrence is determined. Use the function PosiEx2() if you wish to locate every
occurrence of a certain y-value.

The unit of the returned value is the x-unit of the data set.

The unit of the y-value passed should naturally be the y-unit of the data set.

If the specified y-value does not lie within the range of the data set, i.e. no x-position can be assigned, a warning message is generated and the
return value is set to -10^20 . The functions Min and Max can be used to determine the valid range of values in the data set.

Examples:
The first zero intercept of a data set is determined.:

pos1stZero = Pos(NDdata, 0)

A voltage increase from 0 to SvMax was measured. The rise time is defined as the length of time between the occurrence of the values 0.9 *
SvMax and 0.1 * SvMax. The rise time can be calculated using the Pos function:

slopeTime = Pos(NDvoltage, 0.9 * SVmax) - Pos(NDvoltage, 0.1 * SVmax)

See also:
PosiEx2, PosiEx, Value2, SearchLevel

imc FAMOS Func on Reference - 743 -

(c) 2024 imc Test & Measurement GmbH

PosiEx

Returns the positions (x-coordinates) for a given y-value.

Declaration:
PosiEx (Data, SvLevel) -> Positions

Parameter:

Data Data set to be examined. Types allowed: [ND],[XY].

SvLevel Y-value whose X-coordinates are to be determined

Positions

Positions The X-coordinates determined

Description:
The x-coordinates (x-positions) in a data set which correspond to a specified y-value are located. The data set is imagined to be linearly
interpolated between its sample values. Therefore, the y-value specified doesn't need to exactly coincide with a sample value. Thus, the x-
coordinates found generally are not exact matches of sample values.

In other words, the function PosiEx locates x-positions at a higher resolution than the actual sampling interval provides.

The y-unit of the returned data set is the x-unit of the parameter data set.

The unit of the y-value passed should naturally be the y-unit of the data set.

If the target y-value is not in the data set's value range, i.e., no x-position can be assigned to it, a warning is issued and an empty data set (length
= 0) returned.

This function is only included for reasons of backward compatibility and the more powerful function PosiEx2() is generally preferable for its
purpose.

Examples:
All of a data set's zero intercepts are located and the position of the last zero intercept determined:

zeroes = PosiEx(NDdata, 0)
lastZero = zeroes[Leng?(zeroes)]

See also:
PosiEx2, Pos, Value2, SearchLevel

imc FAMOS Func on Reference - 744 -

(c) 2024 imc Test & Measurement GmbH

PosiEx2

Returns the positions of a specified Y-value

Declaration:
PosiEx2 (Data, SvLevel, SvSlope, SvReturn) -> Positions

Parameter:

Data Data set to be examined. Types allowed: [ND],[XY].

SvLevel Y-value whose x-coordinates are to be determined

SvSlope Extra condition regarding the direction in which the relevant level is crossed

0 : Condition not applicable

1 : Positive slope (away from point). A value SVLevel is located on the slope if the following applies: y[k] <= SVLevel < y[k+1]

2 : Positive slope (towards the point). y[k] < SVLevel <= y[k+1]

3 : Negative slope (towards the point). y[k] >= SVLevel > y[k+1]

4 : Negative slopee (towards the point). y[k] > SVLevel >= y[k+1]

SvReturn Governs the form in which the position found is returned. The input signal is interpolated linearly and don this basis the x-positions
are determined. The return value is then:

0 : x, interpolated: the linearly interpolated x-value is used.

1 : x, current: the x-value of the signal sample point directly BEFORE the interpolated x-value is used.

2 : x, closest: the x-value of the signal sample point CLOSEST to the interpolated x-value is used.

3 : Index, interpolated: The (interpolated) index of the value found.

4 : Index, current: the index of the signal sample point directly BEFORE the interpolated x-value is used.

5 : Index, closest: the index of the signal sample point directly CLOSEST to the interpolated x-value is used.

Positions

Positions The X-coordinates or indices determined.

Description:
In a data set, the x-coordinates or indices associated with a specified y-value are determined. The data set is considered to be interpolated
linearly between its sampled values. This means that the specified y-value does not need to coincide with any sampled value.

If the y-value provided y the user is not within the data set's range, so that it is not possible to assign a position to it, a warning is posted and an
empty data set (length 0) is returned.

Edge condition:
The difference between options 1 and 2, the same as between 3 and 4, is in how the signal edge is defined if a point in the signal exactly
coincides with the y-value specified and there is no unique way to assign it to an edge. This pertains to the signal's first and last points as well as
all points at which the signal's slope is changing.
Options 1/3 mean that the slope between this point and the next one must be positive/negative. The signal's last point is thus never part of the
result.
Options 2/4 mean that the slope between this point and the previous one must be positive/negative. The signal's first point is thus never part of
the result.

In the following example, the signal's zero crossing points are first found (SvEdge = 0):

imc FAMOS Func on Reference - 745 -

(c) 2024 imc Test & Measurement GmbH

Now, all zero-crossing points with positive edges are to be found. With SvEdge = 1, the slope is seen from the vantage point of the zero-crossing
point. The zero-crossing at the end of the signal is thus ignored.

With SvEdge = 2, the slope is seen looking toward the zero-crossing. The zero-crossing at the beginning of the signal is thus ignored.

imc FAMOS Func on Reference - 746 -

(c) 2024 imc Test & Measurement GmbH

Examples:
Determines all positions where the signal crosses zero. Return of the interpolated x-values:

xZeroes = PosiEx2(Signal, 0, 0, 0)

To display the zero-crossings along with the signal, an XY data set is first generated and next displayed with a circle-symbol in the same curve
window with the original signal.

Zeroes = XYof(xZeroes, Value2(Signal, xZeroes, 0))
CwNewWindow(Signal, "show")
CwNewChannel("append new axis", Signal)
CwNewChannel("append last axis", Zeroes)
CwSelectByIndex("line", 2)
CwLineSet("type", 0)
CwLineSet("symbol", 2)

The region in a signal between the first two zero-crossing points is to be extracted. Inclusion of the two zero-crossings must be certain.

zeroes = PosiEx2(signal, 0, 0, 4)
IF Leng?(zeroes) > 1
 front = zeroes[1]
 back = zeroes[2]
 IF signal[back] <> 0
 back = back + 1 ; move index after the zero
 END
 signalPart = CutIndex(signal, front, back)
END

Determines all positions in a signal at which the level 10 is reached with the signal coming from below in a positive slope. The index of the
closeset point is returned.

xZeroes = PosiEx2(Signal, 10, 2, 5)

Determines all positions in a signal at which the level 10 is exited with the signal passing beyond it in a positive slope. The index of the last
previous point is returned.

xZeroes = PosiEx2(Signal, 10, 1, 4)

See also:
Pos, PosiEx, Value2, SearchLevel

imc FAMOS Func on Reference - 747 -

(c) 2024 imc Test & Measurement GmbH

Power1

Available in: Professional Edition and above

Power calculation in one phase

Declaration:
Power1 (U1, I1 [, Interval data]) -> Results group

Parameter:

U1 U1 = UL1 - N, phase voltage differential to Neutral

I1 I1, also IL1, current through the conductor, current direction (arrow) from the source to the load

Interval
data

Interval data; the intervals represent the signals periods. Preferably a series of seamlessly successive intervals. The calculation is
based on these periods. Especially for unknown or fluctuating signal frequencies. (optional)

Results
group

Results
group

Group containing all calculation results: P: active power, PF: power factor, U*: voltage RMS values, I*: current RMS values, p_t
instantaneous power, f: frequency

Description:

The functions PowerSelect() and PowerParameter() must first be called in order to complete the process of parameterizing the function.

If the parameter IntervalData is not specified, the calculation is performed based on the frequency which was specified in PowerParameter().
The number of signal periods over which the calculation is to be performed must be a multiple of the sampling interval when multiplied by the
period duration. Thus, at 50Hz, either 1 or 10 periods are often specified; at 60Hz then 12 periods, with the sampling frequency typically 10kHz.

If the parameter IntervalData is specified, the interval lengths determine the period lengths. If there are gaps before/between/after the
intervals, then for the purpose of calculations, continuously adjacent periods are assumed; the interval boundaries may no longer be used in such
cases, but only their widths. The calculation starts at the first interval or at a whole number of interval widths before. If there are no intervals
available, the frequency from PowerParameter() is used.

The interval data set can be determined using IntervalFromLevel(), for instance, and re-processed with other interval functions. As the basis for
determining the zero crossing points, it is recommended to use an especially regular sinusoidal signal such as a voltage, for example.

Interval format: Equidistant "equi" or XY "xy", i.e. interval-code with position

The frequency is only determined when an interval data set is specified. Then it always shows the frequency on which the calculation is based,
even at positions where intervals are missing.

When working with interval data, it is necessary to determine the zero crossings as precisely as possible in order to obtain exact results.

Determination of the frequency and the other results become (substantially) more exact when the analysis is performed over multiple periods.

For a precise analysis, at a mains frequency of 50Hz a sampling frequency of 10kHz makes sense.

The current direction in accordance with the load system. If an ammeter was connected the other way around, then for example instead of I1, the
value -I1would be passed as the parameter.

Instead of the pair U1, I1, it would also be possible to analyze U2, I2 or U3, I3 of a 3-phase grid individually.

The current and voltage must have the same time base. They may have events; segments are also possible but not in conjunction with interval
data.

The calculation only returns precise results if the interval width of the analysis is an integer number of samples.

Examples:
1-phase power measurement. default calculation at 50Hz over 10 periods; sampling frequence: 10kHz

PowerSelect()
PowerParameter(50, 10)
g = Power1 (U1, I1)
P = g:P
Q = g:Q

1-phase power measurement. Frequency fluctuates

PowerSelect()
PowerParameter (50, 1)

imc FAMOS Func on Reference - 748 -

(c) 2024 imc Test & Measurement GmbH

ivl = IntervalFromLevel (U1, 0, 0, 0, 1, 0.0, 1e35, 0, "")
g = Power1 (U1, I1, ivl)
P = g:P
Q = g:Q

All 3 phases of the three-phase network are analyzed individually and together; the RMS-values of the currents and voltages are caulculated only
once.

PowerSelect()
PowerParameter(50, 10)
g = Power3 (U1, I1, U2, I2, U3, I3, ivl)
PowerSelect(1, 0, 1, 0, 0, 1)
g1 = Power1 (U1, I1, ivl)
g2 = Power1 (U2, I2, ivl)
g3 = Power1 (U3, I3, ivl)
P = g:P
Q = g:Q
P1 = g1:P1

See also:
PowerSelect, PowerParameter, Power2, Power3, IntervalFromLevel

imc FAMOS Func on Reference - 749 -

(c) 2024 imc Test & Measurement GmbH

Power2

Available in: Professional Edition and above

Calculation of ther power at the three-phase network with three-wire system

Declaration:
Power2 (U12, I1, U32, I3 [, Interval data]) -> Results group

Parameter:

U12 U12 = UL1 - UL2, Delta voltage; voltage between the outer conductors

I1 I1, also IL1, current through one phase line, current direction (arrow) from the source to the load

U32 U32 = UL3 - UL2, Delta voltage; voltage between the outer conductors

I3 I3, also IL3, current through one phase line, current direction (arrow) from the source to the load

Interval
data

Interval data; the intervals represent the signals periods. Preferably a series of seamlessly successive intervals. The calculation is
based on these periods. Especially for unknown or fluctuating signal frequencies. (optional)

Results
group

Results
group

Group containing all calculation results: P: active power, PF: power factor, U*: voltage RMS values, I*: current RMS values, p_t
instantaneous power, f: frequency

Description:
Instead of [U12, I1, U32, I3], it is also possible to use the pairs [U13, I1, U23, I2] or [U21, I2, U31, I3].

The Neutral conductor N is either not present or not conducting current. Typical in Delta circuit. The equation I1 + I2 + I3 = 0 applies.

The equations U12 = -U21, U32 = -U32, U31 = -U13 and U12 + U23 + U31 = 0 also apply.

The functions PowerSelect() and PowerParameter() must first be called in order to complete the process of parameterizing the function.

If the parameter IntervalData is not specified, the calculation is performed based on the frequency which was specified in PowerParameter().
The number of signal periods over which the calculation is to be performed must be a multiple of the sampling interval when multiplied by the
period duration. Thus, at 50Hz, either 1 or 10 periods are often specified; at 60Hz then 12 periods, with the sampling frequency typically 10kHz.

If the parameter IntervalData is specified, the interval lengths determine the period lengths. If there are gaps before/between/after the
intervals, then for the purpose of calculations, continuously adjacent periods are assumed; the interval boundaries may no longer be used in such
cases, but only their widths. The calculation starts at the first interval or at a whole number of interval widths before. If there are no intervals
available, the frequency from PowerParameter() is used.

The interval data set can be determined using IntervalFromLevel(), for instance, and re-processed with other interval functions. As the basis for
determining the zero crossing points, it is recommended to use an especially regular sinusoidal signal such as a voltage, for example.

Interval format: Equidistant "equi" or XY "xy", i.e. interval-code with position

The frequency is only determined when an interval data set is specified. Then it always shows the frequency on which the calculation is based,
even at positions where intervals are missing.

When working with interval data, it is necessary to determine the zero crossings as precisely as possible in order to obtain exact results.

Determination of the frequency and the other results become (substantially) more exact when the analysis is performed over multiple periods.

For a precise analysis, at a mains frequency of 50Hz a sampling frequency of 10kHz makes sense.

The current direction in accordance with the load system. If an ammeter was connected the other way around, then for example instead of I1, the
value -I1would be passed as the parameter.

The current and voltage must have the same time base. They may have events; segments are also possible but not in conjunction with interval
data.

The calculation only returns precise results if the interval width of the analysis is an integer number of samples.

Examples:
Power measurement at the three-phase network with Aron circuit

imc FAMOS Func on Reference - 750 -

(c) 2024 imc Test & Measurement GmbH

PowerSelect()
PowerParameter(50, 10)
g = Power2 (U12, I1, U32, I3)
P = g:P
Q = g:Q

Power measurement at the three-phase network with Aron circuit. Frequency fluctuates

PowerSelect ()
PowerParameter (50, 1)
ivl = IntervalFromLevel (U12, 0, 0, 0, 1, 0.0, 1e35, 0, "")
g = Power2 (U12, I1, U32, I3, ivl)
P = g:P
Q = g:Q

See also:
PowerSelect, PowerParameter, Power1, Power3, IntervalFromLevel

imc FAMOS Func on Reference - 751 -

(c) 2024 imc Test & Measurement GmbH

Power3

Available in: Professional Edition and above

Calculation of the power in a three-phase network with a 4-wire system

Declaration:
Power3 (U1, I1, U2, I2, U3, I3 [, Interval data]) -> Results group

Parameter:

U1 U1 = UL1 - N, phase-to-neutral voltage, phase-element voltage

I1 I1, also IL1, current through the conductor, current direction (arrow) from the source to the load

U2 U2 = UL2 - N, phase-to-neutral voltage, phase-element voltage

I2 I2, also IL2, current through one phase line, current direction (arrow) from the source to the load

U3 U3 = UL3 - N, phase-to-neutral voltage, phase-element voltage

I3 I3, also IL3, current through one phase line, current direction (arrow) from the source to the load

Interval
data

Interval data; the intervals represent the signals periods. Preferably a series of seamlessly successive intervals. The calculation is
based on these periods. Especially for unknown or fluctuating signal frequencies. (optional)

Results
group

Results
group

Group containing all calculation results: P: active power, PF: power factor, U*: voltage RMS values, I*: current RMS values, p_t
instantaneous power, f: frequency

Description:
Neutral line N is present and can conduct current. Typical in the star (Y) connection.

In order to perform additional analyses on the individual phases, it is possible to use Power1() for each of the phases. Power3() mainly returns
the summarized values.

The functions PowerSelect() and PowerParameter() must first be called in order to complete the process of parameterizing the function.

If the parameter IntervalData is not specified, the calculation is performed based on the frequency which was specified in PowerParameter().
The number of signal periods over which the calculation is to be performed must be a multiple of the sampling interval when multiplied by the
period duration. Thus, at 50Hz, either 1 or 10 periods are often specified; at 60Hz then 12 periods, with the sampling frequency typically 10kHz.

If the parameter IntervalData is specified, the interval lengths determine the period lengths. If there are gaps before/between/after the
intervals, then for the purpose of calculations, continuously adjacent periods are assumed; the interval boundaries may no longer be used in such
cases, but only their widths. The calculation starts at the first interval or at a whole number of interval widths before. If there are no intervals
available, the frequency from PowerParameter() is used.

The interval data set can be determined using IntervalFromLevel(), for instance, and re-processed with other interval functions. As the basis for
determining the zero crossing points, it is recommended to use an especially regular sinusoidal signal such as a voltage, for example.

Interval format: Equidistant "equi" or XY "xy", i.e. interval-code with position

The frequency is only determined when an interval data set is specified. Then it always shows the frequency on which the calculation is based,
even at positions where intervals are missing.

When working with interval data, it is necessary to determine the zero crossings as precisely as possible in order to obtain exact results.

Determination of the frequency and the other results become (substantially) more exact when the analysis is performed over multiple periods.

For a precise analysis, at a mains frequency of 50Hz a sampling frequency of 10kHz makes sense.

The current direction in accordance with the load system. If an ammeter was connected the other way around, then for example instead of I1, the
value -I1would be passed as the parameter.

The current and voltage must have the same time base. They may have events; segments are also possible but not in conjunction with interval
data.

The calculation only returns precise results if the interval width of the analysis is an integer number of samples.

Examples:

imc FAMOS Func on Reference - 752 -

(c) 2024 imc Test & Measurement GmbH

Power measurement at three-phase network with 4 wires

PowerSelect()
PowerParameter(50, 10)
g = Power3 (U1, I1, U2, I2, U3, I3)
P = g:P
Q = g:Q

Power measurement at the three-phase network with four wires. Frequency fluctuates

PowerSelect ()
PowerParameter (50, 1)
ivl = IntervalFromLevel (U1, 0, 0, 0, 1, 0.0, 1e35, 0, "")
g = Power3 (U1, I1, U2, I2, U3, I3 , ivl)
P = g:P
Q = g:Q

See also:
PowerSelect, PowerParameter, Power1, Power2, IntervalFromLevel

imc FAMOS Func on Reference - 753 -

(c) 2024 imc Test & Measurement GmbH

PowerCepstrum

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Power Cepstrum. The cepstrum is calculated using a moving window and linear averaging.

Declaration:
PowerCepstrum (InputData, WindowWidth, WindowType, Overlapping, Reduction, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th cepstrum is returned.

AveragingType method of summarizing all cepstra

0 : no averaging

1 : averaging (arithmetic mean or linear averaging of the magnitude cepstra). The number of cepstra over which the average is
taken is determined by the parameter 'Reduction'.

2 : Peak Hold Max, from beginning. Maximum values, based on the cepstra calculated thus far in the algorithm

3 : Peak Hold Max, interval. Maximum values, based on the number of cepstra which the parameter 'Reduction' dictates.

4 : Peak Hold Min, from beginning. Minimum values, based on the cepstra calculated thus far in the algorithm

5 : Peak Hold Min, interval. Minimum values, based on the number of cepstra which the parameter 'Reduction' dictates.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result The result is a segmented waveform, where each segment represents a cepstrum.

Description:
RMS-spectrum of the double-sided, logarithmic (ln) power spectrum.

The dynamic range is limited to 8 powers of 10.

Algorithm:

a section of the time-based waveform is taken, e.g. 1000 data points
interpolation to obtain a power of 2 data points, e.g. 1024, if applicable
multiplication with a window function, if applicable
calculation of the power spectrum. Only the magnitude is kept. This leaves 513 data points.
limiting of this spectrum to 8 powers of 10
the natural logarithm of the magnitude is taken

imc FAMOS Func on Reference - 754 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

the resulting spectrum is extended to cover the corresponding negative frequencies. This returns 1024 data points.
the RMS-magnitude spectrum of this double-sided spectrum is computed. This leaves 513 data points.
the resulting cepstrum is subjected to subsequent averaging.

Examples:

PCepstra = PowerCepstrum (Channel, 1000, 0, 50, 1, 0, 0)

This calculates a sequence of 1000 point-cepstra, which each overlap their neighbors by 50%.

PCepstra = PowerCepstrum (Channel, 2048, 1, 0, 10, 1, 0)

This calculates a sequence of 2048 point-cepstra with a Hamming window. The average is taken of each group of ten consecutive cepstra and
recorded with the results.

See also:
PowerCepstrum_exp, PowerCepstrum_1

imc FAMOS Func on Reference - 755 -

(c) 2024 imc Test & Measurement GmbH

PowerCepstrum_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Power Cepstrum. Calculates a mean cepstrum. The averaging is taken of as many cepstra as there are windows within the waveform.

Declaration:
PowerCepstrum_1 (InputData, WindowWidth, WindowType, Overlapping, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

AveragingType method of summarizing all cepstra

1 : averaging (arithmetic mean or linear averaging of the magnitude cepstra). The mean is taken over all cepstra computed.

2 : Peak Hold Max, maximum values, based on the cepstra calculated thus far in the algorithm

4 : Peak Hold Min, minimum values, based on the cepstra calculated thus far in the algorithm

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result One averaged cepstrum

Description:
RMS-spectrum of the double-sided, logarithmic (ln) power spectrum.

The dynamic range is limited to 8 powers of 10.

Algorithm:

a section of the time-based waveform is taken, e.g. 1000 data points
interpolation to obtain a power of 2 data points, e.g. 1024, if applicable
multiplication with a window function, if applicable
calculation of the power spectrum. Only the magnitude is kept. This leaves 513 data points.
limiting of this spectrum to 8 powers of 10
the natural logarithm of the magnitude is taken
the resulting spectrum is extended to cover the corresponding negative frequencies. This returns 1024 data points.
the RMS-magnitude spectrum of this double-sided spectrum is computed. This leaves 513 data points.
the resulting cepstrum is subjected to subsequent averaging.

Examples:

Cepstrum = PowerCepstrum_1 (Channel, 1000, 0, 50, 1, 0)

imc FAMOS Func on Reference - 756 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

This calculates an averaged cepstrum. The averaging is performed on a sequence of 1000 point-spectra which each overlap their neighbors by
50%. The input channel contains approx. 20000 measured values.

See also:
PowerCepstrum, PowerCepstrum_exp

imc FAMOS Func on Reference - 757 -

(c) 2024 imc Test & Measurement GmbH

PowerCepstrum_exp

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Power Cepstrum, exponential averaging

Declaration:
PowerCepstrum_exp (InputData, WindowWidth, WindowType, Overlapping, Reduction, TimeConstant [, Base2]) ->
Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th cepstrum is returned.

TimeConstant The time constant used in taking the exponential mean. Specified in seconds.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result The result is a segmented waveform, where each segment represents a cepstrum.

Description:
RMS-spectrum of the double-sided, logarithmic (ln) power spectrum.

The dynamic range is limited to 8 powers of 10.

Algorithm:

a section of the time-based waveform is taken, e.g. 1000 data points
interpolation to obtain a power of 2 data points, e.g. 1024, if applicable
multiplication with a window function, if applicable
calculation of the power spectrum. Only the magnitude is kept. This leaves 513 data points.
limiting of this spectrum to 8 powers of 10
the natural logarithm of the magnitude is taken
the resulting spectrum is extended to cover the corresponding negative frequencies. This returns 1024 data points.
the RMS-magnitude spectrum of this double-sided spectrum is computed. This leaves 513 data points.
the resulting cepstrum is subjected to subsequent averaging.

Examples:

Cepstra = PowerCepstrum_exp (Channel, 1000, 0, 50, 2, 40.0, 0)

This calculates a sequence of 1000 point-cepstra, which each overlap their neighbors by 50%. The channel has a sampling time of 10ms. Therefore,
a spectrum is computed every 5s. These are smoothed with a time constant of 40.0s. Every second spectrum is returned.

imc FAMOS Func on Reference - 758 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

See also:
PowerCepstrum, PowerCepstrum_1

imc FAMOS Func on Reference - 759 -

(c) 2024 imc Test & Measurement GmbH

PowerDS

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Power Density Spectrum with a moving window and linear averaging. Square of the RMS-spectrum, divided by the frequency line distance. The
result is a segmented waveform, where each segment represents a spectrum.

Declaration:
PowerDS (InputData, WindowWidth, WindowType, Overlapping, Reduction, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

AveragingType method of summarizing all spectra

0 : no averaging

1 : Averaging (arithmetic mean or linear averaging of the squares of the magnitude spectra). The mean value is formed over as
many spectra as specified by the parameter Reduction.

2 : Peak Hold Max, from beginning. Maximum values, based on the spectra calculated thus far in the algorithm.

3 : Peak Hold Max, interval. Maximum values, based on the number of spectra which the parameter 'Reduction' dictates.

4 : Peak Hold Min, from beginning. Minimum values, based on the spectra calculated thus far in the algorithm

5 : Peak Hold Min, interval. Minimum values, based on the number of spectra which the parameter 'Reduction' dictates.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result segmented waveform, where each segment represents a power density spectrum.

Description:
The result is divided by the ENBW (Equivalent noise bandwidth) according to the window type used. E.g. division by 1.5 in the case of a Hanning
window.

Examples:

PowerDensitySpectra = PowerDS (Channel, 1000, 0, 50, 1, 0, 0)

This calculates a sequence of 1000 point-spectra, which each overlap their neighbors by 50%.

PowerDensitSpectra = PowerDS (Channel, 2048, 1, 0, 10, 1, 0)

This calculates a sequence of 2048 point-spectra with a Hamming window. The average is taken of each group of ten consecutive spectra and

imc FAMOS Func on Reference - 760 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

recorded with the results.

See also:
PowerDS_exp, PowerDS_1, PowerSpectrum

imc FAMOS Func on Reference - 761 -

(c) 2024 imc Test & Measurement GmbH

PowerDS_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

An averaged power density spectrum is determined. Square of the RMS-spectrum, divided by the frequency line distance. The averaging is taken
of as many spectra as there are windows within the waveform.

Declaration:
PowerDS_1 (InputData, WindowWidth, WindowType, Overlapping, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

AveragingType method of summarizing all spectra

1 : Averaging (arithmetic mean or linear averaging of the squares of the magnitude spectra). The mean value is formed over all
spectra calculated.

2 : Peak Hold Max, maximum values, based on the spectra calculated thus far in the algorithm

4 : Peak Hold Min, minimum values, based on the spectra calculated thus far in the algorithm

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result One averaged magnitude spectrum

Description:
The result is divided by the ENBW (Equivalent noise bandwidth) according to the window type used. E.g. division by 1.5 in the case of a Hanning
window.

Internally applied multiplication factors for weighting with ENBW: Rectangle: 1.0; Hamming: 1.0 / 1.3628257; Hanning: 1.0 / 1.5000000; Blackman:
1.0 / 1.7267573; Blackman-Harris: 1.0 / 2.0043528; Flat top: 1.0 / 3.7702901

Examples:

PowerDensitySpectrum = PowerDS_1 (Channel, 1000, 0, 50, 1, 0)

This calculates an averaged spectrum. The averaging is performed on a sequence of 1000 point-spectra which each overlap their neighbors by
50%. The input channel contains approx. 20000 measured values.

See also:
PowerDS, PowerDS_exp, PowerSpectrum_1

imc FAMOS Func on Reference - 762 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

PowerDS_exp

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Power Density Spectrum with a moving window and exponential averaging. Square of the RMS-spectrum, divided by the frequency line distance.
The result is a segmented waveform, where each segment represents a spectrum.

Declaration:
PowerDS_exp (InputData, WindowWidth, WindowType, Overlapping, Reduction, TimeConstant [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

TimeConstant The time constant used in taking the exponential mean. Specified in seconds.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result Segmented waveform, where each segment represents a spectrum.

Description:
The result is divided by the ENBW (Equivalent noise bandwidth) according to the window type used. E.g. division by 1.5 in the case of a Hanning
window.

Examples:

PowerDensitySpectra = PowerDS_exp (Channel, 1000, 0, 50, 2, 40.0, 0)

The channel has a sampling time of 10ms. Therefore, a 1000 point-spectrum is computed every 5s. These are smoothed with a time constant of
40.0s. Every second spectrum is returned.

See also:
PowerDS, PowerDS_1, PowerSpectrum _exp

imc FAMOS Func on Reference - 763 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

PowerParameter

Available in: Professional Edition and above

Determines which parameters and procedures to use to calculate the power.

Declaration:
PowerParameter (f, Periods [, S_calc] [, Q_calc] [, Q_sign] [, PF_calc])

Parameter:

f Nominal frequency in Hz, e.g. 50 or 60

Periods Number of periods over which the calculation is perfomed and after which a result is to be returned; e.g. 1 or 10 or 12

S_calc Calculation of apparent power (optional , Default value: 0)

0 : according to DIN 40110, S = Urms*Irms, Irms=sqrt(I1^2+I2^2+I3^2); 4-wire system: Urms=sqrt(U1^2+U2^2+U3^2); 3-wire system:
Urms= sqrt((U12^2+U32^2+U13^2)/3)

1 : 4-wire system: S = S1 + S2 + S3; 3-wire system S = (sqrt(3)/2)*(U12*I1+U32*I3)

Q_calc Calculation of reactive power (optional , Default value: 0)

0 : Reactive power = sqrt (total apparent power^2 - total active power^2)

1 : Reactive power = Q1+Q2+Q3 (not possible with Aron circuit)

Q_sign Reactive power sign (optional , Default value: 0)

0 : Reactive power always positive

1 : Reactive power with sign; positive for inductive, negative for capacitive (not possible with Aron circuit).

PF_calc Calculation of power factor (optional , Default value: 0)

0 : The active power's sign; positive when drawing power, negative for power output

1 : inductive: positive when drawing power, negative when outputting; capacitive: negative when drawing power, positive for power
output (not possible with Aron circuit)

2 : always positive

Description:
The system determines the inductive/capacitive operation by analyzing the fundamental oscillation's phase reactive power U1*I1*sin(Phi1). To
do this for 3 phases, the fundamental oscillation reactive power values of all phases are added.

With Phi as the angle by which the current lags, the inductive/capacitive operation is as follows: Quadrant 1: Phase Phi = 0 to 90 deg, motor-
driven inductive; Quadrant 2: Phase Phi = 90 to 180 deg, generative inductive; Quadrant 3: Phase Phi = 180 to 270 deg generative capacitive;
Quadrant 4: Phase Phi = 270 to 360 deg, motor-driven capacitive.

The active power is positive in Quadrants 1and 4; else negative.

The reactive power is positive in Quadrants 1 and 2, else negative if determined with the sign.

Examples:
1-phase power measurement. default calculation at 50Hz over 10 periods; sampling frequence: 10kHz

PowerSelect()
PowerParameter(50, 10)
g = Power1 (U1, I1)

1-phase power measurement. Default calculation at 60Hz over 12 periods; sampling frequency: 10kHz

PowerSelect()
PowerParameter(60, 12)
g = Power1 (U1, I1)

1-phase power measurement. Reactive power and power factor with sign

PowerSelect()
PowerParameter(50, 1, 0, 0, 1, 1)
g = Power1 (U1, I1)

See also:
PowerSelect, Power1, Power2, Power3

imc FAMOS Func on Reference - 764 -

(c) 2024 imc Test & Measurement GmbH

PowerSelect

Available in: Professional Edition and above

Determines which results a power calculation is to return.

Declaration:
PowerSelect ([QS] [, RMS] [, PF] [, f] [, p_t] [, P])

Parameter:

QS Reactive- and apparent-power requested (optional , Default value: 1)

0 : no

1 : yes

RMS RMS-values of the currents and voltages are requested. (optional , Default value: 1)

0 : no

1 : yes

PF Power factor requested (optional , Default value: 1)

0 : no

1 : yes

f Signal frequency requested (optional , Default value: 1)

0 : no

1 : yes

p_t Instantaneous power requested (optional , Default value: 0)

0 : no

1 : yes

P Active power requested (optional , Default value: 1)

0 : no

1 : yes

Description:
This function must be called once before calling the functions Power1(), Power2(), Power3().

If the frequency is desired, it is still only calculated if Power1(), Power2() or Power3() is called with an interval data set, because the frequency is
not fixed.

Examples:
1-phase power measurement. Default calculation

PowerSelect()
PowerParameter(50, 10)
g = Power1 (U1, I1)

1-phase power measurement. Explicit selection of calculation of the active power and the power factor

PowerSelect(0, 0, 1, 0, 0, 1)
PowerParameter(50, 10)
g = Power1 (U1, I1)

See also:
PowerParameter, Power1, Power2, Power3

imc FAMOS Func on Reference - 765 -

(c) 2024 imc Test & Measurement GmbH

PowerSpectrum

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Power spectrum with a moving window and linear averaging. The square of the RMS-spectrum. The result is a segmented waveform, where each
segment represents a spectrum.

Declaration:
PowerSpectrum (InputData, WindowWidth, WindowType, Overlapping, Reduction, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

AveragingType method of summarizing all spectra

0 : no averaging

1 : Averaging (arithmetic mean or linear averaging of the squares of the magnitude spectra). The mean value is formed over as
many spectra as specified by the parameter Reduction.

2 : Peak Hold Max, from beginning. Maximum values, based on the spectra calculated thus far in the algorithm.

3 : Peak Hold Max, interval. Maximum values, based on the number of spectra which the parameter 'Reduction' dictates.

4 : Peak Hold Min, from beginning. Minimum values, based on the spectra calculated thus far in the algorithm

5 : Peak Hold Min, interval. Minimum values, based on the number of spectra which the parameter 'Reduction' dictates.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result Segmented waveform, where each segment represents a spectrum.

Description:

Examples:

PowerSpectra = PowerSpectrum (Channel, 1000, 0, 50, 1, 0, 0)

This calculates a sequence of 1000 point-spectra, which each overlap their neighbors by 50%.

PowerSpectra = PowerSpectrum (Channel, 2048, 1, 0, 10, 1, 0)

This calculates a sequence of 2048 point-spectra with a Hamming window. The average is taken of each group of ten consecutive spectra and
recorded with the results.

imc FAMOS Func on Reference - 766 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

See also:
PowerSpectrum_exp, PowerSpectrum_1, PowerDS

imc FAMOS Func on Reference - 767 -

(c) 2024 imc Test & Measurement GmbH

PowerSpectrum_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

An averaged power spectrum is computed. the square of the RMS-spectrum. The averaging is taken of as many spectra as there are windows
within the waveform.

Declaration:
PowerSpectrum_1 (InputData, WindowWidth, WindowType, Overlapping, AveragingType [, Base2]) -> Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

AveragingType method of summarizing all spectra

1 : Averaging (arithmetic mean or linear averaging of the squares of the magnitude spectra). The mean value is formed over all
spectra calculated.

2 : Peak Hold Max, maximum values, based on the spectra calculated thus far in the algorithm

4 : Peak Hold Min, minimum values, based on the spectra calculated thus far in the algorithm

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result One averaged magnitude spectrum

Description:

Examples:

PowerSpectrum = PowerSpectrum_1 (Channel, 1000, 0, 50, 1, 0)

This calculates an averaged spectrum. The averaging is performed on a sequence of 1000 point-spectra which each overlap their neighbors by
50%. The input channel contains approx. 20000 measured values.

See also:
PowerSpectrum, PowerSpectrum_exp, PowerDS_1

imc FAMOS Func on Reference - 768 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

PowerSpectrum_exp

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Power spectrum with a moving window and exponential averaging. The square of the RMS-spectrum. The result is a segmented waveform,
where each segment represents a spectrum.

Declaration:
PowerSpectrum_exp (InputData, WindowWidth, WindowType, Overlapping, Reduction, TimeConstant [, Base2]) ->
Result

Parameter:

InputData Time waveform, the time scaled in seconds

WindowWidth Width of time window in points, >= 4. If not a power of 2, then the system interpolates to a smaller sampling interval in
accordance with the parameter 'Base2'.

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Overlapping The time windows overlap by this percentage.

0 : no overlapping

> 0 : > 0 (but < 100) : Overlapping. Computation time increases with percentage.

< 0 : < 0 This percentage of the window width is left as a margin before the next window. This means that these values will be
disregarded by the calculations.

Reduction >= 1: Only every n-th spectrum is returned.

TimeConstant The time constant used in taking the exponential mean. Specified in seconds.

Base2 Perform internal calculation of FFT only with powers of 2 (Base 2), or also with other window widths? The value 3 is
recommended. If omitted, 2 will be used. (optional)

2 : If the window width is not a power of 2, the data are interpolated to a power of 2 for the purpose of an FFT-calculation.

3 : FFT with all window widths which are products of powers of 2, 3, 5; no interpolation of time-domain data

Result

Result Segmented waveform, where each segment represents a spectrum.

Description:

Examples:

PowerSpectra = PowerSpectrum_exp (Channel, 1000, 0, 50, 2, 40.0, 0)

The channel has a sampling time of 10ms. Therefore, a 1000 point-spectrum is computed every 5s. These are smoothed with a time constant of
40.0s. Every second spectrum is returned.

See also:
PowerSpectrum_1, PowerSpectrum, PowerDS_exp

imc FAMOS Func on Reference - 769 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

PptAddSlides

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

Slides from a PowerPoint file are inserted into the presentation.

Declaration:
PptAddSlides (SlideIndex, TxFilename [, SlideStartIndex] [, SlideEndIndex]) -> Result

Parameter:

SlideIndex Index of the slide following which the slides from the file are inserted. Enter a 0 if you wish to insert the slides before the first
slide.

TxFilename Complete pathname of a PowerPoint file whose slides are inserted.

SlideStartIndex Index of the first slide which is to be inserted from the file. (1...) (optional) (optional)

SlideEndIndex Index of the last slide from the file which is to be inserted (>= SlideStartIndex or -1) (optional) (optional)

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
Slides from a PowerPoint file are inserted into the presentation.

If the parameters 'SlideStartIndex' and 'SlideEndIndex' are not specified, then all slides from the PowerPoint file are inserted.

If only the parameter 'SlideStartIndex' is specified, then only the slide having the specified index is inserted from the PowerPoint file.

If both parameters are specified, then the slides are inserted from the PowerPoint file between the specified indices.

If the parameter 'SlideEndIndex'= -1 is specified, then the slides from 'SlideStartIndex' up to the last slide are inserted.

Examples:
The PowerPoint file 'Presentation1' is opened. Subsequently, all slides from the file 'Presentation2' are inserted at the beginning.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
count = PptGetSlidesCount()
result= PptAddSlides(0,"c:\imc\ppt\Presentation2.pptx")
count = PptGetSlidesCount()
result= PptClosePresentation()

The PowerPoint file 'Presentation1' is opened. Subsequently, the 2nd slide from the file 'Presentation2' is inserted after the last slide.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
count = PptGetSlidesCount()
result= PptAddSlides(count,"c:\imc\ppt\Presentation2.pptx",2)
result= PptClosePresentation()

See also:
PptGetSlidesCount, PptDuplicateSlide, PptDeleteSlide, PptMoveSlide

imc FAMOS Func on Reference - 770 -

(c) 2024 imc Test & Measurement GmbH

PptClosePresentation

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

The presentation will be closed.

Declaration:
PptClosePresentation () -> Result

Parameter:

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
With this function, the PowerPoint instance is simultaneously ended.

Any files still open are closed. Any changes made will be lost.

This function should always be called at the end of a sequence.

See also:
PptOpenPresentation, PptSavePresentation

imc FAMOS Func on Reference - 771 -

(c) 2024 imc Test & Measurement GmbH

PptDeleteSlide

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

A slide is deleted from the presentation.

Declaration:
PptDeleteSlide (SlideIndex) -> Result

Parameter:

SlideIndex Index of the slide to be deleted. The first slide has the index 1.

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
A slide is deleted from the presentation.

Examples:
The first and last slide are deleted from the presentation.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
result= PptDeleteSlide(1)
count = PptGetSlidesCount()
result= PptDeleteSlide(count)
result= PptSavePresentation("c:\imc\ppt\Presentation3.pptx")
result= PptClosePresentation()

See also:
PptAddSlides, PptGetSlidesCount, PptDuplicateSlide

imc FAMOS Func on Reference - 772 -

(c) 2024 imc Test & Measurement GmbH

PptDuplicateSlide

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

Duplicates one of the presentation's slides.

Declaration:
PptDuplicateSlide (SlideIndex) -> Result

Parameter:

SlideIndex Index of the slide to be duplicated (1...)

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
One of the presentation's slides is duplicated.

The duplicated slide is inserted into the presentation directly after the original slide.

Examples:
The presentation's last slide is duplicated.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
count = PptGetSlidesCount() ; Index der letzten Folie bestimmen
result= PptDuplicateSlide(count) ; slide duplication
result= PptSavePresentation("c:\imc\ppt\Presentation3.pptx")
result= PptClosePresentation()

See also:
PptAddSlides, PptDeleteSlide, PptMoveSlide, PptGetSlidesCount

imc FAMOS Func on Reference - 773 -

(c) 2024 imc Test & Measurement GmbH

PptFindSlideByAlternativeText

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

Finds a slide with a shape object having the specified alternative text.

Declaration:
PptFindSlideByAlternativeText (StartIndex, TxAlternativeText) -> Result

Parameter:

StartIndex Index of the slide at which the search is to begin (1...)

TxAlternativeText The alternative text of the shape object

Result

Result Result:

>0 : Index of the slide containing the shape object

=0 : There is no slide with a shape object having the specified alternative text.

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
From the 'startindex', the presentation is searched for slides which contain a shape object having the specified alternative text.

At the first occurrence of the shape object, the slide's index is returned.

See also:
PptAddSlides, PptDeleteSlide, PptGetSlidesCount, PptDuplicateSlide, PptMoveSlide, PptGetSlidesCount

imc FAMOS Func on Reference - 774 -

(c) 2024 imc Test & Measurement GmbH

PptGetSlidesCount

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

The number of slides in the presentation is determined.

Declaration:
PptGetSlidesCount () -> Result

Parameter:

Result

Result Result:

>=0 : Slide count

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
The count of slides is determined.

At fault condition, -1 is returned. The cause can be determined using the function GetLastError().

See also:
PptAddSlides, PptDeleteSlide, PptDuplicateSlide, PptMoveSlide

imc FAMOS Func on Reference - 775 -

(c) 2024 imc Test & Measurement GmbH

PptMoveSlide

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

Moves the specified slide to a specific position in the presentation.

Declaration:
PptMoveSlide (SlideIndex, ToPosition) -> Result

Parameter:

SlideIndex Index of the slide to be moved (1...)

ToPosition Index of the new position (1...)

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
One of the presentation's slides is moved.

All other slides in the presentation are renumbered accordingly.

Examples:
The presentation's 1st slide is duplicated and moved to the presentation's last position.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
slideindex=1
result= PptDuplicateSlide(slideindex) ; slide duplication
slideindex= slideindex+1; index of the duplicated slide
count = PptGetSlidesCount() ; Index der letzten Folie bestimmen
result= PptMoveSlide(slideindex,count); duplicated slide moved to the last position
result= PptSavePresentation("c:\imc\ppt\Presentation3.pptx")
result= PptClosePresentation()

See also:
PptAddSlides, PptDeleteSlide, PptGetSlidesCount, PptDuplicateSlide, PptGetSlidesCount

imc FAMOS Func on Reference - 776 -

(c) 2024 imc Test & Measurement GmbH

PptOpenPresentation

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

The specified file in the PowerPoint format is opened.

Declaration:
PptOpenPresentation (TxFilename, Visible) -> Result

Parameter:

TxFilename Complete pathname of the file to be opened

Visible Visibility of the work window

0 : The PowerPoint work window is not visible.

1 : The PowerPoint work window is visible.

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
The specified PowerPoint- Datei is opened. To do this, a PowerPoint instance is started unless it already has been.

If another presentation was opened by the same execution thread before this call, it will be closed.

Multithreading: Each execution thread uses its own Powerpoint instance. If, for example, Powerpoint is started in a parallel sequence function
(BEGIN_PARALLEL) using PptOpenPresentation () and a document is loaded, further access to this document is only permitted within the same
sequence function. If the Powerpoint instance was not explicitly closed with PptClosePresentation (), it is closed automatically at the end of the
sequence function.

Examples:
A PowerPoint file is opened. Slides from another PowerPoint file are added. The presentation is saved under a different name.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1);
count = PptGetSlidesCount()
result= PptAddSlides(count,"c:\imc\ppt\Presentation2.pptx")
result= PptSavePresentation("c:\imc\ppt\Result.pptx")
result= PptClosePresentation()

See also:
PptSavePresentation, PptClosePresentation

imc FAMOS Func on Reference - 777 -

(c) 2024 imc Test & Measurement GmbH

PptPrintPresentation

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

The presentation is printed

Declaration:
PptPrintPresentation ([FromSlideIndex] [, ToSlideIndex]) -> Result

Parameter:

FromSlideIndex Index of the first slide to be printed (1...) (optional) (optional)

ToSlideIndex Index of the last slide to be printed (optional) (optional)

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
The entire presentation/slides from the presentation are printed.

If the parameters 'FromSlideIndex' and 'ToSlideIndex' are not specified, the entire presentation is printed.

If only the parameter 'FromSlideIndex' is specified, then only the slide having the specified index is printed.

If both parameters are specified, then the slides between the specified indices are printed.

Examples:
The presentation Presentation1.pptx is opened. All slides are printed.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
result= PptPrintPresentation()
result= PptClosePresentation()

The presentation Presentation1.pptx is opened. The 2nd slide is printed.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
result= PptPrintPresentation(2)
result= PptClosePresentation()

See also:
PptOpenPresentation, PptSavePresentation

imc FAMOS Func on Reference - 778 -

(c) 2024 imc Test & Measurement GmbH

PptSavePresentation

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

The presentation is saved

Declaration:
PptSavePresentation (TxFilename [, FileFormat]) -> Result

Parameter:

TxFilename Complete pathname under which the presentation is to be saved

FileFormat Sets the file format for data saving. If the parameter is not specified, then the data are saved in the default format (optional).
(optional)

0 : Save presentation in the default format

1 : save as PDF file.

2 : save as JPG file.

3 : save as PNG file.

4 : save as BMP file.

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
The presentation is saved under the specified filename.

If the parameter 'FileFormat' is missing, the presentation is saved in PowerPoint's default format.

Data are also saved in the default format if the parameter =0.

With 'FileFormat' = 1, the presentation is saved as a PDF file.

With the formats 2, 3 and 4, a folder name is constucted from the filename. In this folder, each slide is saved as a JPG, PNG or BMP file.

Examples:
A presentation is opened and saved in various formats.

result=PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1);
result=PptSavePresentation("c:\imc\ppt\test.pptx"); Standardformat
result=PptSavePresentation("c:\imc\ppt\test1.pptx",0); Standardformat
result=PptSavePresentation("c:\imc\ppt\test.pdf",1) ; PDF-format
result=PptSavePresentation("c:\imc\ppt\testa.jpg",2) ; JPG-format
result=PptSavePresentation("c:\imc\ppt\testb.png",3) ; PNG-format
result=PptSavePresentation("c:\imc\ppt\testc.bmp",4) ; BMP-format
result=PptClosePresentation()

See also:
PptOpenPresentation, PptClosePresentation

imc FAMOS Func on Reference - 779 -

(c) 2024 imc Test & Measurement GmbH

PptSetCellText

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

Sets the text in a table cell in the specified slide.

Declaration:
PptSetCellText (SlideIndex, TxAlternativeText, Row, Column, TxContent) -> Result

Parameter:

SlideIndex Index of the slide. The index of the first slide is 1.

TxAlternativeText The table's alternative text

Row Row number of cell (1...)

Column Column number of cell (1...)

TxContent This text is transferred into the cell.

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
By means of the 'SlideIndex', the slide in the presentation is determined. The index corresponds to the slide's position in the presentation.

The system searches in the specified slide for the table having this alternative text.

Once the table has been found, the text supplied is transferred into the cell.

The cell is addressed by specifying its row and column numbers.

Like a text box, a cell can have multiple paragraphs. In this case, the text transferred is split off into partial strings.

The text is split at the characters CR ("~013") , LF ("~010") or NL ("~013"+ "~010").

Each partial string is assigned to the corresponding paragraph of the cell.

The alternative text for a table is defined in PowerPoint as follows:
1. On the Slide, select the Table object.
2. Right-click the mouse in the element and select "Format Shape".
3. Click on "Size and Properties" and then on "Alt Text".
4. In the box "Description", enter at designating text such as FAMOS_Table1. This designating text is used in the Kit-functions to locate the shape
object.
5. Important! Don't enter the designating text in the box "Title"!
6. If you wish to use the alternative text for it's original function (barrier-free PowerPoint), then first enter the designating text in the box
"Description", followed by a semicolon (;). After that enter the text intended for the barrier free PowerPoint. The semicolon is not part of the
designating text.

Examples:
The presentation contains a table with 3 columns and 6 rows. The cells of the 2nd through 4th row are set.

result=pptOpenPresentation("c:\imc\ppt\PresentationTable1.pptx",1)
result=PptSetCellText(1,"Table1",2,1,"Channel 1"); Channel name -> column 1
result=PptSetCellText(1,"Table1",2,2,"34.06"); Maximum -> column 2
result=PptSetCellText(1,"Table1",2,3,"-3.02"); Minimum -> Column 3
result=PptSetCellText(1,"Table1",3,1,"Channel 2")
result=PptSetCellText(1,"Table1",3,2,"10.4555")
result=PptSetCellText(1,"Table1",3,3,"1.02")
result=PptSetCellText(1,"Table1",4,1,"Channel 3")
result=PptSetCellText(1,"Table1",4,2,"210.4555")
result=PptSetCellText(1,"Table1",4,3,"-23.02")
result=pptsavePresentation("c:\imc\ppt\test.pptx")
result=pptClosePresentation()

See also:
PptSetText, PptSetPicture, PptSetCurve

imc FAMOS Func on Reference - 780 -

(c) 2024 imc Test & Measurement GmbH

PptSetCurve

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

Transfers the selected curve window as a picture into the specified slide.

Declaration:
PptSetCurve (SlideIndex, TxAlternativeText, SizeOption, Position, Screen) -> Result

Parameter:

SlideIndex Index of the slide. The first slide's index is 1.

TxAlternativeText The picture's alternative text

SizeOption Modification of picture size

0 : The picture's orginal size is used.

1 : The placeholder's size is used.

2 : The size of the placeholder is used. In the process, the aspect ratio of the orginal picture is retained.

Position The portion of the shape (picture placeholder) which retains its position when the shape is scaled

0 : Top left

1 : Bottom right

2 : Centered

Screen Monitor screen or printer

"screen" : To generate the picture, the curve window's monitor screen settings are used.

"printer" : To generate the picture, the curve window's printer settings are used.

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
A curve window is transferred into the presentation as a picture. For this purpose, the slide must have a picture or a placeholder.

The curve window needs to have already been generated and selected before this function is called. To do this, the Curve Window Kit's functions
(Cw...- functions) can be used.

By means of the 'SlideIndex', the slide in the presentation is determined. The index corresponds to the slide's position in the presentation.

The system searches in the specified slide for the picture placeholder having the specified alternative text

Once the picture has been found, the curve window is transferred into the picture in the presentation.

With 'SizeOption' = 0, the curve window is transferred to the placeholder in its orginal size.
The parameter 'Position' determines at which position in the placeholder the picture is anchored.
If the curve window is larger than the placeholder, it may occur that other shape objects are obscured.

With 'SizeOption' = 1, the curve window is fitted into the area of the picture placeholder.
It completely fills the placeholder area. The parameter 'Position' is not relevant.
With this option, there can be distortions of the curve window.

With 'SizeOption' = 2, the curve window is fitted into the area of the picture placeholder while retaining its aspect ratio.
By means of the parameter 'Position', you can set at which position in the placeholder the curve window is anchored.

Proceed as follows to define the alternative text for a picture in PowerPoint :
1. On the Slide, select the Shape object.
2. Right-click the mouse in the element and select "Format Graphic".
3. Click on "Size and Properties" and then on "Alt Text".
4. In the box "Description", enter at designating text such as FAMOS_Cw1. This designating text is used in the Kit-functions to locate the shape
object.
5. Important! Don't enter the designating text in the box "Title"!
6. If you wish to use the alternative text for it's original function (barrier-free PowerPoint), then first enter the designating text in the box
"Description", followed by a semicolon (;). After that enter the text intended for the barrier free PowerPoint. The semicolon is not part of the
designating text.

imc FAMOS Func on Reference - 781 -

(c) 2024 imc Test & Measurement GmbH

Examples:
In this sequence, two curve windows are created. Next, the presentation 'PresentationCW3' is opened.
The presentation has two placeholders on Slide 1, with the text alternatives 'CW1' and 'CW2'.
First the curve window 'Arch' is selected and transferred to the picture with the text alternative 'CW1'.
Then the curve window 'Weight' is selected and transferred into the picture with the text alternative 'CW2'.

FileLoad("C:\imc\Dat\bogen.dat","",0)
CwNewWindow(bogen,"show")
CwNewChannel("append new axis", bogen)
FileLoad("C:\imc\Dat\gewicht.dat","",0)
CwNewWindow(gewicht,"show")
CwNewChannel("append new axis", gewicht)
screen= "screen"
result= PptOpenPresentation("c:\imc\ppt\PräsentationCW3.pptx",1);
CwSelectWindow(bogen)
result= PptSetcurve(1,"CW1",2,0,screen); Kurvenfenster "Bogen" -> CW1
CwSelectWindow(gewicht)
result= PptSetcurve(1,"CW2",2,0,screen); Kurvenfenster "Gewicht" -> CW2
result= PptSavePresentation("c:\imc\ppt\test.pptx")
result= PptClosePresentation()

See also:
PptSetCellText, PptSetText, PptSetPicture

imc FAMOS Func on Reference - 782 -

(c) 2024 imc Test & Measurement GmbH

PptSetPicture

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

Transfers the picture to a shape in the specified slide.

Declaration:
PptSetPicture (SlideIndex, TxAlternativeText, TxPictureFilename, SizeOption, Position) -> Result

Parameter:

SlideIndex Index of the slide. The first slide's index is 1.

TxAlternativeText The picture's alternative text

TxPictureFilename Complete pathname of the picture file

SizeOption Modification of picture size

0 : The picture's orginal size is used.

1 : The placeholder's size is used.

2 : The size of the placeholder is used. In the process, the aspect ratio of the orginal picture is retained.

Position The portion of the shape (picture placeholder) which retains its position when the shape is scaled

0 : Top left

1 : Bottom right

2 : Centered

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
By means of the 'SlideIndex', the slide in the presentation is determined. The index corresponds to the slide's position in the presentation.

The system searches in the specified slide for the picture having this alternative text. It must be either a picture object or a picture placeholder.

Once the picture has been found, the picture from the file is transferred into the picture in the presentation.

With 'SizeOption' = 0, the picture from the file is transferred into the placeholder in its orginal size.
The parameter 'Position' specifies at which position in the placeholder the picture is anchored.
If the orginal picture is larger than the placeholder, it may occur that other shape objects are obscured.

With 'SizeOption' = 1, the original picture is fitted into the area of the picture placeholder.
It completely fills the placeholder area. The parameter 'Position' is not relevant.
With this option, there can be distortions of the picture.

With 'SizeOption' = 2, the original picture is fitted into the area of the picture placeholder while retaining its aspect ratio.
By means of the parameter 'Position', you can set at which position in the placeholder the picture is anchored.

The alternative text for a picture is defined in PowerPoint as follows:
1. On the Slide, select the picture object.
2. Right-click the mouse in the element and select "Format Graphic".
3. Click on "Size and Properties" and then on "Alt Text".
4. In the box "Description", enter at designating text such as FAMOS_Pic1. This designating text is used in the Kit-functions to locate the shape
object.
5. Important! Don't enter the designating text in the box "Title"!
6. If you wish to use the alternative text for it's original function (barrier-free PowerPoint), then first enter the designating text in the box
"Description", followed by a semicolon (;). After that enter the text intended for the barrier free PowerPoint. The semicolon is not part of the
designating text.

Examples:
The picture 'Tulips.jpg' is transferred into the presentation at the placeholder having the alternative text 'Picture1'.
The original picture's aspect ratio is retained. It is centered over the placeholder.

result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
result= PptSetPicture(1,"Picture1","c:\imc\ppt\Tulips.jpg",2,2)
result= PptSavePresentation("c:\imc\ppt\Presentation4.pptx")

imc FAMOS Func on Reference - 783 -

(c) 2024 imc Test & Measurement GmbH

result= PptClosePresentation()

See also:
PptSetCellText, PptSetText, PptSetCurve

imc FAMOS Func on Reference - 784 -

(c) 2024 imc Test & Measurement GmbH

PptSetText

Scope: PowerPoint remote control

Available in: Professional Edition and above (PowerPoint-Kit)

Sets the text in a text box in the specified slide.

Declaration:
PptSetText (SlideIndex, TxAlternativeText, TxContent) -> Result

Parameter:

SlideIndex Index of the slide. The first slide's index is 1.

TxAlternativeText The text box's alternative text

TxContent This text is transferred into the text box.

Result

Result Result:

0 : successful

-1 : An error occurred. The cause can be determined by means of the function GetLastError().

Description:
By means of the 'SlideIndex', the slide in the presentation is determined. The index corresponds to the slide's position in the presentation.

In the specified slide, the system searches for the text box having the alternative text.
All text boxes which are to be set by the kit require an alternative text.

Once the text box is found, the text supplied is transferred into the text box.

The formatting of the text box remains intact.

If the text box has multiple paragraphs, then the text passed is split into multiple partial strings.

The text is split at the characters CR ("~013") , LF ("~010") or NL ("~013"+ "~010").

Each partial string is assigned to the corresponding paragraph.

The alternative text for a text box is defined in PowerPoint as follows:
1. On the Slide, select the shape object.
2. Right-click the mouse in the element and select "Format Shape".
3. Click on "Size and Properties" and then on "Alt Text".
4. In the box "Description", enter at designating text such as FAMOS_Text1. This designating text is used in the Kit-functions to locate the shape
object.
5. Important! Don't enter the designating text in the box "Title"!
6. If you wish to use the alternative text for it's original function (barrier-free PowerPoint), then first enter the designating text in the box
"Description", followed by a semicolon (;). After that enter the text intended for the barrier free PowerPoint. The semicolon is not part of the
designating text.

Examples:
Slide 1 contains the text boxes with the alternative texts 'Marker1' and 'Marker2'. The text box 'Marker2' has 3 paragraphs.

cr="~013"
result= PptOpenPresentation("c:\imc\ppt\Presentation1.pptx",1)
result= PptSetText(1,"Marker1","FAMOS Presentation")
measurementname ="Measurement 01"
measurementbegin="2017-09-25 14:30:00"
measurementend ="2017-09-25 14:36:00"
textcontent=measurementname+cr+measurementbegin+cr+measurementend
result= PptSetText(1,"Marker2",textcontent)
result= PptSavePresentation("c:\imc\ppt\Presentation3.pptx")
result= PptClosePresentation()

See also:
PptSetCellText, PptSetPicture, PptSetCurve

imc FAMOS Func on Reference - 785 -

(c) 2024 imc Test & Measurement GmbH

PrConfig

Scope: Report Generator

A configuration file is loaded to the Report Generator.

Declaration:
PrConfig (TxFileName)

Parameter:

TxFileName Name of file to load.

Description:
This function opens a configuration file into the Report Generator REPORT.EXE. This configuration file was previously created using the Report
Generator. A configuration file is usually a mask consisting of dummy objects which serve as "place-holders". The place-holders can be filled with
the desired contents, e.g. current graphs, values and text.

If the filename specified doesn't have an extension, the extension ".drb" is assumed.

Unless a complete pathname is supplied, the default directory valid for the calling application (the report directory) is used.

This function is provided for reasons of compatibility. For newly created sequences or programs, RgDocOpen should be used.
Both masks and completed reports can be loaded.
The application REPORT.EXE is started (minimized) if it was not started before. Calling the application indirectly is preferable to opening it
manually.
A maximum of one (1) Report Generator application can be started.
To specify a file name with no extension, end the name with a period (".")..

Examples:

TxError$ = PrConfig("report")
PrSet ("Herbert Mustermann", "Name")

This code example illustrates how to replace placeholders in a mask with current values using the function PrSet.

See also:
RgDocOpen

imc FAMOS Func on Reference - 786 -

(c) 2024 imc Test & Measurement GmbH

PrMove

Scope: Report Generator

Arranges an object relative to another object.

Declaration:
PrMove (TxTitle, TxReference, Xmm, Ymm, Zero) -> Zero

Parameter:

TxTitle Object title

TxReference Title of reference object

Xmm Distance [mm] in x-direction to left edge of reference object

Ymm Distance [mm] in y-direction to top of reference object

Zero Reserved, always set to 0

Zero

Zero Result; always 0

Description:
This function moves an object TxTitle relative to a reference object TxTitleRef. The parameter SvXmm specifies the distance between the left
edges of the objects is specified in millimeters. The parameter SvYmm specifies the distance between the top edges of the objects is specified in
millimeters by the parameter SvYmm. If the reference object does not exist or is specified as an empty string (""), the upper left corner of the
page is used as the reference point.

Decimal values can be specified for SvXmm and SvYmm.
Grid snap is ignored by this funct.
The reference point for curve objects is the upper left corner of the coordinate system.

Examples:

Sv0 = PrMove("Text1", "Text2", 10, -15,0)

In this code example, an object ("Text1") is moved 10 mm to the right and 15 mm above the reference object ("Text2").

Sv0 = DrMove("Curve1", "", 5, 5,0)

In this code example, an object ("Curve1") is moved 5 mm to the right and 5 mm below the upper left corner of the page.

See also:

imc FAMOS Func on Reference - 787 -

(c) 2024 imc Test & Measurement GmbH

PrPrint

Scope: Report Generator

A finished document is printed out.

Declaration:
PrPrint ()

Parameter:

Description:
The graphic in the current layout is printed out on the printer set for the system.

This function is provided for reasons of compatibility. For newly created sequences or programs, RgDocPrint should be used.
The Report Generator file REPORT.EXE must be loaded as an application.
The printer is set up using the menu option "File"/"Printer Setup.." in the main window of the Print Layout.
Reports can be saved and printed together during the night, instead of printing a single report immediately.

Examples:

TxError$ = PrConfig("report")
PrSet ("Herbert Mustermann", "Name")
PrPrint()

A report is usually created by loading a mask and then setting the elements to the current values. The ready report can then be printed.

See also:
RgDocPrint

imc FAMOS Func on Reference - 788 -

(c) 2024 imc Test & Measurement GmbH

PrRdClip

Scope: Report Generator

Copies the contents of the Clipboard to the Report Generator.

Declaration:
PrRdClip (TxTitleRef, Xmm, Ymm, Zero, Zero, Format, Attribute, Zero) -> Error

Parameter:

TxTitleRef Title of reference object

Xmm Distance [mm] in x-direction to left edge of reference object

Ymm Distance [mm] in y-direction to top of reference object

Zero Reserved, always set to 0

Zero Reserved, always set to 0

Format File format

0 : Automatic selection of file format

1 : Text

2 : Bitmap (pixel graphics)

3 : Metafile (vector graphics)

Attribute Attribute, see below for description

Zero Reserved, always set to 0

Error

Error Error status

0 : No errors occurred

1 : Incorrect parameter

2 : Specified file format and file format of Clipboard different or Clipboard is empty

3 : Report Generator not available or not operable

4 : Insufficient memory or object is too large

Description:
Definition of Attribute parameter

SvAttrib Characteristics of the object
0: New object appears in foreground

Add +1: New object appears in background

+2: Contents of Clipboard copied to the reference object, whereas its characteristics are maintained
This function copies the contents of the Clipboard into a Print Layout document. The new object is arranged relative to the reference object
TxTitleRef. The parameter SvXmm specifies the distance between the left edges of the objects is specified in millimeters. The parameter SvYmm
specifies the distance between the top edges of the objects is specified in millimeters by the parameter SvYmm. If the reference object does not
exist or is specified as an empty string (""), the upper left corner of the page is used as the reference point.

Decimal values can be specified for SvXmm and SvYmm.
Grid snap is ignored by this function.
The reference point for curve objects is the upper left corner of the coordinate system.
If a new text object is created and an existing text object is specified as the reference object, the font and color of the reference text object
are applied to the new one.
If the contents of the Clipboard are copied to the reference object (SvAttrib = 2 or 3), the type of the reference object is changed according to
the file format of the Clipboard. Set parameters SvXmm and SvYmm to zero in this case.

Examples:

Error= DrRdClip("", 5, 10, 0, 0, 1, 1, 0)

In this code example, a text object (SvFormat=1) from the Clipboard is placed 5 mm to the right and 10 mm below the upper left corner of the
page. Text is specified as the file format. The new object placed in the background (SvAttrib=1).

imc FAMOS Func on Reference - 789 -

(c) 2024 imc Test & Measurement GmbH

Error= DrRdClip("Text1", 0, 0, 0, 0, 1, 3, 0)

In this code example, a text object (SvFormat=1) from the Clipboard is copied onto a reference text object. The text in the reference text object is
overwritten and the object appears in the background.

See also:
PrMove

imc FAMOS Func on Reference - 790 -

(c) 2024 imc Test & Measurement GmbH

PrSave

Scope: Report Generator

Saves a Report Generator configuration to a file.

Declaration:
PrSave (TxFileName) -> TxError

Parameter:

TxFileName Name of file to be created. Can be specified complete with folder and filename extension.

TxError

TxError If the function successfully wrote the file, an empty text is returned; otherwise an error text.

Description:
The configuration currently stored in the Report Generator REPORT.EXE is saved to a file.

If the filename specified doesn't have an extension, the extension ".drb" is assumed.

Unless a complete pathname is supplied, the default directory valid for the calling application (the report directory) is used.

This function is provided for reasons of compatibility. For newly created sequences or programs, RgDocSave should be used.
Be careful not to overwrite a mask with a document. A document file cannot be used as a mask because all of the place-holders have been
replaced.
To specify a file name with no extension, end the name with a period (".").

Examples:

;... The Report is created.
PrSet ("Herbert Mustermann", "Name")
;...
Error$ = PrSave("report")
IF TComp(Error$,"")
 ok = BoxMessage("Caution!", Error$, "!1")
END

In this code example, a report is created and saved as "report.drb". Error handling is performed to check for saving errors. If an error occurs, the
corresponding message is generated.

See also:
RgDocSave

imc FAMOS Func on Reference - 791 -

(c) 2024 imc Test & Measurement GmbH

PrSet

Scope: Report Generator

Assigns contents to place-holders in a Report Generator mask.

Declaration:
PrSet (Contents, TxTitle)

Parameter:

Contents New content to replace placeholder. Data type (waveform, single value, text) depends on the placeholder.

TxTitle Title of Report Generator object to be changed.

Description:
This function enables you to fill a Report Generator mask with actual data, text, etc. All objects are identified by their titles.

Text objects:
Text objects may contain placeholders within the text itself, indicated by a "#"-prefix . When data is transferred to a text object, the first place-
holder with the appropriate format is replaced. Place-holders for real numbers are "#e" and "#f" , for text "#s".

The following place-holders are defined for text objects:

#d Current date in WINDOWS format

#z Current time in WINDOWS format

#u Units of a single value or y-units of a data set

#e? Floating-point number, number of decimal places

#f?.? Floating-point number, number of decimal places before and after decimal

#s Text
"?" stands for digits.

Curve Objects:
Placeholders are not actually used for curve objects. When a curve window is transferred to a curve object, the new image replaces the old
contents. If the curve object was empty (a mask), then the graph is simply pasted in.

A curve window is identified by means of a reference waveform. This curve window reference waveform is set when a curve window is created
using the Cw*(..) functions of the Curve Kit or the FAMOS command "Show". It often corresponds to the first waveform displayed in the window
and the window title.

This function is provided for reasons of compatibility. For newly created sequences or programs, use the object-specific functions (menus:
"Table", "Curve", "Text").
This function can be used only when a Report Generator configuration file (mask) has been loaded.
For a detailed description of "place-holders", please refer to the "Report Generator" chapter in the text object section.
The place holders "#d" (current date) and "#z" (current time) are replaced the first time the text object is accessed via the function PrSet.
If a complete waveform is to be transferred to a text object with real numbered place-holders, then a place-holder is replaced for each
sample (y-value). In this way, a complete table (or column/ row) can be replaced using a single command.

A placeholder can be replaced only once. To create another document using the same mask, the mask must be reloaded using the PrConfig
function. Be careful not to overwrite a configuration (mask) file!

Examples:
First, a mask is loaded.

TxError$ = PrConfig("report")

Two text objects are defined in the layout (this mask):

Title Contents
Name #s

Number x: #e2 and #f2.1
The following lines are executed:

PrSet("Herbert", "Name")
PrSet(27.5, "Number")
PrSet(28.9, "Number")

Then, the text objects contain the following texts:

imc FAMOS Func on Reference - 792 -

(c) 2024 imc Test & Measurement GmbH

Title Contents
Name Herbert

Number x: 2.75E+01 and 28.9

See also:
RgTextSet, RgTextGet, RgTextSetData, RgCurveSet, RgTableSetCell, RgTableSetRow, RgTableSetColumn

imc FAMOS Func on Reference - 793 -

(c) 2024 imc Test & Measurement GmbH

PrTitleI

Scope: Report Generator

The number of objects with titles is retrieved.

Declaration:
PrTitleI (Zero) -> SvAmount

Parameter:

Zero Reserved, always set to 0

SvAmount

SvAmount Amount of objects with a title.

Description:
This function returns the number of titled objects in a Print Layout document.

This function is provided for reasons of compatibility. For newly created sequences or programs, RgObjGetCount should be used.

Examples:

Amounr = PrTitleI(0)

See also:
RgObjGetCount, RgObjGetTitle, RgObjGetType, DrTitleN

imc FAMOS Func on Reference - 794 -

(c) 2024 imc Test & Measurement GmbH

PrWin

Scope: Report Generator

Controls main Report-Generator window.

Declaration:
PrWin (Task)

Parameter:

Task Task

1 : Display layout in normal size.

2 : Display layout as icon.

3 : Close layout.

Description:
This function enables you to control the Report Generator window according to the control parameter SvTask.

This function is provided for reasons of compatibility. For newly created sequences or programs, RgWindow should be used.
If the Report Generator was not already started, it is automatically started by this function.
Opening the Print Layout via a function call is preferable to directly starting the executable REPORT.EXE, because this name may be changed
in a future version.

Examples:

PrWin(1)

The layout is displayed as a normal window by the program. The user can now work directly in the Report Generator.

See also:
RgWindow

imc FAMOS Func on Reference - 795 -

(c) 2024 imc Test & Measurement GmbH

PulseDuration

Available in: Professional Edition and above

Duration/width, or even the frequency of pulses, determined in relation to time.

Declaration:
PulseDuration (Dataset, Window [, Slope] [, Calculation] [, Boundary factor]) -> Result

Parameter:

Dataset Dataset

Window Width of the averaging interval expressed in x-units; rounded to whole multiples of the sampling interval

Slope Recognition of the signal edge which initiates a pulse (optional , Default value: "0-1")

"0-1" : Transition from 0 to 1 (nonzero). The 1 is the exact position of the pulse beginning. Positive signal edge.

"1-0" : Transition from 1 (nonzero) to 0 . The 0 is the exact position of the pulse beginning. Negative signal edge.

"+" : Linearly interpolated zero crossing with positive signal edge. In a transition from <= 0 to > 0, the exact position lies between
these values.

"-" : Linearly interpolated zero crossing with negative signal edge. In a transition from >0 to <=0, the exact position lies between
these values.

"ifa" : Compatible with imc Inline FAMOS: All transitions from 0 to 1 (nonzero) and vice versa are taken into account. The average
pulse duration is formed from all whole impulses in the window. If no impulse is completed within the window, the last pulse
duration is returned or, if the window width times the count of windows is greater than the last pulse duration, the product of the
window width and window count. Pulses from later times always remain disregarded. The boundary factor is ignored.

Calculation What is calculated (optional , Default value: "t")

"t" : Pulse duration, stated in the x-unit of the input data

"n" : Pulse width, expressed as number of measurement points; may include decimal places

"f" : Pulse frequency, calculated as reciprocal of the average pulse duration

"rpm" : Rotation speed, calculated as the reciprocal of the average pulse duration, expressed in RPM units for an encoder with one
pulse per revolution. The x-unit of the input data must be s.

Boundary
factor

At the start and end of the signal, the signal is often located in the middle of a pulse. If the last adjacent pulse duration, multiplied
by this factor, is greater than or equal to the boundary area witout any signal edge, then the last pulse duration is retained. Else,
zero is returned. (optional , Default value: 1.5)

Result

Result Result

Description:
This function operates inside of a window of fixed width and generates one result value at the end of the window. The average pulse duration is
formed from all impulses within the window. If any pulses are not contained completely within the window, they are counted in proportion to
the fraction of time they are inside it. The duration of all pulses whose front or hind signal edge lies within the interval is subjected to weighted
averaging, where the pulse's duration within the window is used as the weighting factor. Both pulses occurring in times before and after are thus
taken into account.

The result values are the respective window start points. If the result is displayed as stair steps, then each step denotes the averaging interval.

If the parameter "slope" is set to "imc Inline FAMOS", then a different algorithm is used; see explanations above.

In typical applications, a boundary factor lies significantly > 1.0. With a continual sequence of pulses, it prevents the result from containing any
jumps at the boundary.

With boundary factor = 0.0, extensions at the boundary are suppressed. If there are no pulses at the boundary within a window width, the result
at these locations is zero.

The input data are equidistant and may contain events and segments.

Examples:
Period duration from unformed pulse signal

pulses = (stri (signal, 3, 2) > 0)
duration = pulseDuration (pulses, 0.1)

Rotation speed from pulse sequence

rpm = pulseDuration (pulses, 0.1, "0-1", "rpm")

imc FAMOS Func on Reference - 796 -

(c) 2024 imc Test & Measurement GmbH

Pulse frequency from sinusoidal signal

f = pulseDuration (sine, 0.1, "+", "f")

See also:
OtrTachoToSpeed, Peaks

imc FAMOS Func on Reference - 797 -

(c) 2024 imc Test & Measurement GmbH

PyCallFunction

Scope: Python remote control

Available in: Professional Edition and above (Python-Kit)

A Python-function is executed.

Declaration:
PyCallFunction (TxModuleName, TxFunctionName [, Arg1] [, Arg2] [, Arg3] [, Arg4] [, Arg5] [, Arg6] [, Arg7] [,
Arg8] [, Arg9] [, Arg10] [, Arg11] [, Arg12] [, Arg13]) -> Result

Parameter:

TxModuleName Name of the Python-module in which the function to be executed is defined.

TxFunctionName Name of the function to be executed

Arg1 Argument #1 (optional) (optional)

Arg2 Argument #2 (optional) (optional)

Arg3 Argument #3 (optional) (optional)

Arg4 Argument #4 (optional) (optional)

Arg5 Argument #5 (optional) (optional)

Arg6 Argument #6 (optional) (optional)

Arg7 Argument #7 (optional) (optional)

Arg8 Argument #8 (optional) (optional)

Arg9 Argument #9 (optional) (optional)

Arg10 Argument #10 (optional) (optional)

Arg11 Argument #11 (optional) (optional)

Arg12 Argument #12 (optional) (optional)

Arg13 Argument #13 (optional) (optional)

Result

Result Result returned by the function

Description:
Initially the system checks whether a module of the specified name has already been imported into the Interpreter. If not, import is performed.

With sub-modules of a package, the usual "period-notation" must be used, so for instance "PackageName.subModuleName".
For permanently "built-in functions" in Python, an empty text or "builtins" must be specified.
If the module specified is not located in Python's default search path, the function PyConfig("Sys.Path.Append", ...) must first be called.

Subsequently, the system searches for the function having the name specified and if it is found, the parameters passed are converted to Python-
variables and the function is applied to these.

For the parameter conversion, the same rules apply as described for the function PySetVar().

If the function provides a return value, the result is converted to a FAMOS variable.

For the re-conversion, the same rules apply as described for the function PyGetVar().

Remarks:

When a Python function can't be called directly, for example because the parameter types are not convertible from/to FAMOS, a small
Python script can provide a remedy by encapsulating the desired function. In that case, the parameters are first transferred using PySetVar(),
then the script is called either with PyRunFile() or repeated PyRun()-commands, and subsequently the results are retrieved using
PyGetVar(). Then the script takes on the task of conditioning the parameters, calls the function, and converts the results to a form which can
be retrieved by PyGetVar().
If the Python runtime environment is not yet loaded, it is first initialized by an implicit call of the function PyInit().

imc FAMOS Func on Reference - 798 -

(c) 2024 imc Test & Measurement GmbH

At fault condition (e.g. module or function unknown, incorrect parameter types), a runtime error is raised.

Examples:
The built-in Python-function 'divmod' returns the quotient and remainder of the integer division of the two arguments as a tuple of 2 elements.
The resulting tuple is converted to a FAMOS data set of length 2.

result = PyCallFunction("", "divmod", 13, 3)
; identical to PyCallFunction("builtins", "divmod", 13, 3)
quotient_= result[1] ; => 4
remainder= result[2] ; => 1

The preceding code is functionally equivalent to:

PySetVar("", "a", 13)
PySetVar("", "b", 3)
PyRun("result = divmod(a,b)")
result = PyGetVar("", "result")
quotient_= result[1]
remainder= result[2]

Calls functions from external libraries, here illustrated by an example with 'NumPy'. The following example uses the FFT-function 'NumPy' and
compares the result with the FFT()-function built into FAMOS.

; Create test signal
n = 1024
signal = sin(Ramp(0,0.01,n))

; Apply FFT from 'NumPy'
PyConfig("Converter.PyArrayType", "ndarray")
res = PyCallFunction("numpy.fft", "rfft", signal)
; Convert Cartesian to Polar coordinates
res = Pol(res)
; Undo normalization
res.b = res.b/n
; Calculate frequency line distance
freq = PyCallFunction("numpy.fft", "rfftfreq", ToInt(n))
res = xdel(res, (freq[2]-freq[1])/xdel?(signal))

; Compare with FAMOS FFFT
FFTOption 0 0
resFAMOS = FFT(signal)
Verify(Equal(resFAMOS, res, 1e-10, "absolute", 1e-10))

Calculation of the lower and upper quartiles as well as of the median using 'NumPy':

signal = ...
PyConfig("Converter.PyArrayType", "ndarray")
percs = PyCallFunction("numpy", "percentile", signal, [25, 50, 75])
lower_q = percs[1]
median = percs[2]
upper_q = percs[3]

If the interpolation type is additionally to be set for the "percentile"-function (by means of the specified optional parameter 'interpolation'),
direct calling with PyCallFunction() is no longer possible, but must instead be emulated using PySetVar()/PyRun()/PyGetVar():

...
PySetVar("", "signal", signal)
PyRun("import numpy")
PyRun("percs = numpy.percentile(signal, [25, 50, 75], interpolation='nearest')")
percs = PyGetVar("", "percs")
...

See also:
PyGetVar, PySetVar, PyRun, PyRunFile, PyConfig

imc FAMOS Func on Reference - 799 -

(c) 2024 imc Test & Measurement GmbH

PyConfig

Scope: Python remote control

Available in: Professional Edition and above (Python-Kit)

Control of the behavior of the embedded Python-Interpreter

Declaration:
PyConfig (TxOption, TxValue) -> Success

Parameter:

TxOption Name of the option to set

"Converter.PyArrayType" : Specifies into which Python data type a FAMOS data set is converted when transferred to Python.

"Sys.Path.Append" : Adds an additional folder to the module search path of the Python-Interpreter.

TxValue Value of the option to set

"Converter.PyArrayType" : Array data type in Python

"list" [Default] Python default data type 'list'.

"ndarray" Data type 'numpy.ndarray' (defined in the 'NumPy' expansion library). If the 'NumPy'-library is not present, the
function returns a 0.

Success

Success 1, if the function has been executed successfully; 0 at fault condition. In case of fault, the cause can be queried using the function
GetLastError().

Description:
Python-data type for FAMOS data sets ("Converter.PyArrayType")
This option specifies which Python data type is to be used when transferring FAMOS data sets to Python. This pertains to the functions PySetVar()
and PyCallFunction(). By default, Python's default data type 'list' is used. However, this is not effective for storage and processing of large data
volumes.

Alternatively, the data type 'numpy.ndarray' can be used, which is defined in the widely prevalent 'NumPy' expansion library. This type is
optimized for efficient data storage and high-speed processing of multi-dimensional arrays. This data type can only be set if the 'NumPy'-
package is also installed, otherwise the function returns an error.

An exact listing of how the various FAMOS data types are implemented in Python is presented in the description of the function PySetVar().

Module search path ("Sys.Path.Append")
The module search path contains a list of folders in which the Python-Interpreter searches for modules to import. The module search path is
recorded in the Python-variable "sys.path". After starting the Interpreter, this variable contains the default paths specified by the Python-
installation as well as the current working directory.

The call

 PyConfig("Sys.Path.Append", "c:\my\folder")

is equivalent to the following Python-code:

 >>> import sys
 >>> sys.path.append('c:\\my\\folder')

Remarks:

This function is required when Python-modules are to be used subsequently which are not located in Python's default folders.
If the Python runtime environment is not yet loaded, it is first initialized by an implicit call of the function PyInit().

Multithreading: All functions of the Python-Kit can be called in any execution thread (BEGIN_PARALLEL), but have a global and cross-thread
effect. All calls are initially moved internally to the FAMOS main thread and executed from there, since the Python Runtime Environment does
not support parallel calls from different threads.

Examples:
An analysis uses the supplemental library 'NumPy'. The default array type is accordingly set to 'ndarray' at the beginning.

IF 0 = PyConfig("Converter.PyArrayType", "ndarray")
 BoxMessage("Error", "NumPy-Package not found. Please install first (see https://numpy.org)."
 EXITSEQUENCE

imc FAMOS Func on Reference - 800 -

(c) 2024 imc Test & Measurement GmbH

END
signal = ...
; Apply FFT from 'NumPy'
res = PyCallFunction("numpy.fft", "rfft", signal)

A FAMOS-project contains a user-written Python-module named "myfunctions.py", from which the function "sum3" is to be called, which finds
the sum of 3 parameters. Before the module is used, the FAMOS project folder must be added to the search path.

projectPath = GetOption("Dir.CurrentProject")
PyConfig("Sys.Path.Append", projectPath)
sum = PyCallFunction("myfunctions", "sum3", 1, 2.2, 3)
; sum = 6.2

See also:
PyInit, PySetVar, PyRun, PyCallFunction

imc FAMOS Func on Reference - 801 -

(c) 2024 imc Test & Measurement GmbH

PyGetVar

Scope: Python remote control

Available in: Professional Edition and above (Python-Kit)

Queries the content of a Python variable.

Declaration:
PyGetVar (TxModuleName, TxVariableName) -> Content

Parameter:

TxModuleName Name of the Python-module in whose context the variable exists.

TxVariableName Name of the variable to query

Content

Content Content of the queried variable

Description:
Retrieves the content of the Python variable.

The system initially tests whether the specified module has already been imported into the Interpreter. If not, import is performed. In case of an
empty name, the main module ("__main__") is used. For sub-modules of a package, the usual "period-notation" must be used, thus for example
"PackageName.SubModuleName".

Subsequently, the system finds the variable with the name specified and if found, retrieves the variable's content.

Example:

Querying a global variable named 'test':

PyRun("test = 2.3")
test = PyGetVar("", "test")
; identical to: PyGetVar("__main__", "test")

If it is not a global variable on the level of the module, but an attribute of a class instance, then it must be specified in Python using the usual
"period-notation", thus for example "ClassInstanceName.AttributeName"

Example:

Supposing the Python module 'persons' contains a definition of the class 'person', which contains the attributes 'name' and 'age' among others.
The following code generates an instance of the class 'person' and later retrieves the attributes:

PyRun("import persons")
PyRun("harry = persons.person()")
...
TxName = PyGetVar("", "harry.name")
Age = PyGetVar("", "harry.age")

Remarks:

If the Python runtime environment is not yet loaded, it is first initialized by an implicit call of the function PyInit().
At fault condition (e.g. unknown module, unknown variable name or data type not supported), a runtime error is raised.

Data types
The data type of the FAMOS-variable generated is determined automatically from the Python-variable's data type.

Here, the following rules apply:

Python FAMOS

Standard-Typen

'NoneType' Data set of length 0; data format: 8-Byte Real (like constant 'EMPTY')

'int' Single value; data format: 8-Byte signed Integer

'float' Single value; data format: 8-Byte Real

'complex' Complex data set (RI) of length 1; data format: 8-Byte Real

'bool' Single value; data format: 8-Byte Real

imc FAMOS Func on Reference - 802 -

(c) 2024 imc Test & Measurement GmbH

'str' Text

Container types 'tuple', 'list', 'range', 'set',
'frozenset'

with element number 0 Data set of length 0; data format: 8-Byte Real

all elements of type 'float' Data set; data format: 8-Byte Real

all elements of type 'int' Data set; data format: 8-Byte signed Integer

all elements of the type 'boole' Data set; data format: 8-Byte Real

all elements of the type 'complex' Complex data set (RI) of length 1; data format: 8-Byte Real

all elements of the type 'str' Text array

all elements of a 1-dimensional container, where all
containers have the same length N and all elements
the same numerical type (float, int, complex)

Segmented data set; segment length: N

other element-types or various types
Data group. The channels of the group contain the name "Item1", "Item2"...; the content
conforms to the conversion rules defined here. Caution when using 'set' - the elements
have no defined order; the order of the channels in the group is then random.

Miscellaneous container-types

'dictionary'
Data group. From each key/value-pair, a channel is constructed. The channel's name is
constructed from the key name, the content of the channel is generated from the
respective value according to the conversion rules defined here.

'bytes', 'bytearray' Data set; 1-Byte unsigned Integer
NumPy-Arrays ('numpy.ndarray')
This data type is defined in the widely prevalent 'NumPy'-package. It is optimized for efficient data storage and high-speed processing of multi-
dimensional arrays.

Homogeneous arrays of Dimension 1 or 2 are supported. For Dimension 2, a segmented data set is generated, where the rows of the NumPy-array
form the segments.

The storage layout must be either "C-" or "F-contiguous" (C_CONTIGUOUS, F_CONTIGUOUS) and the data must be saved in "Little-Endian-Byte
order".

NumPy-Array-element type FAMOS

'float64', 'float32' Data set (8 Byte Real)

'float128', 'float16' not supported

'int8', 'int16', 'int32' Data set (8 Byte Real)

'int64' Data set (8-Byte signed Integer)

'uint8' Data set (1-Byte unsigned Integer)

'uint16', 'uint32' Data set (8 Byte Real)

'uint64' not supported

'bool' Data set (8 Byte Real)

'complex64', 'complex128' Complex data set (RI, 8 Byte Real)

'str' Text array

'datetime64', 'timedelta64' not supported

'bytes' and all other types not supported

Examples:
Gets the Python-version by means of the attribute "hexversion" of the "sys"-module.

version = PyGetVar("sys", "hexversion") ; datatype of the result is "signed 8 byte integer"
major = BitShift(version, -24, 64) ; major is always 3
minor = BitAnd(BitShift(version, -16, 32), 0xFF, 64); minor is e.g. 8 or 9

Finds the Python-module search path. The result is of the type Text Array; each element is a folder.

pythonPath = PyGetVar("sys", "path")

Calculation of the lower and upper quartiles as well as of the median using 'NumPy':

imc FAMOS Func on Reference - 803 -

(c) 2024 imc Test & Measurement GmbH

PyConfig("Converter.PyArrayType", "ndarray")
signal = ...
PySetVar("", "signal", signal)
PyRun("import numpy")
PyRun("percs = numpy.percentile(signal, [25, 50, 75], interpolation='nearest')")
percs = PyGetVar("", "percs")
lower_quantil = percs[1]
median = percs[2]
upper_quantil = percs[3]

A Python-dictionary is converted to a FAMOS data group:

PyRun("person = {'name' : 'John', 'age' : 36}")
person = PyGetVar("", "person")

The result is a data group with 2 elements:

person
 |__ name ("John")
 |__ age (36)

From a random sample of data, a 'NormalDist'-class is constructed from the 'statistics'-module, which represents a standard distribution of the
sample with a mean value and standard deviation. The system finds the mean value and the standard deviation; additionally a long set of random
data having the same distribution as the random sample is generated:

PyRun("import statistics")
PySetVar("", "probe_samples" , [1, 1.2, 7.2, 15, 4.2, 6.1])
PyRun("nd = statistics.NormalDist.from_samples(probe_samples)")
mean_ = PyGetVar("","nd.mean")
stdev_ = PyGetVar("","nd.stdev")
PyRun("samples = nd.samples(10000, seed = 1)")
samples = PyGetVar("","samples")

See also:
PySetVar, PyRun, PyRunFile, PyCallFunction

imc FAMOS Func on Reference - 804 -

(c) 2024 imc Test & Measurement GmbH

PyInit

Scope: Python remote control

Available in: Professional Edition and above (Python-Kit)

The Python runtime environment is loaded in FAMOS and the Interpreter is initialized.

Declaration:
PyInit ([TxPythonFolder]) -> Success

Parameter:

TxPythonFolder Home directory of the Python-installation to be used. Optionally, if it is empty or not specified, the Python folder is
determined automatically. (optional , Default value: "")

Success

Success 1, if the function has been executed successfully; 0 at fault condition. In case of fault, the cause can be queried using the
function GetLastError().

Description:
It is not absolutely necessary to explicitly call this function. All FAMOS-functions which use the Python-Interpreter will perform it automatically if
initialization has not occurred yet.

If the Python-Interpreter is already initialized at the time when it is called, the function does not do anything.

Explicitly calling this function can be useful in the following application situations:

Specification of the home directory of the Python-installation to be used: Normally this parameter can be omitted, FAMOS then
automatically uses the highest supported version which can be found on the computer. Explicit specification is necessary when multiple
Python installations are on the computer and a specific version is to be used. The home directory of a Python-installation is the target folder
selected upon setup, and contains, for example, the executable file 'python.exe'.
The Python home directory is not entered in the PATH environment variable.FAMOS cannot then find Python automatically and the path
must be specified here explicitly.
Test for a compatible Python-installation before beginning the actual analysis, in order to be able to perform proper error handling at fault
condition (e.g. a Python-version which is not supported). For instance this can be a message to the user requesting a check of the Python-
installation, followed by controlled closing of the analysis. Otherwise, such a fundamental problem would only become noticeable during
execution of the actual analysis and cause a runtime error, meaning an uncontrolled cancelling of the sequence.

Multithreading: All functions of the Python-Kit can be called in any execution thread (BEGIN_PARALLEL), but have a global and cross-thread
effect. All calls are initially moved internally to the FAMOS main thread and executed from there, since the Python Runtime Environment does
not support parallel calls from different threads.

Examples:
At the beginning of an analysis, for which Python 3.9 is compulsory, the availability of an appropriate Python-installation is verified:

IF 0 = PyInit()
 BoxMessage("Can't start Python!", GetLastError(), "!1")
 EXITSEQUENCE
END
version = PyGetVar("sys", "hexversion")
; "sys.hexversion" returns the Python-version encoded in hexadecimal format
major = BitShift(version, -24, 64)
minor = BitAnd(BitShift(version, -16, 32), 0xFF, 64)
IF major <> 3 OR minor <> 9
 BoxMessage("Wrong Python version!", "Sorry, Python 3.9 requested!", "!1")
 PyTerminate()
 EXITSEQUENCE
END
...

On a PC having multiple installations of Python, the desired version is selected by specifying the home directory:

IF 0 = PyInit("c:\python\version_3_8")
 BoxMessage("No Python installation found!", GetLastError(), "!1")
 EXITSEQUENCE
END
...

See also:
PyTerminate, PyConfig, PySetVar, PyRun

imc FAMOS Func on Reference - 805 -

(c) 2024 imc Test & Measurement GmbH

PyRun

Scope: Python remote control

Available in: Professional Edition and above (Python-Kit)

The Python-code specified is executed.

Declaration:
PyRun (TxCode) -> Success

Parameter:

TxCode The Python-code to run. Allowed types: Text, Text Array

Success

Success 1, if the function has been executed successfully; 0 at fault condition. In case of fault, the cause can be queried using the function
GetLastError().

Description:
The specified Python-script-code is passed to the Python-Interpreter and executed.

It is also possible to pass multiple code lines in a text variable, these must be separated by a LineFeed-character (ASCII-Code 10, "~010").

When a text array is is transferred, each element is interpreted as a code line.

Remarks:

For the purpose of executing complex scripts, the function PyRunFile() is usually more appropriate.
If the Python runtime environment is not yet loaded, it is first initialized by an implicit call of the function PyInit().

Examples:
The Python-function 'sqrt', which belongs to the 'math'-module and serves to calculate the square root, is called. The following 3 sample calls are
equivalent:

PyRun("import math")
PyRun("x = math.sqrt(2)")
PyRun("import math~010x = math.sqrt(2)")
codeLines = ["import math", "x = math.sqrt(2)"]
PyRun(codeLines)

The result of the calculation is subsequently retrieved:

x = PyGetVar("", "x")

Alternative calculation:

x = PyCallFunction("math", "sqrt", 2)

The default Python output is redirected to the FAMOS output window. The print()-function can thus be used to display texts there:

PyRun("person = {'name': 'Harry', 'age': 42}")
PyRun("print('My name is',person['name'],', age ', person['age'])")
; => FAMOS-output window: "My name is Harry , age 42"

At the beginning of an analysis in Python, which uses functions from a personally-made library 'myfunctions.py', the system checks whether the
module is even present on the current PC:

IF PyRun("import myfunctions") = 0
 BoxMessage("Error", "Please install the Python module 'myfunctions' first!", "!1")
 EXITSEQUENCE
END

From a random sample of data, a 'NormalDist'-class is constructed from the 'statistics'-module, which represents a standard distribution of the
sample with a mean value and standard deviation. The system finds the mean value and the standard deviation; additionally a long set of random
data having the same distribution as the random sample is generated:

PyRun("import statistics")
PySetVar("", "probe_samples" , [1, 1.2, 7.2, 15, 4.2, 6.1])
PyRun("nd = statistics.NormalDist.from_samples(probe_samples)")
mean_ = PyGetVar("","nd.mean")
stdev_ = PyGetVar("","nd.stdev")

imc FAMOS Func on Reference - 806 -

(c) 2024 imc Test & Measurement GmbH

PyRun("samples = nd.samples(10000, seed = 1)")
samples = PyGetVar("","samples")

See also:
PyRunFile, PyCallFunction, PyGetVar, PySetVar

imc FAMOS Func on Reference - 807 -

(c) 2024 imc Test & Measurement GmbH

PyRunFile

Scope: Python remote control

Available in: Professional Edition and above (Python-Kit)

The specified Python-script-file is executed.

Declaration:
PyRunFile (TxFileName [, TxParameter]) -> Success

Parameter:

TxFileName Complete pathname of the Python-script to be executed

TxParameter Optional list of the parameters to be passed (optional)

Success

Success 1, if the function has been executed successfully; 0 at fault condition. In case of fault, the cause can be queried using the
function GetLastError().

Description:
The specified Python-script-file is passed to the Python-Interpreter and executed.

The (optional) list of parameters must be specified in the same syntax as if the script were directly passed to the Python-Interpreter
('python.exe'). The individual parameters are thus separated by spaces, parameters names containing spaces must be bracketed in extra
quotation marks.

The call in the Windows command prompt

 python c:\py_scripts\myscript.py 2 "Hello world"

would thus be identical to

 PyRunFile("c:\py_scripts\myscript.py", "2 ""Hello world"""

Important difference between the two calls: The first call uses a new, independent Python-instance. In the second call, the script is run in the
context of the Python-instance administered by FAMOS; any already imported modules or generated global variables are thus available to the
script. Conversely, any global variables generated by the script remain intact after execution.

Remarks:

If the Python runtime environment is not yet loaded, it is first initialized by an implicit call of the function PyInit().
The script-file must be encoded in the character set UTF-8. If only ASCII-characters within the range up to 127 are used, this matches the
standard-ANSI character set.

Examples:
The Python-script file 'c:\py_scripts\Add2Numbers.py" adds 2 numbers passed as the parameters and has the following content:

import sys
sum = float(sys.argv[1]) + float(sys.argv[2])

Call in FAMOS:

PyRunFile("c:\py_scripts\Add2Numbers.py","1.2 3.2")
sum = PyGetVar("","sum") ; => sum = 4.4

The script file 'untabify.py' which is included in the standard Python installation processes the file(s) passed as parameters and replaces tab
characters with a specifiable number of space characters.

; replace each tab in "file1.txt" with 3 spaces:
PyRunFile("C:\Python\Tools\scripts\untabify.py", "-t 3 ""c:\my files\file1.txt""")

See also:
PyRun, PyCallFunction, PyGetVar, PySetVar

imc FAMOS Func on Reference - 808 -

(c) 2024 imc Test & Measurement GmbH

PySetVar

Scope: Python remote control

Available in: Professional Edition and above (Python-Kit)

Sets the content of a Python-variable.

Declaration:
PySetVar (TxModuleName, TxVariableName, Content)

Parameter:

TxModuleName Name of the Python-module in whose context the variable is to be set.

TxVariableName Name of the variable to be set

Content New content

Description:
The specified content is assigned to the Python-variable addressed.

The system initially tests whether the specified module has already been imported into the Interpreter. If not, import is performed. In case of an
empty name, the main module ("__main__") is used. For sub-modules of a package, the usual "period-notation" must be used, thus for example
"PackageName.SubModuleName".

Subsequently, the system searches for the variable having the name specified. If it already exists, it is overwritten; otherwise it is newly created.

Example: Generates a global variable having the name 'test' and the data type 'float'.

PySetVar("", "test", 2.3)
; identical to: PySetVar("__main__", "test", 2.3)

If it is not a global variable on the level of the module, but an attribute of a class instance, then it must be specified in Python using the usual
"period-notation", thus for example "ClassInstanceName.AttributeName"

Example: Supposing the Python-module 'persons' contains a definition of the class 'person', which contains the attributes 'name' and 'age' among
others. The following code generates an instance of the class 'person' and sets the attributes:

PyRun("import persons")
PyRun("harry = persons.person()")
PySetVar("", "harry.name", "harry")
PySetVar("", "harry.age", 18)

Remarks:

If the Python runtime environment is not yet loaded, it is first initialized by an implicit call of the function PyInit().
At fault condition (e.g. unknown module, invalid variable name or data type), a runtime error is raised.
Multithreading: All functions of the Python-Kit can be called in any execution thread (BEGIN_PARALLEL), but have a global and cross-thread
effect. All calls are initially moved internally to the FAMOS main thread and executed from there, since the Python Runtime Environment
does not support parallel calls from different threads.

Data types
The Python data type of the variable generated is automatically determined from the type and format of the 3rd parameter.

The default converter type configured with PyConfig("Converter.PyArrayType", ...) is applied (either 'list' (default) [1] or 'numpy.nddarray' [2]).

Here, the following rules apply:

FAMOS-data type Python-data type

Single values

8-Byte Integer (full-scale) Integer ('int')

Miscellaneous numerical data
formats Real number, 8-Byte ('float')

Normal data sets

8-Byte Real with length = 0
(constant 'EMPTY') None ('NoneType')

8-Byte Integer (full-scale) [1]: Liste ('list' [..'int'..])
[2]: NumPy-Array ('numpy.ndarray' [..'int64'..])

imc FAMOS Func on Reference - 809 -

(c) 2024 imc Test & Measurement GmbH

1-Byte Integer unsigned (full-scale) Bytearray

Miscellaneous numerical data
formats

[1]: Liste ('list' [..'float'..])
[2]: NumPy-Array ('numpy.ndarray' [..'float64'..])

TimeStampASCII and other special
formats not supported

2-component data sets

Complex, Cartesian, Length = 1 Complex number ('complex')

Complex, Cartesian, Length <> 1 [1]: Liste kompl. Zahlen ('list' [..'complex'..])
[2]: NumPy-Array ('numpy.ndarray' [..'complex128'..])

Complex, Magnitude/Phase not supported

XY not supported

Structured data (Events/Segments)

Segmente
... Integer 1 Byte unsigned (full-
scale)

[1]: Liste von Bytefeldern ('list' [..'bytearray'..]). Jedes Bytefeld entspricht einem Segment.
[2]: 2-dimensionales NumPy-Array von Bytes ('numpy.ndarray' [..'uint8'..]). Jedes Segment bildet eine
Zeile der Matrix.

Segmente
... sonstige Formate

[1]: Liste von Listen ('list' [..'list'..]). Jedes Listenelement entspricht einem Segment.
[2]: 2-dimensionales NumPy-Array ('numpy.ndarray'). Jedes Segment bildet eine Zeile der Matrix.
Der Datentyp der Listen-/Feldelemente ergibt sich wie vorstehend beschrieben.

Events not supported

Miscellaneous data types

Text String ('str')

Text array List of strings ('list' [..'str'..])

Group Dictionary ('dict'). Each channel of the group is translated to a key/value-pair. The key corresponds to the
respective channel name.

Notes on the type 'numpy.ndarray'
This data type is defined in the very prevalent 'NumPy'-package. It is optimized for efficient data storage and high-speed processing of multi-
dimensional arrays. The NumPy-arrays generated are saved in "C-contiguous" (C_CONTIGUOUS) style.

Examples:
Generating global variables of the data types 'float' and 'int':

PySetVar("", "test_float", 2.3)
PySetVar("", "test_int", ToInt(2))

Generating global variables of the data types 'list' and 'numpy.ndarray' (data type of the elements: 'float'):

PySetVar("", "test_list", [1,2,6,7])
PyConfig("Converter.PyArrayType", "ndarray")
PySetVar("", "test_ndarray", [1,2,6,7])

Generating a Python-list with texts:

PySetVar("", "test_str_list", ["The", "answer", "is", "42"])

Generating a Python-dictionary ('dict') from a FAMOS-data group:

person:name = "Harry"
person:age = ToInt(42)
PySetVar("", "test_dict", person)
PyRun("print(test_dict)")
; => FAMOS-output window "test_dict = {'name': 'Harry', 'age': 42}"

See also:
PyGetVar, PyRun, PyRunFile, PyConfig, PyCallFunction

imc FAMOS Func on Reference - 810 -

(c) 2024 imc Test & Measurement GmbH

PyTerminate

Scope: Python remote control

Available in: Professional Edition and above (Python-Kit)

Shutdown the Python-Interpreter

Declaration:
PyTerminate ()

Parameter:

Description:
The Python-Interpreter previously initialized by PyInit() or another Python-accessing function is closed.

An explicit call of this function is not compulsory. Termination of the Python-Interpreter occurs automatically upon closing FAMOS.

One possible application is provisional termination of the Interpreter, for instance in order to subsequently use PyInit() to start a new, "clean"
instance of the Interpreter. Although this is permitted in principle, it can be risky and is therefore not recommended. Python-expansion modules
from 3rd-party manufacturers can have problems after such an "Interpreter-reboot", since some architectures may not enable them to be
unloaded properly. One example is the library 'NumPy', which may no longer work properly following PyTerminate()/PyInit().

If the Python-Interpreter is not initialzed at the moment of the call, the function will not do anything.

Examples:
At the beginning of an analysis for which Python 3.9 is compulsory, the availability of an appropriate Python-installation is verified. If a different
version is found, the Python runtime environment is immediately closed:

IF 0 = PyInit()
 BoxMessage("Can't start Python!", GetLastError(), "!1")
 EXITSEQUENCE
END
version = PyGetVar("sys", "hexversion")
; "sys.hexversion" returns the Python-version encoded in hexadecimal format
major = BitShift(version, -24, 64)
minor = BitAnd(BitShift(version, -16, 32), 0xFF, 64)
IF major <> 3 OR minor <> 9
 BoxMessage("Wrong Python version!", "Sorry, Python 3.9 requested!", "!1")
 PyTerminate()
 EXITSEQUENCE
END
...

See also:
PyInit

imc FAMOS Func on Reference - 811 -

(c) 2024 imc Test & Measurement GmbH

R_ChisqTest

Scope: R remote control

Available in: Professional Edition and above (R-Kit)

Function for performing the Chi-square-test

Declaration:
R_ChisqTest (x [, correct] [, p]) -> Result

Parameter:

x Data with the properties of the random sample

correct Continuity correction (optional , Default value: 1)

0 : Continuity correction is not applied.

1 : Continuity correction is applied. (default)

p Normal data set with probabilities (only applicable to goodness-of-fit test) (optional)

Result

Result The result of the Chi-square test isa data group with the elements:

statistic : Chi-square value

parameter : Count of degrees of freedom

p.value : p-value of the test

method : The character sequence indicates which type of the Chi-square test was performed.

observed : Observed frequencies

expected : The expected frequencies according to the null hypothesis

residuals : Pearson residues

stdres : Standard residues

Description:
The Chi-square test belongs to the group of hypothesis tests based on a Chi-square distribution. The core of the test concept consists of a
comparison of an empirical frequency with a theoretical frequency. It gives a statement on whether the observed frequencies differ significantly
from those which would be expected.

Test prerequisites:
The random sample should comprise at least 50 examination units.
If the sample size is between 20 and 50, then the continuity correction should be applied.
The expected frequencies in all cells of the contingency table should be greater than 5 .
The degrees of freedom = (r-1) * (c-1) should be greater than 1 (r=row count and c=column count of the contingency table). If this condition is not
met, then the continuity correction should be applied.

There is a distinction between the following tests:

Goodness-of-fit test
The goodness-of-fit test examines whether an empirically observed frequency distribution can be described by a specific theoretical
distribution. It tests whether the data conform to a specific probability distribution. Thus for example, it is possible to examine whether the face
values of a dice roll are uniformly distributed or whether a concrete empirical characteristic is normally distributed in the population.
If the parameter 'x' is a normal data set, the goodness-of-fit test is performed. In this case 'x' is treated as a single-dimensional contingency table.
The entries belonging to 'x' are the observed frequencies. They must be positive numbers. These relative class frequencies are then compared
with the specified probabilities.
The goodness-of-fit test always tests against the null hypothesis.
The null hypothesis states that the attributes of 'x' conform to the specified probability distribution 'p'.
The probabilities can be specified as the parameter 'p'. The value count in the data set 'p' must match that of 'x'. If 'p' is not specified, then
uniform distribution is assumed.
The calculated p-value 'p.value' is the probability of observing the calculated test statistic according to the null hypothesis. The smaller the p-
value, the less probable is the validity of the null hypothesis. It is customary to reject the null hypothesis at a p-value <= 0.05 (or 5%).

Test of independence
In the test of independence, 2 discrete characteristics a and b belonging to a sample are examined for stochastic independence. The issue of
interest is whether the two characteristics are interrelated to or independent of each other.
The hypotheses of the test are:
The null hypothesis states that the characteristics a and b are independent.
The alternative hypothesis states that the characteristics a and b are not independent.

imc FAMOS Func on Reference - 812 -

(c) 2024 imc Test & Measurement GmbH

In order to perform the test of independence, the parameter 'x' must be a normal segmented data set. This is converted to a matrix and
transferred into a contingency table. On the basis of this contingency table, the test of independence is performed. In the contingency table, the
degrees of the first characteristic form the columns and the degrees of the second characteristic form the rows. The cells contain the frequencies
of both characteristics, meaning the count of occurrences, which apply to both the criterion for the row and also that of the column.
Example: In the contigency table, the purchasing behavior of customers is reflected.
Characteristic a= gender; characteristic b = purchasing behavior; sample size = 1000 customers
The frequencies for the purchasing behavior is subdivided by gender and "buy"/"don't buy" are transferred in the form of a matrix (segmented
data sets). The function produces a contingency table from the matrix by adding the boundary sums.

Matrix Contingency table

Characteristic a / b buy don't buy Characteristic a / b buy don't buy Sum

Men 180 170 => Men 180 170 350

Women 240 410 Women 240 410 650

Sum 420 580 1000
The continuity correction should be set when the calculation is applied to a contingency table with 2 columns and 2 rows.

When using the calculated p-value, a test is decided as follows:
p.value < alpha -> The null hypothesis is rejected. The alternative hypothesis is accepted.
p.value >= alpha -> The null hypothesis accepted.
Where alpha the previously selected significance level; 0.05 (5%) is customary.

Continuity correction
The continuity correction is applied when there is only one degree of freedom or the sample size is between 20 and 50. The so-called Yates'
correction improves the comparability of test variable with the theoretical distribution for smaller samples sizes with only one degree of
freedom.

Results of the Chi-square-test

statistic Chi-square - Value = sum((obsserved frequencies - expected frequencies)^2 /expected frequencies)

parameter Number of degrees of freedom:= (row count -1) * (column count -1) of the contingency table

p.value

The p-Wert is a measure of probability for evidence against accepting the null hypothesis. Lower probabilities provide stronger
eveidence that the null hypothesis is not accepted.
If the p-value <= alpha (significance level), then the null hypothesis is rejected.
If the p-value > alpha, the null hypothesis is accepted.

method The type Chi-square test conducted

observed Compilation of observed data counts (frequencies)

expected The expected frequencies according to the null hypothesis
Expected frequency[i,j]= (column sum[i] * row sum[j])/ total count

residuals Pearson residues
Residue[i,j]= (observed frequency[i,j] - expected frequency[i,j]) / sqrt(expected frequency[i,j])

stdres Standard residues

Examples:
In the goodness-of-fit test, for a significance level of alpha = 1%, we test whether the sample provides evidence for or against uniform
distribution of dice roll outcomes. The die investigated was rolled 500 times with the following frequency distribution
for face values of 1, 2, 3, 4, 5 and 6:
absolute frequency 75, 78, 96, 103, 77, 71
Null hypothese for i=1,...,6 is pi = P({face value =i}) = 1/6
Alternative hypothesis for i=1,...,6 ist pi = P({face value =i}) <> 1/6

ni=[75,78,96,103,77,71]
result=R_ChisqTest(ni)
The Chi-square test returns the result as the data group 'result':

statistic = 10.048

parameter = 5

p.value = 0.0738866

method = "Chi-squared test for given probabilities"

observed = 75,78,96,103,77,71

expected = 83.33,83.33,83.33,83.33,83.33,83.33

residuals = -0.9129, -0.5842, 1.3876, 2.1544, -0.6938, -1.3510

stdres = -1.0000, -0.6400, 1.5200, 2.3600, -0.7600, -1.4800

imc FAMOS Func on Reference - 813 -

(c) 2024 imc Test & Measurement GmbH

We obtain a Chi-square value = 10.048 with 5 degrees of freedom.
The p-value of the test is 0.0738866. It is substantially above the significance level of 0.01, so that one can assume that the distribution is uniform
and the dice is legit.

Can one conclude based on the numbers obtained that the merchant's sales distribution deviates significantly from the overal market? The null
hypothesis states that the merchant's sales distribution matches the distribution given for the overall population. In this goodness of fit test, the
distribution of the population is not uniformly distributed, so that the distribution must be supplied as the parameter 'p'.

x=[33400,35410,2610,12520,16340,9840,6070,7620,1190]; sales figures of the merchant, by brand
p=[27,28,2,10,13,8,5,6,1]; market share in percent
result=R_ChisqTest(x,0,p)
The Chi-square test returns the result as the data group 'result':

statistic = 26.3469

parameter = 8

p.value = 0.000915901

method = "Chi-squared test for given probabilities"

observed = 33400, 35410, 2610, 12520, 16340, 9840, 6070, 7620, 1190

expected = 33750, 35000, 2500, 12500, 16250, 10000, 6250, 7500, 1250

residuals = -1.9052, 2.1915, 2.2000, 0.1789, 0.7060, -1.6000, -2.2768, 1.3856, -1.6971

stdres = -2.2298, 2.5828, 2.2223, 0.1886, 0.7569, -1.6681, -2.3360, 1.4292, -1.7056

We obtain a Chi-square value = 26.3469 with 8 degrees of freedom.
At 0.0009, the p-value is below the significance level of 0.01. The merchant can thus assume that his sales profile is different from that of the
overall market.

With the test of independence, it is to be examined whether there is any correlation between eye color and hair color. The null hypothesis
states: Hair and eye color are mutually independent. The eye and hair color of 592 people was observed.

Hair/Eyecolor blue brown green nut

blonde 94 7 16 10

brown 84 119 29 54

red 17 26 14 14

black 20 68 5 15

From the observed frequencies, a segmented data set is compiled. The segments form the columns.

blue=[94,84,17,20]
brown=[7,119,26,68]
green=[16,29,14,5]
hazel=[10,54,14,15]
x=join(blue,brown)
x=join(x,green)
x=join(x,hazel)
SetSegLen(x,leng?(blue))
result=R_ChisqTest(x)

statistic = 138.29

parameter = 9

p.value = 2.32529e-25

method = "Pearson's Chi-squared test"

We obtain a Chi-square value = 138.29 with 9 degrees of freedom.
Since the p-value is < 0.05, the null hypothesis can be rejected. There is a correlation between eye color and hair color.

Using the test of independence, we examine whether the proportions of men and women in the labor force is different. The null hypothesis
states that the proportion of labor force participation is independent of gender. The survey encompasses 3468 persons.

. male female

full-time 1026 545

part-time 41 309

working on the side 73 135

imc FAMOS Func on Reference - 814 -

(c) 2024 imc Test & Measurement GmbH

not working 619 720

From the observed frequencies, a segmented data set is generated and the Chi-square test is conducted.

man=[1026,41,73,619]
women=[545,309,135,720]
x=join(man,women)
SetSegLen(x,leng?(man))
result = R_ChisqTest(x)

statistic = 377.938

parameter = 3

p.value = 1.32914e-81

method = "Pearson's Chi-squared test"

Both at a significance level of 5% and of 1%, the null hypothesis rejected. From this it is possible to conclude that there is a correlation between
labor force participation and gender.

imc FAMOS Func on Reference - 815 -

(c) 2024 imc Test & Measurement GmbH

R_Execute

Scope: R remote control

Available in: Professional Edition and above (R-Kit)

An R script is run.

Declaration:
R_Execute (TxRScript [, TxRVarNames] [, Variable 1] [, Variable 2] [, Variable 3] [, Variable 4] [, Variable 5]
[, Variable 6] [, Variable 7] [, Variable 8]) -> Result

Parameter:

TxRScript The R script is passed and run.

TxRVarNames Specification of the R-variable name for the R-Script. The variable names are separated by a semicolon. (optional)

Variable 1 1st variable according to the TxRVarNames definition (optional)

Variable 2 2nd variable according to the TxRVarNames definition (optional)

Variable 3 3rd variable according to the TxRVarNames definition (optional)

Variable 4 4th variable according to the TxRVarNames definition (optional)

Variable 5 5th variable according to the TxRVarNames definition (optional)

Variable 6 6th variable according to the TxRVarNames definition (optional)

Variable 7 7th variable according to the TxRVarNames definition (optional)

Variable 8 8th variable according to the TxRVarNames definition (optional)

Result

Result Result of the R script

Description:
The function performs 3 steps:

1. The FAMOS variable passed: 'Variable 1' ... 'Variable 8' are converted and assigned to the specified R variables.

2. The R script is passed to the R-System and run.

3. The return variable or the result of the R script's last expression are determined, converted to a FAMOS variable and returned as 'Result'.

The R script can contain multiple expressions. The individual expressions are separated by semicolons. When the R script is passed, all the
expressions are executed.

If an R-Script is to be loaded from a file and executed, then the TxRScript must begin with the keyword RScript:. Next, the filename follows.
Example: R_Execute("RScript:"+"C:\Program Files\R\R-3.3.1\tests\MaxMinAvg.R","sd_value;input",input)

The parameter TxRVarNames contains the R-names of the return variables and/or the R-names of the input variable. All R-names must be
separated from each other with a semicolon.

TxRVarNames Transfer to the R-system Return from the R-system

Parameter missing or empty No transfer of input variable The result of the R script's last expression is
returned.

No return variable is specified.
Example: ";a;b"

The input variables a and b are transferred to the
R-system.

The result of the R script's last expression is
returned.

No input or return variables have been
specified.
Example: ";"

No transfer of input variable The result of the R script's last expression is
returned.

Only the return variable is specified.
Example: "c;" No transfer of input variable The value of the return variable c is returned.

The return variable and input variabels are
specified.
Example: "c;a;b"

The input variables a and b are transferred to the
R-system. The value of the return variable c is returned.

The number of names of input variables must match the number of parameters 'Variable 1'...'Variable 8'. If there are more input names in
TxRVarNames than parameters 'Variable 1'...'Variable 8', then the sequence will abort. If there are fewer input names in TxRVarNames than
parameters 'Variable 1'...'Variable 8', then the excess parameters are ignored.

The conversion rules for the input variables are described in the function R_SetVar(). It does not matter whether the input variables are passed
for an R script with the function R_Execute() or previously by calls of the function R_SetVar().

imc FAMOS Func on Reference - 816 -

(c) 2024 imc Test & Measurement GmbH

More specifications can be made for the return variable. In R, variablen can have a complex structure. For example, the R-function t.test(var1,
var2) generates a Data Frame with the components 'statistic', 'parameter', 'p.value', 'conf.int', 'estimate', 'null.value', 'alternative', 'method' and
'data.name'. However, if only the p.value is of interest for subsequent analysis, this component can be returned by specifying a component
name.

The component name is separated from the variable name by a colon. Example: The R script result=t.test(group1, group2) is executed and only
the p.value is to be returned.

p_value =R_Execute("result=t.test(group1, group2)","result:p.value;")

If the R script does not contain any assignment to a result variable, then a component of the last expression can also be returned.

p_value =R_Execute("t.test(group1, group2)",":p.value;")

In this case the variable name is omitted and only the desired component is sepcified.

For conversion of the returns to FAMOS, the same rules apply as in the function R_GetVar().

Multithreading: All functions of the R-Kit can be called in any execution thread (BEGIN_PARALLEL), but have a global and cross-thread effect. All
calls are first moved internally to the FAMOS main thread and executed from there, since the R runtime environment does not support parallel
calls from different threads.

Examples:
Simple calculation by means of R

ramp=Ramp(1,1,100)
rscript="mean_value=mean(input)"
result =R_Execute(rscript,"mean_value;input",ramp)

The variable 'ramp' is created in FAMOS. The values of these variables are assigned to the R variable 'input'. The R script calculates the mean value
of these variables and assigns the results of the R variable to mean_value. The return variable is converted to the FAMOS variable 'result'.

Simultaneous calculation of multiple values with one script

ramp = Ramp(1,1,100)
rscript= "min_value=min(input);"
rscript=rscript+"max_value=max(input);"
rscript=rscript+"mean_value=mean(input);"
rscript=rscript+"sd_value=sd(input);"
sd_Value1 =R_Execute(rscript,"sd_value;input",ramp); = 29.0115
min_Value1 =R_GetVar("min_value"); =1
max_Value1 =R_GetVar("max_value"); =100
mean_Value1=R_GetVar("mean_value");= 50.5

The variable 'ramp' is created in FAMOS. Then the R script is assembled from the individual instructions for calculating Minimum, Maximum,
Mean Value and Standard Deviation. It is important for a semicolon to indicate the end of an instruction. The script is executed and the return
variable 'sd_value' is returned. The other values are then later read from the R-system using the function R_GetVar().

Calculation with the help of a script-file
The file MaxMinAvgSd.R has the following content:

Example
min_value <-min(input);
max_value <-max(input);
mean_value <-mean(input);
sd_value <-sd(input)

ramp = Ramp(1,1,100)
rFile="C:\Program Files\R\R-3.3.1\tests\MaxMinAvgSd.R"
rscript="RScript:"+rFile
sd_Value2 =R_Execute(rscript,"sd_value;input",ramp)
min_Value2 =R_GetVar("min_value")
max_Value2 =R_GetVar("max_value");
mean_Value2=R_GetVar("mean_value");

The function R_Execute assigns the FAMOS variable 'ramp' to the R variable 'input'. Subsequently, the R-Script file MaxMinAvgSd.R is loaded and
executed. After execution, the function returns the value of the R variable 'sd_value'. The other values are subsequently read from the R-system
by means of the function R_GetVar().

Transfer and execution of a user-defined function

x=Ramp(1,1,10)
y=Ramp(1,1,10)
R_Function="matrix_mult <- function(a,b){ c = a * b; return (c);}"
R_Execute(R_Function)
z=R_Execute("matrix_mult(x,y)",";x;y",x,y)

It is possible to write and execute user-defined functions in R. In the 3rd line, the script for user-defined functions is set. With the help of this
function, the values of two vectors are multiplied. In the following line, this function is passed to the R-System. In the last line, the two FAMOS

imc FAMOS Func on Reference - 817 -

(c) 2024 imc Test & Measurement GmbH

variables 'x' and 'y' are passed and the function is executed. The result of the expression is returned as a the FAMOS variable 'z'.

Generating a data set with normally distributed random numbers.
The arguments of the function rnorm are the mean value of the distibution, the standard deviation and the number of samples.

Rscript="rnorm(mean=2,sd=3,n=100)"
x=R_Execute(Rscript)

See also:
R_GetVar, R_SetVar

imc FAMOS Func on Reference - 818 -

(c) 2024 imc Test & Measurement GmbH

R_GetOption

Scope: R remote control

Available in: Professional Edition and above (R-Kit)

Gets the R-System's settings

Declaration:
R_GetOption (TxParameterName) -> TxParameterValue

Parameter:

TxParameterName Name of the declared optional parameter

"R_HOME" : R-Home folder

"R_KITVERSION" : Version of the imc R- Kit

"R_PROCESS" : 64- or 32-Bit version of the R-System

"R_VERSION" : Version of the R-System

TxParameterValue

TxParameterValue Parameter value

Description:
With these functions, the R- System's settings can be obtained. The names of the optional parameters are not case-sensitive.

Examples:
The R-System's parameters to be queried are obtained by means of the following calls.

R_Path=R_GetOption("R_HOME") ; -> C:\Program Files\R\R-3.3.2\bin\x64
R_Version=R_GetOption("R_version"); -> 3.3.2
R_KitVersion=R_GetOption("R_KITVERSION"); -> 7.2.1.0
R_Process=R_GetOption("R_PROCESS"); -> x64 or i386
R_Unknown=R_GetOption("R_Unknown"); -> Abort: The optional parameter 'R_Unknown' is not declared.

See also:

imc FAMOS Func on Reference - 819 -

(c) 2024 imc Test & Measurement GmbH

R_GetVar

Scope: R remote control

Available in: Professional Edition and above (R-Kit)

Gets the value of an R variable.

Declaration:
R_GetVar (TxRVarName) -> Result

Parameter:

TxRVarName Symbolic name of the R variable

Result

Result Data group, normal data set, normal segmented data set, data set with Real- and Imaginary part, segmented data setwith Real and Imaginary part, text or textarray with the value of the R variable

Description:
The R variable of the name specified is found in the R-system and its content is converted to a FAMOS variable. If the R variable does not exist, the sequence aborts.

The name of the R variable is case-sensitive.

For conversion of an R variable to a FAMOS variable, the following rules apply:

R variable type The FAMOS variable's type
Character vector with 1 element Text

Character vector with more than one element Text array

Numeric vector Normal data set, 8-Byte Real

Numeric matrix Normal, segmented data set, 8-Byte Real

Complex vector Complex data set (Real and Imaginary parts), 8-Byte Real

Complex matrix Complex, segmented data set (Real and Imaginary parts), 8-Byte Real

Integer vector Normal data set, 4-Byte Integer

Integer matrix Normal, segmented data set, 4-Byte Integer

Logical vector Normal data set, unsigned 1-Byte Integer

Logical matrix Normal, segmented data set, unsigned 1-Byte Integer

Raw Vector Normal data set, unsigned 1-Byte Integer

Raw matrix Normal, segmented data set, unsigned 1-Byte Integer

List Data group

Data frame Data group

Pair list Data group

Language object Data group

S4 object Data group

Symbol Text

Factor Normal data set, 4-Byte Integer
If the R variable's structure is too complex, it can not be converted to a FAMOS variable. The structure is too complex if, for example, the R variable is a list and this list contains an additional list. In this case, the sequence would abort
with an appropriate error message.

In order to obtain the results in spite of this, it is possible to read the components of the R variable individually. Toward this end, the component name must be specified. The syntax is VariableName:ComponentName. The
component name is separated from the variable name by a colon.

The component name can be either a name or a number. If it is a number, then it is interpreted as an index. The component is determined according to this index.

If the component name is a name, then the system attempts to find this name in the Names list of variables. For this purpose, the components of the R-variable must be named.

If a component of a matrix is to be returned, then the component name is structured as follows: VariableName:RowName,ColumnName. The row and column names may neither be a number nor a name. They are separated by a
comma.

mat The entire matrix is returned.

mat: The entire matrix is returned.

mat:, The entire matrix is returned.

mat:row, The matrix's row 'row' is returned.

mat:,col The matrix's column 'col' is returned.

mat:row,col The value of the matrix's row 'row' and column 'col' is returned.
If the R variable contains values which lie outside of FAMOS' valid numerical range, then they are replaced as follows: For the R variable types numerical vector, numerical matrix, complex vector and complex matrix, the following
applies:

Value Return

Division by zero 0

Value > 1e35 1e35

Value < -1e35 -1e35

NaN 1e35
For the R variable types Integer vector and Integer matrix, the following applies:

Value Return

Division by zero -2147483648

NA (missing value) -2147483648

NaN (no number) -2147483648
For the R variable types logical vector, logical matrix, Raw vector and Raw matrix:

Value Return

Division by zero 0

NA (missing value) 0

NaN (no number) 0

Values outside of 0...255 0

Examples:
With the R script, 2 numerical vectors are generated and the function t.test() is run. The result is assigned to the variable 'result'.

The function t.test() returns a list with the components 'statistic', 'parameter', 'p.value', 'conf.int', 'estimate', 'null.value', 'alternative', 'method' und 'data.name'

RScript= "group1 <- c(30.02, 29.99, 30.11, 29.97, 30.01, 29.99);"
RScript=RScript+"group2 <- c(29.89, 29.93, 29.72, 29.98, 30.02, 29.98);"
RScript=RScript+"result= t.test(group1, group2)"
result =R_Execute(RScript)

imc FAMOS Func on Reference - 820 -

(c) 2024 imc Test & Measurement GmbH

The function returns the result of the last expression in the form of the data group 'result': statistic (=1.95901) parameter (=7.03056) p.value (=0.0907733) conf.int estimate null.value (=0) alternative (="two.sided") method (="Welch Two Sample t-test") data.name (="group1 and group2")
There are two ways to determine only the value of p.value:
p_value1=R_GetVar("result:p.value"); returns the named component p.value of the variable 'result'.
p_value2=R_GetVar("result:3"); returns the 3rd component of the variable 'result'.

By means of R script, a Data Frame is generated in R. The first component is a numerical vector, the second a character vector and the third a logical vector.

RScript="d <- c(1,2,3,4);"
RScript=RScript+"e <- c('red','white','blue',NA);"
RScript=RScript+"f <- c(TRUE,TRUE,TRUE,FALSE);"
RScript=RScript+"mydata <- data.frame(d,e,f,stringsAsFactors=FALSE);"
RScript=RScript+"names(mydata) <- c('ID' ,'Color','Passed')"; The components of the Data Frame are named.
R_Execute(RScript); The variable 'mydata' is generated.
myDataGroup=R_GetVar("mydata"); The variable 'mydata' is read and converted to a data group.
The component 'ID' is converted to a normal data set, the component 'Color' to a text array, and the component 'Passed' to a normal data set in the format unsigned 1-Byte Integer.

There are two ways to read components of the R variable:
The 1st component of the variable 'mydata' is read.
ID = R_GetVar("mydata:1")
The named component 'Color' of the variable 'mydata' is read.
Color= R_GetVar("mydata:Color")

See also:
R_SetVar

imc FAMOS Func on Reference - 821 -

(c) 2024 imc Test & Measurement GmbH

R_Norm

Scope: R remote control

Available in: Professional Edition and above (R-Kit)

Functions for calculating densities, probability distributions and quantiles of the standard normal distribution

Declaration:
R_Norm (TxFnt, x [, mean] [, sd]) -> Result

Parameter:

TxFnt Name of the function determining what is to be calculated

"d" : Probability density at the position x

"p" : Value of the distribution function at the position x

"q" : Quantile of the specified probability x

x Single value or normal data set x

mean Expected/mean value (default=0) (optional , Default value: 0)

sd Standard deviation (default =1.0) (optional , Default value: 1)

Result

Result Result of the calculation

Description:
The calculations are performed by means of R. I.e., an R-script is generated from the parameters and run. Subsequently, the result of the
expression is read and converted to a FAMOS variable.

x can be a single value or a normal data set.

The result value count is determined by the count of x values.

Specification of the mean value is optional. If it is not specified, then calculations are based on the default value =0.

Specification of the standard deviation is optional. If it is not specified, then calculations are based on the default value =1.

A negative standard deviation causes an error in the calculation. In such a case, the result value is 1e35.

Examples:
Density: Calculation of the probability desnity at the position x=3

y=R_Norm("d",3); y= 0.00443185

Distribution function: The value of the distribution function at the position x states the probability of a value <= x being observed.

y=R_Norm("p",1.644854); y= 0.95

The probability of an observation <= 1.644854 is 0.95

Quantile: Calculation of a value, of which the probability of not being exceeded is 0.95:

y=R_Norm("q",0.95,0,1); y= 1.64485

imc FAMOS Func on Reference - 822 -

(c) 2024 imc Test & Measurement GmbH

R_SetVar

Scope: R remote control

Available in: Professional Edition and above (R-Kit)

Assigns a value to an R variable.

Declaration:
R_SetVar (TxRVarName, FAMOSVariable)

Parameter:

TxRVarName Symbolic name of the R variable

FAMOSVariable The content of the FAMOS variable is transferred to the R variable.

Description:
Using this function R variables can be defined and values assigned to them.

This value can be a single value, a FAMOS data set, a text, a text array or a data group.

A FAMOS variable is converted according to thefollowing rules:

The FAMOS variable's type R variable type
Normal data set Numeric vector

Normal segmented data set Numeric matrix

Data set with Real and Imaginary parts Complex vector

Segmented data set with Real and Imaginary parts Complex matrix

Data set with magnitude and phase Complex vector

Segmented data set with magnitude and phase Complex matrix

Text Character vector

Text array Character vector

Data group R list
Data sets with events, data sets with magnitude and phase in db, and data sets in the format Time Stamp ASCII are not supported.

When converting a segmented data set, each segment becomes a column in the R matrix.

Data sets having a magnitude and phase are converted to data sets with Real and Imaginary parts, and subsequently to a complex vector or a
matrix.

A data group is converted to an R list. The components of the R list are derived from the elements of the data group.

Multithreading: All functions of the R-Kit can be called in any execution thread (BEGIN_PARALLEL), but have a global and cross-thread effect. All
calls are first moved internally to the FAMOS main thread and executed from there, since the R runtime environment does not support parallel
calls from different threads.

Examples:
The FAMOS variable 'fa' is assigned to the R variable 'a'.

fa=1000
R_SetVar("a",fa); single value -> Numeric vector

The Text variable 't' is assigned to the R variable 'ch'.

t="123.4"
R_SetVar("ch",t); Text -> Character vector

The segmented data set 'seg' is assigned to the R variable 'mat'.

seg=Ramp(1,1,100)
SetSegLen(seg,20)
R_SetVar("mat",seg); Normal segmented data set -> Numeric matrix

A data group 'roller' is created. This group is assigned to the R variable 'roller'. The R variable 'roller' is of the type R List.

weight=Ramp(0,1,3) ; Normal data set
Weight[1]=1.9
Weight[2]=3.1
Weight[3]=3.3
depression=Ramp(0,1,4) ; 1 value more than Weight

imc FAMOS Func on Reference - 823 -

(c) 2024 imc Test & Measurement GmbH

depression[1]=2
depression[2]=1
depression[3]=5
depression[4]=5
doc= TxArrayCreate(2) ; Text array with 2 elements
doc[1]="abc"
doc[2]="def"
dsseg=Ramp(1,1,100); Normal segmented data set
SetSegLen(dsseg,20)
roller=GrNew(); creating the data group 'roller'
GrChannAppend(roller,weight)
GrChannAppend(roller,depression)
GrChannAppend(roller,doc)
GrChannAppend(roller,dsseg)
R_SetVar("roller",roller) ; FAMOS data group --> R list

See also:
R_GetVar

imc FAMOS Func on Reference - 824 -

(c) 2024 imc Test & Measurement GmbH

R_tTest

Scope: R remote control

Available in: Professional Edition and above (R-Kit)

Function for performing the t-test

Declaration:
R_tTest (x [, y] [, alternative] [, mu0] [, paired] [, var_equal] [, conf_level]) -> Result

Parameter:

x Data of the first sample

y Data of the second sample (in the Two-sample t-test) (optional , Default value: 0)

alternative Formulation of the alternative hypothesis (optional , Default value: "t")

"t" : H1: mu <> mu0 (default)

"g" : H1: mu > mu0

"l" : H1: mu < mu0

mu0 Hypothetiszed population mean (default = 0) (optional , Default value: 0)

paired Paired samples (optional , Default value: 0)

0 : Independent samples (default)

1 : Paired samples

var_equal Variances of the samples are equal (optional , Default value: 0)

0 : Variance heterogeneity (default)

1 : Variance homogeneity (Welch-test)

conf_level Confidence level (default =0.95) The confidence level states with what probability the population parameter (e.g. the mean value)
is within the confidence interval. (optional , Default value: 0.95)

Result

Result The result of the t-test is a data group having the elements:

statistic : Value of the t-statistic

parameter : Number of degrees of freedom. The degrees of freedom represent the number of variables in a system which vary
independently of each other, while the arithmetic mean remains fixed.

p.value : The p-value is a measure of probability for the evidence against assuming the null hypothesis. Its value lies in the range
between 0 and 1. Lower probabilities indicate stronger evidence that the null hypothesis is not accepted. The p-value can be
compared with an alpha-value in order to decide whether the null hypothesis (H0) is to be rejected. If the p-value <= alpha
(significance level), the null hypothesis is rejected. If the p-value > alpha, the null hypothesis is not rejected.

conf.int : The confidence interval indicates the value range in within which there is a certain probability that the population
parameter lies. How high this probability is to be is determined by the confidence level.

estimate : The estimated mean value or the mean value in dependence on whether the test was a One-sample t-test or Two-
sample t-test.

null.value : The specified hypothesis pertains to either the mean value or the difference of mean values, for a One-sample t-test
or Two-sample t-test, respectively.

alternative : The character sequence describes the alternative hypothesis.

method : The character sequence indicates which type of t-test was performed.

Description:
The t-test describes a group of hypothesis tests with a t-distributed test test variable. It can be used to determine whether two samples are
statistically significantly different. Only 2 samples are compared, which must be normally distributed.
In a hypothesis test, two hypotheses that are contrary to a population are examined: the null hypothesis and the alternative hypothesis.
The null hypothesis H0 says, that a parameter of the population equals a certain value.
The alternative hypothesis H1 states that the parameter of the population differs from the value of the parameter of the population in the null
hypothesis.
With the t-test a distinction is made between:

One-sample t-test
The One-sample test uses the mean value of a random sample to check whether the mean value differs from a specified target value. It is

imc FAMOS Func on Reference - 825 -

(c) 2024 imc Test & Measurement GmbH

assumed that the sample data are normally distributed. If the sample is large, the t-test can also be used without the assumption of normal
distribution can be used.
For the one-sample test, the second sample 'y' must be empty or not specified.
The setpoint is given as 'mu0'.The call is:
result = R_tTest (x, empty, "t", mu0)
The hypotheses for the single sample test are:

Null hypothesis Meaning

H0: mu = mu0 The mean value of the population (mu) is equal to the hypothetical mean value (mu0).

Alternative hypothesis .

H1: mu != mu0 "t" The mean value of the population (mu) differs from the hypothetical mean value (mu0).

H1: mu > mu0 "g" The mean value of the population (mu) is greater than the hypothetical mean value (mu0).

H1: mu < mu0 "l" The mean value of the population (mu) is less than the hypothetical mean value (mu0).
Two-sample t-test
The Two-sample test uses the mean values of two independent samples to check how the mean values of two populations compare behave
towards each other. The mean value difference is tested against mu0 or against 0. It is assumed that the sample data are normally distributed or
there are sufficiently large sample sizes. The data from both samples must first be examined (using an F-test) for homogeneity of variance. If
there is homogeneity of variance, the call is:
result = R_tTest (x, y, "t", 0.0,0,1)
, where 'x' is the data from the first sample and 'y' is the data from the second sample. The parameter 'var_equal' = 1 means that homogeneity of
variance is assumed.
If there is heterogeneity of variance, the call is:
result = R_tTest (x, y)
This call corresponds to the Welch test.

The hypotheses for the Two-sample t-test are:

Null hypothesis Meaning

H0: mux-muy =
delta0

The difference between the mean values of the populations (mux-muy) is equal to the hypothetical difference (delta0). In
this case, the parameter mu0 equals delta0.

Alternative
hypothesis .

H1: mux-muy !=
delta0

"t" The difference between the mean values of the populations (mux-muy) is not equal to the hypothetical difference
(delta0). In this case, the parameter mu0 matches delta0.

H1: mux-muy >
delta0

"g" The difference between the mean values of the populations (mux-muy) is greater than the hypothetical difference
(delta0). In this case, the parameter mu0 matches delta0.

H1: mux-muy <
delta0

"l" The difference between the mean values of the populations (mux-muy) is less than the hypothetical difference (delta0).
In this case, the parameter mu0 matches delta0.

Paired t-test
The Paired t-test examines for two interrelated samples whether the mean difference of the measured values is different. It is performed if two
surveys were conducted in the same examination group, and these data are now to be examined. The value count in both samples must be
identical. The differences of the paired measurement values must be normally distributed. It is not adequate to show that the two samples
conform to a normal distribution.
The call is:
result=R_tTest(x,y,"t",0,1)
where 'x' is the sample data of the 1st survey and 'y' the sampel data of the 2nd survey.

The hypotheses for the Paired t-test are:

Null hypothesis Meaning

H0: mud=mu0 The mean value of the differences of the population (mud) is equal to the hypothetical mean of the differences (mu0).

Alternative
hypothesis .

H1: mud != mu0 "t" The mean value of the population's differences (mud) is not equal to the hypothetical mean value of the differences
(mu0).

H1: mud > mu0 "g" The mean value of the population's differences (mud) is greater than the hypothetical mean value of the differences
(mu0).

H1: mud < mu0 "l" The mean value of the population's differences (mud) is less than the hypothetical mean of the differences (mu0).

Examples:
From a delivery of diodes with the desired pass-through resistance of 100 mOhm, a random sample of size 10 is taken and measured.

resistance =[114.62,110.10,106.31,99.30,107.28,108.35,113.64,117.92,130.15,102.74]

imc FAMOS Func on Reference - 826 -

(c) 2024 imc Test & Measurement GmbH

result=R_tTest(resistance,empty,"t",100.00)
The sample test delivers the result as the data group 'result':

statistic = 4.0066

parameter = 9

p.value = 0.00307962

conf.int = 104.8072, 117.2748

estimate = 111.041

null.value = 100

alternative = "two.sided"

method = "One Sample t-test"

We obtain the mean value = 111.04 and the t-value = 4.0066 with 9 degrees of freedom.
The test's p-value is 0.00308. This is substantially below the significance level of 0.05, so that the null hypothesis must be rejected.
With high probability, the mean pass-through resistance does not match the desired pass-through resistance of 100 mOhm.

Given two shipments of diodes, it is to be determined whether the pass-through resistance of the two shipments is identical (the difference
between the expected values is = 0). From each shipment, a random sample of 10 dioden is taken and measured. It is assumed that the variance
of both is the same.

resistanceA =[114.62,110.10,106.31,99.30,107.28,108.35,113.64,117.92,130.15,102.74]
resistanceB =[101.77,109.86,131.41,105.29,104.49,118.62,108.60,139.09,113.72,114.91]
mu0=0
var_equal=1
result=R_tTest(resistanceA,resistanceB,"t",mu0,0,var_equal)
The two-sample test delivers the result as the data group 'result':

statistic = -0.79341

parameter = 18

p.value = 0.437873

conf.int = -13.6251, 6.1551

estimate = 111.0410, 114.7760

null.value = 0

alternative = "two.sided"

method = "Two Sample t-test"

We obtain the mean value of resistanceA = 111.04 and of resistanceB = 114.77.
The resulting t-value is = -0.7934 with 18 degrees of freedom.
The null hypothesis is assumed: the p-value of the test is 0.4379.
With high probability, the two shipments have the same mean resistance.

The tensile strengths of wires are examined using a machine A and a machine B. To test the equality of the two machines, a sample of 12 wires is
divided and each half is tested at one of the machines. The resulting tensile strength measurements are:

machineA=[35, 46, 34, 27, 37, 59, 52, 61, 21, 31, 37, 27]
machineB=[39, 51, 32, 23, 41, 53, 51, 55, 19, 36, 37, 26]
paired=1
result=R_tTest(machineA,machineB,"t",0,paired)
The paired Two-sample test delivers the result as the data group 'result':

statistic = 0.286513

parameter = 11

p.value = 0.77981

conf.int = -2.2273, 2.8940

estimate = 0.333333

null.value = 0

alternative = "two.sided"

method = "Paired t-test"

One obtains a t-value of = 0.2865 with 11 degrees of freedom. The mean value of the differences is 0.333. The null hypothesis can be accepted,

imc FAMOS Func on Reference - 827 -

(c) 2024 imc Test & Measurement GmbH

since the p-value is = 0.7798. The machines have equal mean tensile strength measurements.

imc FAMOS Func on Reference - 828 -

(c) 2024 imc Test & Measurement GmbH

Ramp

Generates a ramp (straight line with slope 1) with specifiable initial value, point interval and length

Declaration:
Ramp (SvStart, SvDelta, SvLength) -> Ramp

Parameter:

SvStart Start value

SvDelta Sampling interval (Delta-X)

SvLength Length

Ramp

Ramp Resulting data set in the form of a ramp

Description:
A straight line with the slope 1 is generated, given by the equation

f(x) = x

The line generated takes the form of a ramp.

The data set generated has no units. The length (3rd parameter) must be an integer greater than 0. The sampling interval (2nd parameter)
must be greater than 0.
The Ramp() function is generally used to create test channels for comparison.

Examples:
A data set with the values 2.0, 2.1, 2.2, 2.3, 2.4 is generated:

Ramp5 = Ramp(2, 0.1, 5)

A data set with 10 values is created, where all values are equal to zero. Such data sets with known sampling rates and number of values are often
required as a basis for further operations requiring a data set data type:

TenZeroes = Ramp(0, 1, 10) * 0

A sine-shaped data set is created. It contains two periods of a sine function with an amplitude 3 A and a phase shift of PI/4. The predefined
constant PI is used:

Sinus = 3 'A' * sin(Ramp(PI/4, PI/128, 512))

Data recorded before the trigger are joined with data after the trigger:

NDcomplete = Join(NDpreTrigger, NDpostTrigger)

See also:
Random, Leng, XOff, XDel

imc FAMOS Func on Reference - 829 -

(c) 2024 imc Test & Measurement GmbH

Random

Generates random numbers with user-specified distribution

Declaration:
Random (SvCount, SvDistribution, SvPar1, EwPar2, SvInit) -> RandomNumbers

Parameter:

SvCount Length of the data set generated

SvDistribution Selection for distribution

0 : Uniform distribution

1 : Exponential distribution

2 : Normal distribution

3 : Binomial distribution

SvPar1 For uniform distribution, the minimum; for binominal distribution, the maximum value. The numbers generated lie within
the range (0,1,2...SvPar1). Else, set to 0.

EwPar2 For uniform distribution, the maximum. For binominal distribution, the desired distribution value p (0< p <1). Else, set to 0.

SvInit Value for initializing the pseudo-random number generator. 0 means no re-initilaization; else >0 and integer

RandomNumbers

RandomNumbers Data set containing random numbers

Description:

Examples:

r1 = Random(10000, 0, -1, 1, 0)

Generates 10000 uniformly distributed random numbers between -1 and +1.

r21 = Random(10000, 2, 0, 0, 11)

Generates 10000 normally distributed random numbers.

r22 = Random(10000, 2, 0, 0, 11)

Identical with r21 (since same value for initialization),

r4 = Random(10000, 3, 1, 0.7, 24)

Generates a data set of length 10000, which consists of the values 0 (approx. 30%) and 1 (approx.70%).

See also:
Ramp

imc FAMOS Func on Reference - 830 -

(c) 2024 imc Test & Measurement GmbH

RangeSet

Available in: Professional Edition and above

Input data values which lie within a specific value range of the controlling channel are set to a different value.

Declaration:
RangeSet (input data, Controlling channel, Bottom condition, Lower boundary, Top condition, Upper boundary,
Action [, Substitute value]) -> Result

Parameter:

input data input data

Controlling
channel Controlling channel

Bottom
condition Condition for lower boundary

">=" : Controlling channel >= Lower boundary

">" : Controlling channel >= Lower boundary

Lower boundary Lower boundary

Top condition Condition for upper boundary

"<=" : Controlling channel <= Upper boundary

"<" : Controlling channel < Upper boundary

Upper boundary Upper boundary

Action Action

"=" : Set to substitute value

"+" : Add a substitute value

"first" : When the signal enters the range, use the first value of the input data as the substitute value

"before" : When the signal enters the range, use the previous value of the input data as the substitute value. 0.0, if no such
previous value exists.

Substitute value Substitute value (optional , Default value: 0)

Result

Result Result

Description:
The two conditions are joined in an AND expression.

The real number input data may contain events and segments. Equidistant and XY-data are supported, with XY-data, the Y-component is
subjected to calculations.

The controlling channel is equidistant. Assignment of a value of the input data and of a controlling channel value is performed value-by-value in
order.

The input data and the controlling channel must have the same length and structure (segments and events).

On the topic of replacing Lost Value, Overflow, Not a Number, Overmodulation, Sensor Breakage, refer to LostValueReplace().

Examples:
When determining a rotation speed from pulses, at times of immobility, there is no RPM-value above zero due to the long pulse distance.

Set all values between 0 and 10 to 0.0.

rpm = RangeSet (rpm, rpm, ">=", 0, "<=", 10, "=", 0)

With gear recognition, reverse appears as 7, but should be made -1.

gear = RangeSet (gear, gear, ">=", 7, "<=", 7, "=", -1)

If the temperature is too low, the force measured is invalid and is set to 0.

force = RangeSet (force, temperature, ">=", -1e35, "<=", -40, "=", 0)

See also:

imc FAMOS Func on Reference - 831 -

(c) 2024 imc Test & Measurement GmbH

CodeRange, LowerValue, UpperValue, Top, Set, LostValueReplace

imc FAMOS Func on Reference - 832 -

(c) 2024 imc Test & Measurement GmbH

Recip

Reciprocal

Declaration:
Recip (Parameter) -> Result

Parameter:

Parameter Parameter. Allowed types: [ND],[XY].

Result

Result Reciprocal of the parameter

Description:
The reciprocal or inverse value is calculated.

Remarks

The x-coordinate(s) of the parameter and the result are the same.
The reciprocal of the unit is also formed; e.g. from "V" we get "1/V".
Division by zero is not allowed; i.e. the parameter may not become zero. If it does, an appropriate warning is issued.
The parameter may be structured (events/segments).

Examples:
From an electrical conductance value, the calculation of the reciprocal determines elecrical resistance value:

resistance = Recip(conductance)

This line is identical to the following:

resistance = 1 / conductance

See also:
/(Division)

imc FAMOS Func on Reference - 833 -

(c) 2024 imc Test & Measurement GmbH

Rect

Transformation of a complex data set to Cartesian (rectangular) coordinates (Real/Imaginary part).

Declaration:
Rect (ComplexData) -> ComplexAsRI

Parameter:

ComplexData Complex data set to be transformed [BP], [DP] or [RI]

ComplexAsRI

ComplexAsRI Resulting complex data set in Cartesian (rectangular) coordinates [RI]

Description:
complex data set is transformed to rectangular coordinates with real and imaginary parts. The data type of the original data set is irrelevant; if the
data set already exists in rectangular coordinates, this function has no effect.

The y-units are adjusted according to the transformation performed.
The parameter may be structured (events/segments).

Examples:
A spectrum is transformed to the usually more graphically clear display style BP:

MPspectrum = Pol(RIspectrum)

A spectrum is calculated and expressed in Cartesian (rectangular) coordinate:

RIdata = Rect(Spec(NDdata))

See also:
Pol, idB, Compl

imc FAMOS Func on Reference - 834 -

(c) 2024 imc Test & Measurement GmbH

Red

Subsequent resampling with user-specified reduction factor

Declaration:
Red (Data, SvFactor) -> Result

Parameter:

Data Data set to be resampled: Allowed data types: [ND]

SvFactor Reduction factor

Result

Result Result of re-sampling.

Description:
A data set is resampled to reduce the number of data. The factor by which data are to be reduced can be specified; during sampling, every nth
value of the specified data set is entered in the resulting resampled data set.

The unit of the data set is retained, but the sampling rate is increased by the specified factor.
The reduction factor should not have an associated unit and should be an integer greater than 1.
The function Red() reverses the functions Ipol() and Lip().
Please note that aliasing effects can occur during resampling when high frequency components are present in the data set. Perform low-pass
filtering with a smoothing function before resampling, for example Smo.

Examples:

NDshort = Red(NDlong, 5)

A data set with a length of 10000 points is reduced by a factor of 5 to 2000 points, taking each fifth point of the original data set.

NDShort = Red(Smo5(NDlong), 2)

Aliasing effects are suppressed by filtering the data set with a low-pass filter before sampling. For greater reduction factors, the Smo function is
usually more convenient.

See also:
Red2, RedEx, RSamp, RSampEx, IPol, Lip

imc FAMOS Func on Reference - 835 -

(c) 2024 imc Test & Measurement GmbH

Red2

Subsequent resampling in order to produce a power of two.

Declaration:
Red2 (Data) -> Result

Parameter:

Data Data set to be resampled: Allowed data types: [ND]

Result

Result Result of re-sampling.

Description:
This function is designed especially for use with function such as FFT, ACF, CCF and Spec. A data set is resampled so that its length becomes a
power of two. The above functions can then be applied to the data set without any values being discarded.

The Red2 function works like the function RSamp. The data set is treated as if linear interpolation were performed on its sampling values and
these values are sampled with an appropriate sampling rate. The new sampling rate can be somewhat greater or smaller than the original. The
ratio between the new and old sampling rates in the Red2 function is usually not an integer.

If the length of the data set is slightly greater than a power of two (up to 10% greater), the length is reduced to the smaller power of two. If the
length is greater than this limit, it is extended to the next larger power of two. This method is selected to prevent any significant aliasing effects
and so that the data sets do not become unmanageable (calculation time!).

The units remain unchanged, but the sampling rate is adjusted.
The assumption that the values between the sampling rates can be approximated through linear interpolation is not always valid. It is
recommended to perform spline interpolation before applying the Red2 function.
Red2 takes the maximum data set length which can be processed into account for the functions FFT, ACF, CCF and Spec. Extremely long data
sets are then reduced to a maximum of 134.217.728 (2^27) values.

Examples:

MPspectr = Spec(Red2(NDdata))

The spectrum of a data set with 2000 points is calculated.

NDacf = ACF(Red2(NDdata))

The autocorrelation function of a data set with 6000 points is calculated.

See also:
Red, RSamp, RSampEx, IPol, Lip, FFT, CCF

imc FAMOS Func on Reference - 836 -

(c) 2024 imc Test & Measurement GmbH

RedEx

Available in: Professional Edition and above

Sampling with user-specified reduction factor and start

Declaration:
RedEx (Dataset, Reduction factor [, Start index]) -> Result

Parameter:

Dataset Dataset

Reduction factor Reduction factor, every nth sample is applied; integer >= 1

Start index Start index, >= 1; the first sample is taken at this index. (optional , Default value: 1)

Result

Result Result

Description:
A data set is subjected to a later sampling. In the process, the data volume is reduced. You can specify a factor by which the data volume is
reduced. When sampling, every n-th value of the data set passed is entered in the data set to be generated.

The data set's unit is retained, the sampling interval dx increased by the factor passed.

When a data set is sampled, aliasing effects occur when the data set contains high frequency components. Before sampling, you should use a
smoothing function or low-pass filtering, e.g. Smo().

If a Start index > 1 is specified, the result's x-offset is increased accordingly.

The data set may contain events and segments, it may be equidistant, XY or complex.

Examples:
The 2nd, 5th, 8th measurement values, etc. are cut out.

short = RedEx (Data, 3, 2)

See also:
Red, Lip, IPol, RSampEx, CutIndex, MatrixIpol

imc FAMOS Func on Reference - 837 -

(c) 2024 imc Test & Measurement GmbH

RemoveSamples

Values are deleted from a data set.

Declaration:
RemoveSamples (Data, SvSampleIndex, SvCount, SvEventIndex, Zero)

Parameter:

Data Data set from which values are to be deleted

SvSampleIndex Index of the (first) value to be deleted. The index of the data set's first value is 1. With event-based data, the index references
the beginning of the selected event.

SvCount Number of values to be deleted. -1, in order to delete all the way to the end of the data set or of the selected event.

SvEventIndex For event-based data, the index (1..) of the desired event is to be specified here. 0 for non-event-based data.

Zero Reserved parameter. Always set to 0.

Description:
This function can be applied to normal (equidistantly sampled) data sets as well as to [XY]- and complex data.

The data type of the variables remains unchanged; so for normal waveforms, the time/x-axis is 'lumped together'. For instance, if the time
assignment of all values is to remain intact, the data set must first be converted to an equivalent XY-data set (see example).

With [XY] and [Complex], the corresponding value in the 2nd component (X, Phase, Imaginary part) is also deleted.

Segmented data sets and data of the type TimeStamp-ASCII are not allowed.

The function deletes a maximum of [Count] values beginning with [SampleIndex], but at most until the end of the data set or the current event.

Examples:
Removes the first two samples of a data set.

RemoveSamples(Signal, 1, 2, 0, 0)

The third event of a data set is truncated after the 10th sample.

RemoveSamples(SignalWithEvents, 11, -1, 3, 0)

From an equidistantly sampled waveform, a portion in the middle is removed, but the time reference of subsequent samples is to remain
unchanged. To this end, the waveform is first converted to an XY-data set.

SignalXY = XYof(Ramp(xoff?(Signal), xdel?(Signal), Leng?(Signal)), Signal)
RemoveSamples(SignalXY, 200, 100, 0, 0)

See also:
Cut, CutIndex, SamplesGate, Repl, ReplIndex

imc FAMOS Func on Reference - 838 -

(c) 2024 imc Test & Measurement GmbH

RENAME

A variable is assigned a new name.

Declaration:
RENAME OldName NewName

Parameter:

OldName Old variable name

NewName New variable name

Description
A variable is renamed. The old name is transferred as the first parameter, the new name as the second.

If a variable with the desired new name already exists, this variable is deleted and the old variable is overwritten by the new name.

Examples:
A waveform is loaded, renamed and displayed:

Data = ...
RENAME Data {BrakeTest - Test #1}
SHOW {BrakeTest - Test #1}

A channel is a data group is renamed and displayed:

MyGroup:Channel1 = data
RENAME MyGroup:Channel1 MyData
SHOW MyGroup:MyData

See also:
SHOW, DELETE

imc FAMOS Func on Reference - 839 -

(c) 2024 imc Test & Measurement GmbH

RenameMeasurement

A measurement is renamed.

Declaration:
RenameMeasurement (TxOldName, TxNewName) -> SvSuccess

Parameter:

TxOldName Current name of measurement to be renamed

TxNewName New name of the measurement

SvSuccess

SvSuccess Success of the function (optional)

0 : Either there is no measurement having the name [TxOldName], or there is already a measuremnt having the name
[TxNewName].

1 : OK

Description:
The function renames a measurement.

The concept of a variable's association with a measurement is primarily applicable to the Data Source Browser. There, when a file of
measurement values is loaded, a measurement name is automatically assigned to each variable generated, in order to be able to easily
distinguish variables having the same name but different data sources. Changing the measurement name affects all variables which were
previously assigned to this measuremnet and causes automatic updating of the Measurement- and Channel lists in the Variables
list/Measurement view.

If [TxOldName] is currently recorded in the data selector's list of measurements (meaning, is assigned to a symbolic measurement number), the
corresponding list entry is also renamed.

For all curve windows representing a channel belonging to this measurement, the reference to the measurement will be renamed. The display
remains intact.

The new name may not match the name of any existing measurement.

The working of the function corresponds to that of the command "Rename Measurement" in the Measurement list's context menu, in the
Variables list/Measurement view.

Folders or filenames in the file system are not changed by this function.

Examples:
Once a new measurement has been created using the Data Source Browser, the system checks whether it contains a channel named 'speed'. If
yes, the measurement name assigned automatically is replaced by the channel's trigger time.

Event sequence 'Measurement available'

TxVarName = SelBuildVarName(PA1, "speed", 0)
IF TxVarName <> ""
 TxNewMeasName = TimeToText(Time?(<TxVarName>), 0)
 RenameMeasurement(PA1, TxNewMeasName)
END

All currently loaded measurements whose names begin with the prefix 'BLF' are assigned a more distinctive name:

measurements = MeasNames?("BLF*")
FOREACH ELEMENT name IN measurements
 RenameMeasurement(name, TReplace(name, "BLF", "BottomLeftSensor"))
END

See also:
SetMeasurementName, MeasNames?

imc FAMOS Func on Reference - 840 -

(c) 2024 imc Test & Measurement GmbH

Repl

Replaces a part of a data set with new data.

Declaration:
Repl (Data, NewPart) -> ResultData

Parameter:

Data Data set to be changed; allowed types: [ND].

NewPart Portion to be inserted

ResultData

ResultData Changed data set with corresponding new values

Description:
In the data set [Data], data points are replaced with data points from the the data set [NewPart], in accordance with the x-offset and the length of
[NewPart]. Thus, [NewPart] is copied into [Data] at a specified location. The function Repl() transfers the data points point-by-point, even when
the sampling intervals are different.

The function Repl() is especially suitable for copying parts of data set which were cut out with the function Cut() and editedback into the whole
data set.

Data points are only transferred from the specified part on the condition that they do not lie outside of the original total data set.

If the sampling intervals of both data sets don't match, use the function RSamp, in order to assimilate the sampling intervals.

Alternatively, you can work with the function ReplIndex() if you wish to specify the insertion position by the index of the point in the data set.
This function is also suitable for XY-data sets.

Examples:
The Cut function is used to cut out a section from x = 1 to x = 2 from the data set NwData. This section is smoothed and then copied back into the
original data set with the Repl function. This result appears as if the range from x = 1 to x = 2 had been smoothed but the rest of the data set was
left unchanged.

NDpart = Cut(NDdata, 1, 2)
NDpart = Smo5(NDpart)
NDdata = Repl(NDdata, NDpart)

See also:
ReplIndex, Cut, CutIndex, ValueIndex

imc FAMOS Func on Reference - 841 -

(c) 2024 imc Test & Measurement GmbH

ReplIndex

Replaces a part of a data set with new data.

Declaration:
ReplIndex (Data, NewPart, SvStartIndex) -> ResultData

Parameter:

Data Data set to be changed; allowed types: [ND],[XY].

NewPart Portion to be inserted

SvStartIndex Index in [Data] at which the replacement begins

ResultData

ResultData Changed data set with corresponding new values

Description:
In the data set [Data] the data points are replaced with data points from [NewPart] startingg at a specified position [StartIndex].

The length of [NewPart] determines the number of data points to be replaced.

[SvStartIndex] must be an integer between 1 and the length of the data set [Data].

The lengths of the result and of the first parameter are the same, or, if applicable, surplus values from [NewPart] are ignored (a warning is
issued).

The data types of [Data] and [NewPart] must be the same. If they are XY-data sets, the xcoordinates are also replaced. With real number data
sets, only the y-values are replaced, the x-scaling (Offset and sample interval or x-increment) remain intact.

ReplIndex is particularly suitable for recopying data sections cut out using the CutIndex function and then processed back into the data set from
which they originated.

Alternatively, you can use the function Repl which requires you to specify the starting point of the replacement in terms of its x-coordinate.

Examples:
The y-values of "Wave" are doubled, excepting those of the first and the last points:

part = CutIndex(Data, 2, leng?(Data)-1)
part = part * 2
Data = ReplIndex(Data, part, 2)

See also:
Repl, Cut, CutIndex, ValueIndex, MatrixMerge, MatrixFromLine

imc FAMOS Func on Reference - 842 -

(c) 2024 imc Test & Measurement GmbH

REQUEST

Available in: Professional Edition and above

Receive data via DDE
This command is obsolete; instead of it, the more powerful function DDEINQ() should be used.

Declaration:
REQUEST Application Topic Item VariableName

Parameter:

Application Name of the DDE-application to be addressed

Topic Designation of the DDE topic

Item Name of the item to be queried

VariableName Name of the FAMOS variable to be received

Description
FAMOS operates as a DDE client, the application addressed as a DDE server. The entries "Application" and "topic" cause FAMOS to select another
DDE-capable application and request a conversation. If the request is complied with, FAMOS then supplies the name of the item desired. FAMOS
waits until the server either transfers the data, or denies the request. Then imc FAMOS ends the conversation.

The variable specified in "Variable" now contains the data received. If the transfer wasn't possible, it contains the return value from the DDE
application addressed.

The data can be single values, as well as data sets in ASCII or FAMOS DDE format.

The individual parameters for the REQUEST command may not contain space characters.
FAMOS sends an error message, if DDE application (server) addressed doesn't answer or the data request was denied.
If the application (server) addressed is busy, FAMOS waits until it is free.
FAMOS commands are case-insensitive (upper or lower-case letters are equally valid). However, some DDE applications do distinguish
between upper and lower case. Have regard, therefore, for correct spelling.

Examples:

REQUEST Trans Timebase TB x

"Trans" is the name of an imaginary, DDE-capable application, "Timebase" the name of the DDE-topic. The return value is written to variable "x".

REQUEST Trans1 Status Trigger Svtrig
REQUEST Trans2 Status Armed SVarm

Data can be requested from varying DDE-applications. After execution of this command the two single value variables contain information about
the status of the "trans"-devices. For example, the variable SVTrig could be =1.0, if the "Trans1" trigger was tripped

See also:
DDEInq, DDESend, DDESet

imc FAMOS Func on Reference - 843 -

(c) 2024 imc Test & Measurement GmbH

RGB

Forming a color value from the color component

Declaration:
RGB (SvRed, SvGreen, SvBlue) -> SvColorValue

Parameter:

SvRed Red component of the color; 0..255

SvGreen Green component of the color; 0..255

SvBlue Blue component of the color; 0..255

SvColorValue

SvColorValue Color value

Description:
Using the intensity values (0..255) of the 3 basic colors, a color value is computed, which can be passed to the function SetColor().

Data format of the result: 4 Byte unsigned Integer

As of Version 7.5: As well as single values, the parameters supplied can also be data sets, which are then jointly subjected to calculations value-
by-value. Events and segments are allowed, but all 3 parameters msut have exactly the same structure (same total length and segment length,
same event lengths). The data set of results then has the same structuring. When there is segmenting, the system assumes that the result can be
interpreted as image data in the RGB-format and the corresponding internal flag is set; see also the function SetFlag().

Examples:

fb = RGB(255, 0, 0) ;Red
fb = RGB(0, 0, 0) ;Black
fb = RGB(0, 0, 255) ;Blue
fb = RGB(255, 255, 255) ;White

In the following example, the video file 'sample.avi' is loaded in the current Panel video player and the 100th picture is extracted. Subsequently,
the picture is converted first to grey tones and finally to a black/white image.

VpVideoLoad("c:\tmp\sample.avi", 1)
VpSetPosFrames(100, 1)
image = VpGetImages(1)
RedValue = RGBConvert(image, "R")
GreenValue = RGBConvert(image, "G")
BlueValue = RGBConvert(image, "B")
; weighted grey tone conversion
; coefficients according to "Luma coding" as per "ITU-R Recommendation BT.601":
GreyValue = 0.3* RedValue + 0.59* GreenValue + 0.11 *BlueValue
imageGrey = RGB(GreyValue, GreyValue, GreyValue)
; conversion black/white. All grey tones > 127 become white; all others black:
BWValue = (GreyValue > 127)*255
imageBlackWhite = RGB(BWValue, BWValue, BWValue)

Generates an image data set with 640x480 pixels; all pixels red:

r = Leng(0, 640*480) + 255
g = r*0
b = r*0
image = RGB(r, g, b)
SetSegLen(image, 640)
SetFlag(image, 1, 1)

See also:
RGBConvert, SetColor, Color?, SetFlag, VpGetImages

imc FAMOS Func on Reference - 844 -

(c) 2024 imc Test & Measurement GmbH

RGBConvert

Available in: Professional Edition and above

Converts/processes the RGB-data passed.

Declaration:
RGBConvert (RGB_Data, Calculation [, Parameter1] [, Parameter2]) -> Result

Parameter:

RGB_Data Input data in RGB-format

Calculation Calculation

"R" : Red-component (R in RGB) in the range: 0 .. 255

"G" : Green-component (G in RGB) in the range: 0 .. 255

"B" : Blue-component (B in RGB) in the range: 0 .. 255

"RGB" : Input data to be interpreted as RGB colors are converted to the 4-Byte RGB format with a color flag. Rounding is
performed.

"GREY" : Input data within the range 0 .. 255 are converted to 1-Byte grayscale format with color flag. Rounding and limiting to the
value range 0 .. 255 are performed.

"bright1" : For RGB-input data, the brightness sqrt(0.299*R^2 + 0.587*G^2 + 0.114*B^2) in the range: 0 .. 255

"bright2" : For RGB-input data, the brightness (0.2126*R + 0.7152*G + 0.0722*B) in the range: 0 .. 255

"bright3" : For RGB-input data, the brightness (0.299*R + 0.587*G + 0.114*B) in the range: 0 .. 255

"HSV-H" : For RGB-input data, the hue. H-component in HSV-representation, in the range: 0 .. 359. E.g. 0 for red, 120 for green, 240
for blue.

"HSV-S" : For RGB-input data, the saturation. S-component of HSV-representation in the range: 0 .. 255, corresponding to 0 .. 100%.

"HSV-V" : For RGB-input data, the lightness. V-component of the HSV-representation in the range: 0 .. 255, corresponding to 0 ..
100%.

"HSL-H" : For RGB-input data, the hue. H-component of HSL-representation in the range: 0 .. 359. E.g. 0 for red, 120 for green, 240
for blue.

"HSL-S" : For RGB-input data, the saturation. S-component of HSL-representation in the range: 0 .. 255, corresponding to 0 .. 100%.

"HSL-L" : For RGB-input data, the luminance. L-component of HSL-representation in the range: 0 .. 255, corresponding to 0 .. 100%.

"add" : For RGB-input data, adds the RGB-value provided as Parameter1.

"sub" : For RGB-input data, the RGB-value specified as Parameter1 is subtracted.

"inv" : Input data located in the range 0 .. 255 are inverted; result = 255 - input data. The results are located in the range: 0 .. 255.

"1.GREY" : Input data located in the range 0.0 .. 1.0 are converted to 1-Byte grayscale format with color flag. Rounding and limiting
to the value range 0 .. 255 are performed.

"similar12" : For RGB-input data, determines an RGB-value's respective greatest similarity to a color transition between the RGB-
colors stated in Parameter1 and Parameter2. The result is 255 for equivalence and 0 for absolutely no match.

Parameter1 1st parameter; interpretation depends on the calculation type (optional , Default value: 0)

Parameter2 2nd parameter; interpretation depends on the calculation type (optional , Default value: 0)

Result

Result Result

Description:
The equidistant input data can have events and segments.

For results in the range 0..255 (interpreted as grayscale shades) and results with RGB-values, the Color flag (flag for color information) is set.

Examples:
Determine R, G, B from RGB

colors = RGB(200, 100, 0)
R = RGBConvert(colors, "R")
G = RGBConvert(colors, "G")
B = RGBConvert(colors, "B")

imc FAMOS Func on Reference - 845 -

(c) 2024 imc Test & Measurement GmbH

Determines the brightness, resulting in gray scale shades: 0..255

colors = RGB(200, 100, 0)
bright1 = RGBConvert(colors, "bright1")
bright2 = RGBConvert(colors, "bright2")
bright3 = RGBConvert(colors, "bright3")
bright4 = RGBConvert(colors, "HSV-V")
bright5 = RGBConvert(colors, "HSL-L")

Highlights all locations in a picture which are somewhat green to dark green.

picture = Random(36,0, 0, 256*256*255, 17)
setseglen(picture,6)
picture = RGBConvert(picture, "RGB")
picture = MatrixIpol(picture,10,10,1)
sim = RGBConvert(picture, "similar12", RGB(0,150,0), RGB(0,250,0))
decide = (sim > 170)
decide = RGBConvert(decide, "1.GREY")

See also:
RGB, SetFlag

imc FAMOS Func on Reference - 846 -

(c) 2024 imc Test & Measurement GmbH

RgCurveSet

Scope: Report Generator

Sets contents of a curve object in the active document

Declaration:
RgCurveSet (Title, Curve, Zero) -> Error code

Parameter:

Title Title of curve object in document

Curve Selects the the curve window to be transferred. See remarks.

Zero Reserved parameter, to be set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function transfers the contents of the specified curve window to the curve object in the active document. If the curve object already contains
a graphic, the graphic is replaced.

Selection of the curve window (2nd Parameter):
With free curve windows, the window is identified by its title variable. A title variable can be specified using the Cw*(...) functions of the curve
kit or using the FAMOS command "Show". Usually, the title variable is the first variable to be displayed in the window and to appear in the title
bar.

For curve windows embedded in an user-defined dialog, the name of the dialog element must be specified.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

The size and appearance of the graph in the curve object depends on the curve object settings in the report. These settings affect not only the
placement of the graph but also the line width, axis style etc. Furthermore, depending on the curve object specifications, the transfer settings
can either be defined in the curve object or taken from the "Clipboard Settings" in the curve window itself.

This function can only be used when a Report Generator configuration has been loaded.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
A waveform is loaded and displayed in a curve window. A report is loaded and a curve object in it is filled with the curve window. Then the report
is printed.

Channel1 = FileObjRead(file, 1)
TxErr$ = CwLoadCCV(Channel1, "channel1.ccv")
err = RgDocOpen("Table.drb", 0)
IF err = 0
 err = RgCurveSet("Curve1", Channel1, 0)
 IF err = 0
 RgDocPrint(0)
 END
 RgDocClose(0)
END

See also:
RgDocOpen , PrSet

imc FAMOS Func on Reference - 847 -

(c) 2024 imc Test & Measurement GmbH

RgDocClose

Scope: Report Generator

The Report Generator closes the active document.

Declaration:
RgDocClose (Option) -> Error code

Parameter:

Option Option parameter

0 : The active document is closed.

1 : All documents are closed.

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The active document or all documents are closed. The Report Generator itself remains open.

The documents aren't saved; any changes since last save are discarded.

Any documents opened using RgDocOpen function should be closed using the RgDocClose function after being processed. This prevents
having too many opened documents at a given time.
If more than one document is open, the active document must be specified using the function RgDocSetActive. This ensures that the correct
document is used.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, a document ("Table.drb") is opened, a table object is created and filled with data. The report is printed and then closed.

Data = ...
err = RgDocOpen("Table.drb", 0)
IF err = 0
 err = RgTableSetColumn("tab1", 2, 2, Data, 0)
 IF err = 0
 RgDocPrint(0)
 END
 RgDocClose(0)
END

See also:
RgDocOpen, RgDocSetActive, RgWindow

imc FAMOS Func on Reference - 848 -

(c) 2024 imc Test & Measurement GmbH

RgDocCopy

Scope: Report Generator

A whole page of the active document is copied to the Clipboard.

Declaration:
RgDocCopy (PageNumber) -> Error code

Parameter:

PageNumber Number of the page to be copied (1..).

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The active document is completely copied to the Clipboard. The Windows-Metafile-Format is used towards this end.

For purposes of compatibilty with older versions, a 0 (zero) is also permitted as the parameter [PageNumber]. It denotes that the first page is
copied.
If at a given time only one document is open, it is clear which document is the active one. Otherwise, the function RgDocSetActive can be
used to ascertain which document would be affected.
In case of error (return value < 0), the corresponding error text can be inquired using the function RgGetErrorText.

Examples:
A report is opened and completely copied into the Clipboard. Subsequently, "WinWord" is instructed via DDE to paste the contents of the
Clipboard to the current Word-Document.

err = RgDocOpen("Table.drb", 0)
IF err = 0
 err = RgDocCopy(0)
 IF err = 0
 res = DDESend("WinWord", "System", "[EditPaste]")
 END
 RgDocClose(0)
END

See also:
RgDocOpen, RgDocSetActive, RgWindow

imc FAMOS Func on Reference - 849 -

(c) 2024 imc Test & Measurement GmbH

RgDocExport

Scope: Report Generator

The Report Generator exports the active document in a graphics format to be selected.

Declaration:
RgDocExport (TxFileName, Format, Resolution, ColorDepth/PDF method, Option) -> Error code

Parameter:

TxFileName Filename, under which the active document is to be saved.

Format Graphics format

0 : Windows-Metafile (*.emf)

1 : Aldus Placeable Metafile (*.wmf)

2 : Windows Bitmap (*.bmp)

3 : JPEG-FileFormat (*.jpg)

4 : Portable Networks Graphic-FileFormat (*.png)

5 : PDF-Format (*.pdf)

Resolution
Specifies the resolution to select for Bitmap formats (BMP, PNG, JPG). The unit is 'dpi' (dots per inch). Typical values, for
example, are 150dpi or 300dpi. A 0 means that the Report Generator uses the default. Set to 0 for formats other than BMP,
JPG, or PNG.

ColorDepth/PDF
method

Specifies the color type to generate for the Bitmap formats BMP and PNG respectively the export method for PDF. Set to 0 for
any other format. The meaning depends from the value of the [Format] parameter:

5 : PDF: Export method

0 The presetting in FAMOS ("Options"/"File-Export"/"PDF") is observed.

1 auto (minimum file size)

2 Bitmap

3 Vektor graphic preferred

2,4 : Bitmap: Color depth

0 Report Generator default

1 16 colors

2 256 colors

3 16 million colors

Option JPEG: Quality (in percent 10%..100%), a 0 means that the Report Generator uses the default. Set to 0 for formats other than
JPEG.

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The Report Generator exports the active document under the specified filename and in the specified format.

Multi-page documents: If the document has multiple pages, all pages are exported in PDF-format. With all other formats, the first page is used. If
you wish to export another page, use the function [RgDocExportEx].

If an empty text is entered for the filename, the report is filed under its current title.

If the specified filename doesn't have an extension, the default extension for the selected file format is used.

Unless a full path name is provided, the current project folder is used if a project is active. Otherwise, the folder defined by the last call of
RgSetDir is used. If this function has not yet been called, the default folder set in FAMOS (folder for report files) is used.

The region exported is the smallest possible rectangle to contain all Report objects and is thus generally smaller than the size of a page.
If more than one document is open, the active document must be specified using the function RgDocSetActive. This ensures that the correct

imc FAMOS Func on Reference - 850 -

(c) 2024 imc Test & Measurement GmbH

document is saved.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.
To specify a file name without an extension, the last character in the name must be a period (".").

Examples:
A report is opened. A curve object it contains is updated. The report is saved under a new name in JPEG-format (100% quality, resolution 150dpi)
as well as in PDF-format and is then closed again.

CwNewWindow(Data, "show")
err = RgDocOpen("cu_mask", 0)
IF err = 0
 err = RgCurveSet("curve1", Data, 0)
 IF err = 0
 err = RgDocExport("cu_0001.jpg", 3, 150, 0, 100)
 err = RgDocExport("cu_0001.pdf", 5, 0, 0, 0)
 END
 RgDocClose(0)
END

See also:
RgDocOpen, RgDocSave, RgDocSetActive, RgWindow

imc FAMOS Func on Reference - 851 -

(c) 2024 imc Test & Measurement GmbH

RgDocExportEx

Scope: Report Generator

The Report Generator exports the active document's specified page to a selectable graphics format.

Declaration:
RgDocExportEx (TxFileName, PageNumber, Format, Resolution, ColorDepth/PDF method, Option) -> Error code

Parameter:

TxFileName Filename, under which the document exported is to be saved.

PageNumber Specifies the number (1..) of the page to be exported. For PDF, 0 (a zero) is permitted, which means the entire document is
exported.

Format Graphics-format

0 : Windows-metafile (*.emf)

1 : Aldus Placeable metafile (*.wmf)

2 : Windows Bitmap (*.bmp)

3 : JPEG-FileFormat (*.jpg)

4 : Portable Networks Graphic-FileFormat (*.png)

5 : PDF-Format (*.pdf)

Resolution
Specifies the selected resolution for the bitmap formats (BMP, PNG, JPG). The unit is 'dpi' (Dots per Inch). Typical values
include 150dpi or 300dpi. A 0 means that the Report Generator's default is used. Must be set to 0 (zero) for formats other than
BMP, JPG, PNG.

ColorDepth/PDF
method

Specifies the color type to generate for the Bitmap formats BMP and PNG respectively the export method for PDF. Set to 0 for
any other format. The meaning depends from the value of the [Format] parameter:

5 : PDF: Export method

0 The presetting in FAMOS ("Options"/"File-Export"/"PDF") is observed.

1 auto (minimum file size)

2 Bitmap

3 Vektor graphic preferred

2,4 : Bitmap: Color depth

0 Report Generator default

1 16 colors

2 256 colors

3 16 million colors

Option PDF: Specify 0 to create a new file, 1 to append to an existing file. JPEG: Quality (in percent 10%..100%); a 0 means that the
Report Generator default is used. Must be set to 0 (zero) for formats other than PDF/JPEG.

Error code

Error code Success of the function

0 : Function executed successfully

< 0 : Error code

Description:
The Report Generator exports the selected page of the active document under the specified filename and in the specified format.

If an empty text is specified as the filename, the report is saved under its current title.

If the specified filename has no extension, the default extension is used as the file format selected.

Unless a complete pathname is specified, the current project folder will be used if there is an active project. Otherwise, the folder determined
by the last call of RgSetDir is used. If this function has not been called yet, the default folder set in FAMOS (folder for report files) is used.

The region exported is the smallest possible rectangle containing all report objects and is thus usually smaller than the page size.
As long as only one document is open at any one time, the active document is unambiguous. Otherwise, the function RgDocSetActive must

imc FAMOS Func on Reference - 852 -

(c) 2024 imc Test & Measurement GmbH

be used to ascertain that only the desired document is affected.
At fault condition (return value < 0), the function RgGetErrorText can be used to get the associated error text.
If a filname has no filename extension, the filename is ended with ".".

Examples:
The report template "template.drb" contains two pages having the same structure, and filled with different curve graphics. The report is saved
under a new name both page-by-page in JPEG-format (quality: 100%, resolution: 150dpi) and as a whole in PDF-format, and then closed.

RgDocOpen("template.drb",0)

; filling 1st page
RgDocSetActivePage(1)
CwLoadCCV(data1, "data1.ccv")
RgCurveSet("curve1", data1, 0)

; filling 2nd page
RgDocSetActivePage(2)
CwLoadCCV(data2, "data2.ccv")
RgCurveSet("curve1", data2, 0)

RgDocExportEx("cu_0001_page1.jpg",1, 3, 150, 0, 100)
RgDocExportEx("cu_0001_page2.jpg",2, 3, 150, 0, 100)
RgDocExport("cu_0001.pdf", 5, 0, 0, 0)

See also:
RgDocOpen, RgDocSave, RgDocSetActive, RgWindow

imc FAMOS Func on Reference - 853 -

(c) 2024 imc Test & Measurement GmbH

RgDocGetPageCount

Scope: Report Generator

Determines the amount of pages in the current report.

Declaration:
RgDocGetPageCount () -> PageCount

Parameter:

PageCount

PageCount

>= 0 : Amount of pages

< 0 : Error Code.

Description:

In case of error (return value: < 0), the associated error text can be inquired using the function RgGetErrorText.

Examples:
In the current document, all pages except the first two are deleted.

LastPage = RgDocGetPageCount()
WHILE LastPage > 2
 RgDocRemovePage(LastPage)
 LastPage = LastPage-1
END

See also:
RgDocInsertPage

imc FAMOS Func on Reference - 854 -

(c) 2024 imc Test & Measurement GmbH

RgDocInsertPage

Scope: Report Generator

A new page is added to the current report.

Declaration:
RgDocInsertPage (TxTemplateFile, PageNumber, InsertPosition, Zero) -> ErrorCode

Parameter:

TxTemplateFile Filename of the report file containing the template for the new page to be inserted. If the parameter is empty, the current
document is used.

PageNumber Determines which page from [TxTemplateFile] to use.

InsertPosition The new page is inserted at the position stated here. A 0 (zero) means that it is appended to the end.

Zero Reserved, always set to 0 (zero)

ErrorCode

ErrorCode Function outcome

0 : Function performed successfully

< 0 : ErrorCode

Description:
This function can be used to add a new page to the current report. The new page can either be a duplicate of a page from the active report, or be
imported from a different report file.

The new page is activated, which means that subsequent calls to object-specific functions only affect this page (see also RgDocSetActivePage(..)).

In case of error (return value: < 0), the associated error text can be inquired using the function RgGetErrorText.

Examples:
The data set "u0" is to be recorded in the form of a 2-column table (x,y). The report "table.drb" serves as the page template; it contains among
other things a table object with 50 lines.

Length = leng?(u0)
Rows = 50

FirstSample = 1
WHILE FirstSample <= Length
 IF FirstSample = 1
 ; open template
 RgDocOpen("table.drb", 0)
 ELSE
 ; append new page
 RgDocInsertPage("table.drb", 1, 0, 0)
 END

 ; clip y-data for table
 y = CutIndex(u0, FirstSample, FirstSample+Rows-1)
 RgTableSetColumn("table", 2, 1, y, 0)

 ; construct x-data for table
 x = Ramp((FirstSample-1)*xdel?(u0)+ xoff?(u0), xdel?(u0), leng?(y))
 RgTableSetColumn("table", 1, 1, x, 0)

 FirstSample = FirstSample+Rows
END
RgDocSave("u0_table.drb", 0)
RgDocClose(0)

See also:
RgDocRemovePage

imc FAMOS Func on Reference - 855 -

(c) 2024 imc Test & Measurement GmbH

RgDocNew

Scope: Report Generator

The Report Generator creates a new document.

Declaration:
RgDocNew (Title, Zero) -> Error code

Parameter:

Title Title for new element

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The Report Generator is instructed to create a new document under the specified title.

All other opened documents remain open and the new document becomes the active document.

If the Report Generator has not yet been started, it is started as an icon. Otherwise, it is considered to be the active (foreground) application.

In most applications, this function is not particularly appropriate. Creating a complete report document via kit functions is usually not
necessary. Instead, we recommend that you create your report "masks" manually and then open them using RgDocOpen.
Specifying an empty text ("")for the title causes a default title ("Report" + consecutive number) to be used.
The title serves only to identify the document (function RgDocSetActive). When necessary a complete name and path can be specified when
saving the document (function RgDocSave).
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
A new report ("temp") is created and a bitmap graphic from the Windows Clipboard is pasted into the document. The report is printed and then
closed without being saved.

err = RgDocNew("temp", 0)
IF err = 0
 err = DrRdClip("", 5, 10, 0, 0, 2, 0, 0)
 IF err = 0
 RgDocPrint(0)
 END
 RgDocClose(0)
END

See also:
RgDocOpen, RgDocClose, RgDocSetActive, RgWindow, DrRdClip

imc FAMOS Func on Reference - 856 -

(c) 2024 imc Test & Measurement GmbH

RgDocOpen

Scope: Report Generator

Opens the specified document in the Report Generator.

Declaration:
RgDocOpen (TxFileName, Zero) -> Error code

Parameter:

TxFileName Name of the file to be loaded.

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function opens an already existing document in the Report Generator. All other opened documents remain open and the new document
becomes the active document.

If the Report Generator has not yet been started, it is started as an icon. Otherwise, it is considered to be the active (foreground) application.

If a file extension is not specified, the extension "*.drb" is used.

Unless a complete path is supplied along with the filename, the system searches for the Report file in this sequence of folders:

Current working folder: This is the folder from which the calling sequence was opened.
Project folder: When a project is loaded, the system searches for it in the current project folder.
Default folder for Report files: This folder is defined by the last call of RgSetDir. If this function has not yet been called, The FAMOS default
setting for Report files is used.

Any documents opened using RgDocOpen function should be closed using the RgDocClose function after being processed. This prevents having
too many opened documents at a given time.

If more than one document is open, the active document must be specified using the function RgDocSetActive. This ensures that the correct
document is used.

To specify a file name without an extension, the last character in the name must be a period (".").

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Multithreading: The functions of the Report kit can be called anywhere and have a global effect. The report loaded here is therefore valid for all
execution threads.

Examples:
A report is loaded and the curve object ("curve1") is updated from the specified curve window. If no errors occur, the document is printed and
closed.

CwNewWindow(Data, "show")
err = RgDocOpen("Curve.drb", 0)
IF err = 0
 err = RgCurveSet("curve1", Data, 0)
 IF err = 0
 RgDocPrint(0)
 END
 RgDocClose(0)
END

See also:
RgDocClose, RgDocSetActive, RgWindow

imc FAMOS Func on Reference - 857 -

(c) 2024 imc Test & Measurement GmbH

RgDocPrint

Scope: Report Generator

The Report Generator prints the active document.

Declaration:
RgDocPrint (Selection) -> Error code

Parameter:

Selection Selection of the region to be printed. Enter either a zero to print the entire document, or the desired page number.

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The Report Generator is instructed to print the active document. The printer set under "File/ Printer Setup" is used.

Before this function can be called, the Report Generator must be started and at least 1 document must be open. If several documents have
been opened, then use the function RgDocSetActive to specify which document is to be printed.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
A report is loaded, printed and closed again.

err = RgDocOpen("Table.drb", 0)
IF err = 0
 err = RgDocPrint(0)
 IF err < 0
 TxError$=RgGetErrorText(err)
 ok=BoxMessage("Print",TxError$,"!1")
 END
 RgDocClose(0)
END

See also:
RgDocOpen, RgDocSetActive

imc FAMOS Func on Reference - 858 -

(c) 2024 imc Test & Measurement GmbH

RgDocPrintSetup

Scope: Report Generator

Setting the printer to use for subsequent printout of document.

Declaration:
RgDocPrintSetup (TxPrinter, TxOutput, Zero) -> Error code

Parameter:

TxPrinter Printer name

TxOutput Name of output medium. Either empty string for default or a filename.

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function is for setting the printer and output medium to use for a subsequent printout of the document by means of RgDocPrint().

One possible application of this function is to print the document to a file.

The printer name (first parameter) must be entered as it appears in the Report Generator dialog "Printer setup".

Appropriate entires for the output name (second parameter) would be an empty string or a filename. For an empty string, the printer's default
connection as defined in the Windows Control Panel, (e.g. local printer port LPT1), is used. If a filename is entered, the printout is diverted to
that file.

In case of error (return value < 0), the corresponding error text can be retrieved using the function RgGetErrorText.

Examples:
A report is loaded and printed toa file with the "Acrobat PDF Writer". The resulting PDF-file can be read using the "Acrobat Reader"

err = RgDocOpen("Report1.drb", 0)
IF err = 0
 If = RgDocPrintSetup("Acrobat PDFWriter", "c:\tmp\Report1.pdf", 0)
 IF err = 0
 RgDocPrint(0)
 ELSE
 ; Printer driver not installed or filename not valid
 TxMessage = RgGetErrorText(err)
 ok = BoxMessage("Error!", TxMessage, "!1")
 END
RgDocClose(0)
END

See also:
RgDocPrint

imc FAMOS Func on Reference - 859 -

(c) 2024 imc Test & Measurement GmbH

RgDocRemovePage

Scope: Report Generator

A page is deleted from the current report.

Declaration:
RgDocRemovePage (PageNumber) -> ErrorCode

Parameter:

PageNumber States the page number (1..) of the page to be deleted.

ErrorCode

ErrorCode Function outcome

0 : Function performed successfully

< 0 : Error code

Description:
A page is removed from the current report.

A report must at least have one page, so deleting from a single page report is not possible.

In case of error (return value: < 0), the associated error text can be inquired using the function RgGetErrorText.

Examples:
In the current document, all pages except for the first two are deleted.

LastPage = RgDocGetPageCount()
WHILE LastPage > 2
 RgDocRemovePage(LastPage)
 LastPage = LastPage-1
END

The report template "template.drb" contains 10 pages. Depending on the data to be documented, maybe only the first 8 will be needed. In this
case, the extra pages are deleted prior to printing.

RgDocOpen("template.drb",0)
ExtendedReport = 0

Page = 1
WHILE Page <= 8
 RgDocSetActivePage(Page)
 ; filling the respective page
 ; ...
 ; if applicable: ExtendedReport = 1
 Page = Page+1
END

IF ExtendedReport
 RgDocSetActivePage(9)
 ; ... fill page
 RgDocSetActivePage(10)
 ; ... fill page
ELSE
 ; delete extra pages
 RgDocRemovePage(10)
 RgDocRemovePage(9)
END
RgDocPrint(0)

See also:
RgDocInsertPage

imc FAMOS Func on Reference - 860 -

(c) 2024 imc Test & Measurement GmbH

RgDocSave

Scope: Report Generator

The Report Generator saves the currently active document.

Declaration:
RgDocSave (TxFileName, Zero) -> Error code

Parameter:

TxFileName Filename under which the active document is to be saved.

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The Report Generator saves the active document under the specified filename.

If an empty text string ("") for the file name, the document is saved using its current title as the file name.

If a file extension is not specified, the extension "*.drb" is used.

Unless a full path name is provided, the current project folder is used if a project is active. Otherwise, the folder defined by the last call of
RgSetDir is used. If this function has not yet been called, the default folder set in FAMOS (folder for report files) is used.

If more than one document is open, the active document must be specified using the function RgDocSetActive. This ensures that the correct
document is saved.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.
To specify a file name without an extension, the last character in the name must be a period (".").

Examples:
A report is opened and the curve object ("curve1") is updated. The document is saved using a different name and then closed.

CwNewWindow(Data, "show")
err = RgDocOpen("cu_mask", 0)
IF err = 0
 err = RgCurveSet("curve1", Data, 0)
 IF err = 0
 err = RgDocSave("cu_0001", 0)
 END
 RgDocClose(0)
END

See also:
RgDocOpen, RgDocClose, RgDocSetActive, RgWindow

imc FAMOS Func on Reference - 861 -

(c) 2024 imc Test & Measurement GmbH

RgDocSetActive

Scope: Report Generator

The Report Generator activates an open document.

Declaration:
RgDocSetActive (TxTitle, Zero) -> Error code

Parameter:

TxTitle Title of active report

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function specifies which open document in the Report Generator is to be active. This function is therefore only useful when more than one
document is open. Most functions only affect the currently active document.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.
Multithreading: The functions of the report kit can be called anywhere and have a global effect. The report activated here is therefore valid
for all execution threads.

Examples:
If several documents are open, a prompt box asks the user if the most recently opened document is to be printed. As long as the message box is
open, the user can manually activate another document. Therefore, make sure that the intended report is active before confirming the print
command.

err = RgDocOpen("Whatever", 0)
...
err = RgDocOpen("d:\drb\drb1.drb", 0)
IF err = 0
 ok = BoxMessage("Drb1", "Print ?", "?2")
 IF ok = 1
 err = RgDocSetActive("drb1.drb", 0)
 IF err =0
 RgDocPrint(0)
 END
 END
END

See also:
RgDocOpen, RgDocClose, RgWindow

imc FAMOS Func on Reference - 862 -

(c) 2024 imc Test & Measurement GmbH

RgDocSetActivePage

Scope: Report Generator

Determines which page is the current one. Subsequent object-specific function calls refer to the page selected here.

Declaration:
RgDocSetActivePage (PageNumber) -> ErrorCode

Parameter:

PageNumber Sets the page number (1..) of the page to be activated. A 0 (zero) means that object-specific functions are to be used on all
pages.

ErrorCode

ErrorCode Function outcome

0 : Function performed successfully

< 0 : ErrorCode

Description:
The page selected here is used by some Report Generator Kit functions to set the target range of the executed operation. This pertains to all
functions, for instance, which change or query object properties. The object addressed is identified by means of the object title. If a particular
page is selected by means of RgDocSetActivePage(..), then the system only searches for an object with the specified title on this page.

Without such a call (or following RgDocSetActive(0)), on the other hand, the system searches on all of the document's pages. Functions which
query the properties use the first object found. Functions which set properties may apply the operation repeatedly to all objects found. This is
practical if all pages have the same structure and one particular element (e.g. date in footer) is to be set to the same content for all pages.

The function RgDocInsertPage(..) also sets the current page.
In case of error (return value: < 0), the associated error text can be inquired using the function RgGetErrorText.
Multithreading:The functions of the report kit can be called anywhere and have a global effect. The page selected here is therefore valid for
all execution threads.

Examples:
The report template "template.drb" contains 3 pages. The first is a fixed title page, the other two have the same structure and are to be filled
with various curve graphs. Further, all pages have a text box in their legend, which is filled with the current date.

RgDocOpen("template.drb",0)

; fill 2nd page
CwLoadCCV(data1, "data1.ccv")
RgDocSetActivePage(2)
RgCurveSet("curve1", data1, 0)

; fill 3rd page
CwLoadCCV(data2, "data2.ccv")
RgDocSetActivePage(3)
RgCurveSet("curve1", data2, 0)

; enter date on every page
RgDocSetActivePage(0)
RgTextSet("Date", TimeToText(TimeSystem?(), 0),0)

See also:
RgDocInsertPage

imc FAMOS Func on Reference - 863 -

(c) 2024 imc Test & Measurement GmbH

RgGetErrorText

Scope: Report Generator

Determines error text from error code

Declaration:
RgGetErrorText (Error Code) -> TxErrorText

Parameter:

Error Code Error code (< 0)

TxErrorText

TxErrorText Corresponding error message

Description:
This function returns the error message which corresponds to an error code.

Examples:
This code example tries to open a document in the Report Generator. If an error occurs, the message is displayed in a pop-up message box.

err = RgDocOpen("d:\drb\drb1.drb", 0)
IF err < 0
 Message$ = RgGetErrorText(err)
 ok = BoxMessage ("Error!", Message$, "!1")
ELSE
 ...
END

imc FAMOS Func on Reference - 864 -

(c) 2024 imc Test & Measurement GmbH

RgObjDelete

Scope: Report Generator

A report object is deleted from the active report.

Declaration:
RgObjDelete (Title) -> Error code

Parameter:

Title Object title

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The specified object is deleted.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
The contents of a text variable are to be transferred to the text object "MyText". If this text is empty, the text object is deleted.

IF TLeng(TxContents) > 0
 RgTextSet("MyText", TxContents, 0)
ELSE
 RgObjDelete("MyText")
END

See also:
RgObjMove

imc FAMOS Func on Reference - 865 -

(c) 2024 imc Test & Measurement GmbH

RgObjFind

Scope: Report Generator

Searches a document for an object.

Declaration:
RgObjFind (TxTitle, Zero) -> Result

Parameter:

TxTitle Title of object searched for

Zero Reserved, always set to 0

Result

Result Function result status

< 0 : Error code.

= 0 : Object not found

> 0 : Object with this title found.

1 : Text

2 : Table

3 : Curve

10 : Line

11 : Line (vertical)

12 : Line (horizontal)

13 : Polyline

20 : Rectangle

21 : Ellipse

22 : Polygon

30 : Bitmap

31 : Metafile

40 : OLE-object

Description:
This function searches in the active document for an object with the specified title. If it is found, then the object type code is returned.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the system limits the object search (for the specified title) to this particular page. Otherwise, the search covers all pages of
the document and the first object found is used.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
A Report Generator document is opened and a search for the text object "Date" is performed. If it is found, then it receives the current date.

err = RgDocOpen("report1", 0)
seek = RgObjFind ("Date", 0)
IF seek = 1
 TxDate$ = TimeInText(TimeSystem?(), 1)
 RgTextSet("Date", TxDate$, 0)
END

See also:
RgObjGetTitle, RgObjGetType, RgObjGetCount

imc FAMOS Func on Reference - 866 -

(c) 2024 imc Test & Measurement GmbH

RgObjGetCount

Scope: Report Generator

This function determines the number of objects in the active document.

Declaration:
RgObjGetCount (Zero) -> Reserved

Parameter:

Zero Reserved, always set to 0

Reserved

Reserved

>= 0 : Number of object

< 0 : Error code

Description:
This function determines the number of objects, independent of type, in the active document.

This function is generally used together with RgObjGetTitle or RgObjGetType.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the number of objects of that particular page is determined. Otherwise the number of objects on all pages is returned.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, the font color of all text objects with a title is set to green.

err = RgDocOpen("report1", 0)
Amount = RgObjGetCount(0)
index = 1
WHILE index <= Amount
 IF RgObjGetType(index) = 1 ; this means text
 TxTitle$ = RgObjGetTitle(index)
 f = RGB(0,255,0)
 err = RgObjSetColor(TxTitle$, 2, f, 0, 0)
 END
 index = index +1
END

See also:
RgObjGetTitle, RgObjFind, RgObjGetType

imc FAMOS Func on Reference - 867 -

(c) 2024 imc Test & Measurement GmbH

RgObjGetPos

Scope: Report Generator

A report object's position is retrieved.

Declaration:
RgObjGetPos (Title , Position, Option) -> Position

Parameter:

Title Object title

Position Positon parameter

0 : X-position of upper left corner

1 : Y-position of upper left corner

2 : Width of the object.

3 : Height of the object.

Option Option

0 : Default.

1 : Curve objects only: determine the position of the coordinate system.

Position

Position Position, distance [in millimeters] from top or left edge of page

Description:
The position of an object in the active document is retrieved.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the system limits the object search (for the specified title) to this particular page. Otherwise, the search covers all pages of
the document and the first object found is used.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
A text object with the title "MyText" is shifted 1cm to the right and its height is doubled.

x = RgObjGetPos("MyText", 0, 0)
y = RgObjGetPos("MyText", 1, 0)
RgObjMove("MyText", x+10, y, "", 0)
height = RgObjGetPos("MyText", 3, 0)
RgObjSetSize("MyText", -1, height*2, 0)

See also:
RgObjSetSize, RgObjMove

imc FAMOS Func on Reference - 868 -

(c) 2024 imc Test & Measurement GmbH

RgObjGetTitle

Scope: Report Generator

Retrieves the title of an object.

Declaration:
RgObjGetTitle (ObjectIndex) -> TxTitle

Parameter:

ObjectIndex Object index, 1.. number of objects

TxTitle

TxTitle Title of specified object

Description:
This function determines the title of an object using its index number. This function is used together with RgObjGetCount(..).

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the index refers to the list of objects of this particular page. Otherwise, the index refers to the list of all objects (on all
pages).

Examples:
In a report, the color of all horizontal lines having a title is set to red.

err = RgDocOpen("report1", 0)
Amount = RgObjGetCount(0)
index = 1
WHILE index <= Amount
 IF RgObjGetType(index) = 12
 TxTitle$ = RgObjGetTitle(index)
 f = RGB(255,0,0)
 err = RgObjSetColor(TxTitle$, 0, f, 0, 0)
 END
 index = index +1
END

See also:
RgObjGetCount, RgObjFind, RgObjGetType

imc FAMOS Func on Reference - 869 -

(c) 2024 imc Test & Measurement GmbH

RgObjGetType

Scope: Report Generator

Retrieves object type.

Declaration:
RgObjGetType (ObjectIndex) -> Type

Parameter:

ObjectIndex Object index, 1.. number of objects

Type

Type Object type

< 0 : Error code.

1 : Text

2 : Table

3 : Curve

10 : Line

11 : Line (vertical)

12 : Line (horizontal)

13 : Polyline

20 : Rectangle

21 : Ellipse

22 : Polygon

30 : Bitmap

31 : Metafile

40 : OLE-object

Description:
Determines the type of a object in the active document using its index number. This function is generally used together with RgObjGetCount.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the index refers to the list of objects of this particular page. Otherwise, the index refers to the list of all objects (on all
pages).

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, the date is inserted into the upper left cell of all tables present.

TxDate$ = TimeInText(TimeSystem?(), 1)
err = RgDocOpen("report1", 0)
Amount = RgObjGetCount (0)
index = 1
WHILE index <= Amount
 IF RgObjGetType(index) = 2
 TxTitle$ = RgObjGetTitle(index)
 err=RgTableSetCell(TxTitle$,1,1, TxDate$, 0)
 END
 index = index +1
END

See also:
RgObjGetCount, RgObjFind, RgObjGetType

imc FAMOS Func on Reference - 870 -

(c) 2024 imc Test & Measurement GmbH

RgObjMove

Scope: Report Generator

The position of a report object is changed.

Declaration:
RgObjMove (Title , X-position, Y-position, ReferenceObject, Zero) -> Error code

Parameter:

Title Object title

X-position New distance of object from the left edge of page in millimeters.

Y-position New distance of object from the top edge of page in millimeters.

ReferenceObject If the object is given, the two coordinates are in reference to this object's position (upper left corner), if one is given.

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The position of an object in the active document is changed.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
A text object with the title "MyText" is shifted 1cm to the right and its height is doubled.

x = RgObjGetPos("MyText", 0, 0)
y = RgObjGetPos("MyText", 1, 0)
RgObjMove("MyText", x+10, y, "", 0)
height = RgObjGetPos("MyText", 3, 0)
RgObjSetSize("MyText", -1, height*2, 0)

See also:
RgObjSetSize, RgObjGetPos

imc FAMOS Func on Reference - 871 -

(c) 2024 imc Test & Measurement GmbH

RgObjSetColor

Scope: Report Generator

The color of an object is changed.

Declaration:
RgObjSetColor (Title , Option, RGBColor, Column, Row) -> Error code

Parameter:

Title Object title

Option Option

0 : Frame or line color

1 : Background color

2 : Font color

RGBColor Color

>=0 : RGB-value of desired color

-1 : Transparent

Column Column index or 0

Row Row index or 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
Changes the color (frame/line color, background color or font color) of an object in the active document.

For table objects, changes apply to the cell specified by the coordinates [Column, Row]; the upper left corner is [1,1]. If both coordinates are 0,
the color change applies to the whole table. Otherwise only the specified cell is affected.

For all other object types, Column and Row must both be set to 0.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

The third parameter of this function represents the RGB color value. This color is represented as a mixture of the 3 fundamental colors. To
create these values use the FAMOS function RGB.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, the RGB value for red is computed and assigned to a text object (TxTitle$) whenever the maximum value is exceeded.

TxTitel$ = ...
Maxim = max(Data)
err = RgTextSet(TxTitle$, TForm(Maxim, "f32"), 0)
IF Maxim > 50
 f = RGB(255,0,0)
 err = RgObjSetColor(TxTitle$, 1, f, 0, 0)
END

See also:
RGB

imc FAMOS Func on Reference - 872 -

(c) 2024 imc Test & Measurement GmbH

RgObjSetSize

Scope: Report Generator

The size of a report object is changed.

Declaration:
RgObjSetSize (Title , Width, Height, Zero) -> Error code

Parameter:

Title Object title

Width New width of object in millimeters, or -1 for no change.

Height New height of object in millimeters, or -1 for no change.

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
The size of an object in the active document is changed.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
A text object with the title "MyText" is moved 1cm to the right and its height is doubled.

x = RgObjGetPos("MyText", 0, 0)
y = RgObjGetPos("MyText", 1, 0)
RgObjMove("MyText", x+10, y, "", 0)
height = RgObjGetPos("MyText", 3, 0)
RgObjSetSize("MyText", -1, height*2, 0)

See also:
RgObjMove, RgObjGetPos

imc FAMOS Func on Reference - 873 -

(c) 2024 imc Test & Measurement GmbH

RgSetDir

Scope: Report Generator

Sets default folder.

Declaration:
RgSetDir (TxFolder) -> Error code

Parameter:

TxFolder New default folder

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
Specifies the default directory for loading and saving Report Generator documents. When the file path is not supplied with document functions
(e.g. RgDocOpen), this directory is used.

This command doesn't apply to the "compatibility" functions such as PrConfig.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, a document mask is loaded from the "masks" directory and data is transferred to te objects. Once successful, the document
is saved in a "results" directory.

err = RgSetDir("d:\drb\masks")
IF err = 0
 err = RgDocOpen("report1", 0)
END
err = RgCurveSet(...)
...
err = RgSetDir("d:\drb\result")
err = RgDocSave("report1", 0)

See also:
RgDocOpen, RgDocSave

imc FAMOS Func on Reference - 874 -

(c) 2024 imc Test & Measurement GmbH

RgTableColumns?

Scope: Report Generator

Retrieves the number of cloumns in a table.

Declaration:
RgTableColumns? (Title) -> Result

Parameter:

Title Table title

Result

Result

> 0 : Amount of columns

< 0 : Error code

Description:
This function determines the number of columns in the specified table of the active document.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the system limits the object search (for the specified title) to this particular page. Otherwise, the search covers all pages of
the document and the first object found is used.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, events from a multi-shot waveform are assigned column-wise to a table.

Amount = RgTableColumns?("Tab1")
AmountEvn = EventNum?(Data)
IF AmountEvn < Amount
 Amount = AmountEvn
END
i = 1
WHILE i <= Amount
 err = RgTableSetColumn("Tab1",i,2, Data[i],0)
 i = i + 1
END

See also:
RgTableRows?, RgTableSetCell, RgTableSetColumn, RgTableSetRow

imc FAMOS Func on Reference - 875 -

(c) 2024 imc Test & Measurement GmbH

RgTableGetCellText

Scope: Report Generator

Retrieves contents of a table's cell.

Declaration:
RgTableGetCellText (Title, Column, Row, Zero) -> TxContents

Parameter:

Title Table title

Column Column (1..)

Row Row (1..)

Zero Reserved, always set to 0

TxContents

TxContents Contents of specified table cell

Description:
This function retrieves the contents of a cell in the specified table of the active document.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the system limits the object search (for the specified title) to this particular page. Otherwise, the search covers all pages of
the document and the first object found is used.

The maximum length of the return value is 255 characters.

Examples:
In this code example, the contents of the upper left cell are retrieved. This contains a place-holder "xxx" for the user's name. The place holder is
replaced with the user's name is inserted there and the table is updated.

The declarations for the row and column determine the position of the cell described; the upper left is [1,1].

Tx$= RgTableGetCellText("Tab1", 1, 1, 0)
Tx$= TReplace(Tx$,"xxx","Heinz Muster")
err = RgTableSetCell("Tab1", 1, 1, Tx$, 0)

See also:
RgTableSetColumn, RgTableSetRow, RgTableSetCell

imc FAMOS Func on Reference - 876 -

(c) 2024 imc Test & Measurement GmbH

RgTableRows?

Scope: Report Generator

Retrieves number of rows in a table.

Declaration:
RgTableRows? (TxTitle) -> Result

Parameter:

TxTitle Table title

Result

Result

> 0 : Number of rows

< 0 : Error code

Description:
This function determines the number of rows in the specified table of the active document.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the system limits the object search (for the specified title) to this particular page. Otherwise, the search covers all pages of
the document and the first object found is used.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, segments from a segmented waveform are inserted column-wise to a table.

Amount = RgTableRows?("Tab1")
AmountSeg = leng?(Data) / Segleng?(Data)
IF AmountSeg < Amount
 Amount = AmountSeg
END
i = 1
WHILE i <= Amount
 err = RgTableSetRow ("Tab1",1,i, Data[i],0)
 i = i + 1
END

See also:
RgTableColumns?, RgTableSetCell, RgTableSetColumn, RgTableSetRow

imc FAMOS Func on Reference - 877 -

(c) 2024 imc Test & Measurement GmbH

RgTableSetCell

Scope: Report Generator

Sets contents of a table cell

Declaration:
RgTableSetCell (TxTitle, Column, Row, Contents, Zero) -> Error code

Parameter:

TxTitle Table title

Column Column (1..)

Row Row (1..)

Contents Number or text to transfer

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function assigns a text or number to the specified cell in a table of a the active document. With numbers, the numerical format of the cell is
used.

The declarations for the row and column determine the position of the cell described; the upper left is [1,1].

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

If a data set with more than 1 value is specified for <XXContents>, then only the first value is used.
Numerical values assume the cell format (in terms of decimal places, unit prefix etc.) that has been set for this table. These attributes can be
changed in the "Properties" dialog for table objects, on the "Number" tab.
If you do not wish to have the number converted to this preset format, you can convert the number to a text using TForm and then insert this
into the cell.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
The second column of a table is filled with a waveform which was just computed. The first row contains variable names, the second row the
waveform's maximum value in a fixed format. The actual data values begin in the third row, and these use the numerical format as defined in the
table.

Channel1= ...
err = RgTableSetCell("Tab1", 2, 1, "Channel1",0)
TxMax$ = TForm(Max(Channel1), "f32")
err = RgTableSetCell("Tab1", 2, 2, TxMax$, 0)
err = RgTableSetColumn("Tab1", 2, 3, Channel1, 0)

See also:
RgTableSetColumn, RgTableSetRow, RgTableGetCellText

imc FAMOS Func on Reference - 878 -

(c) 2024 imc Test & Measurement GmbH

RgTableSetColumn

Scope: Report Generator

Sets the contents of a table column.

Declaration:
RgTableSetColumn (TxTitle, Column, Row, Contents, Zero) -> Error code

Parameter:

TxTitle Table column

Column Column (1..)

Row Row (1..)

Contents Data to be transferred

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function assigns a data set to a column using the numerical format of the table. The first number is inserted at the specified position, all
remaining data below.

The declarations for the row and column determine the position of the cell described; the upper left is [1,1].

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

Data are transferred until either the end of the data set or the last table row has been reached.
Numerical values use assume the cell format (decimal places, unit prefix etc.). These attributes cam be changed in the "Properties" dialog
under "Number".
To transfer text to a table cell, use the function RgTableSetCell.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, events from a multi-shot waveform are inserted column-wise to a table.

Amount = RgTableColumns?("Tab1")
AmountEvn = EventNum?(Data)
IF AmountEvn < Amount
 Amount = AmountEvn
END
i = 1
WHILE i <= Amount
 err = RgTableSetColumn("Tab1",i,2, Data[i],0)
 i = i + 1
END

See also:
RgTableSetRow, RgTableSetCell

imc FAMOS Func on Reference - 879 -

(c) 2024 imc Test & Measurement GmbH

RgTableSetRow

Scope: Report Generator

Sets the contents of a row in a table.

Declaration:
RgTableSetRow (TxTitle, Column, Row, Data, Zero) -> Error code

Parameter:

TxTitle Table title

Column Column (1..)

Row Row (1..)

Data Data to transfer

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function assigns a data set to a column using the numerical format of the table. The first number is inserted at the specified position, all
remaining data to the right thereof.

The declarations for the row and column determine the position of the cell described; the upper left is [1,1].

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

Data are transferred until either the end of the data set or the last table row has been reached.
Numerical values use assume the cell format (decimal places, unit prefix etc.). These attributes cam be changed in the "Properties" dialog
under "Number"
To transfer text to a table cell, use the function RgTableSetCell.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, segments from a segmented waveform are inserted column-wise to a table.

Amount = RgTableRows?("Tab1")
AmountSeg = leng?(Data) / Segleng?(Data)
IF AmountSeg < Amount
 Amount = AmountSeg
END
i = 1
WHILE i <= Amount
 err = RgTableSetRow ("Tab1",1,i, Data[i],0)
 i = i + 1
END

See also:
RgTableSetColumn, RgTableSetCell

imc FAMOS Func on Reference - 880 -

(c) 2024 imc Test & Measurement GmbH

RgTextGet

Scope: Report Generator

Retrieves the contents of a text object.

Declaration:
RgTextGet (TxTitle, Zero) -> TxContents

Parameter:

TxTitle Object title

Zero Reserved, always set to 0

TxContents

TxContents Object contents

Description:
This function retrieves the contents of a specified text object in the active document.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, the system limits the object search (for the specified title) to this particular page. Otherwise, the search covers all pages of
the document and the first object found is used.

The maximum length of the return value is 255 characters.

Examples:
In this code example, the contents of a text object are retrieved. This contains a place-holder "xxx" for the user's name. The place holder is
replaced with the user's name is inserted there and the table is updated.

Tx$= RgTextGet("Signature", 0)
Tx$= TReplace(Tx$,"xxx","Heinz Muster")
err = RgTextSet("Signature", Tx$, 0)

See also:
RgTextSetData, RgTextSet

imc FAMOS Func on Reference - 881 -

(c) 2024 imc Test & Measurement GmbH

RgTextSet

Scope: Report Generator

Sets contents of a text object.

Declaration:
RgTextSet (TxTitle, TxContent, Zero) -> Error code

Parameter:

TxTitle Object title

TxContent New object contents

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function inserts text into a text object. Any text which was there before is completely overwritten.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, the contents of a text object are retrieved. This contains a place-holder "xxx" for the user's name. The place holder is
replaced with the user's name is inserted there and the table is updated.

Tx$= RgTextGet("Signature", 0)
Tx$= TReplace(Tx$,"xxx","Heinz Muster")
err = RgTextSet("Signature", Tx$, 0)

See also:
RgTextSetData, RgTextGet

imc FAMOS Func on Reference - 882 -

(c) 2024 imc Test & Measurement GmbH

RgTextSetData

Scope: Report Generator

Fills place holder in text object.

Declaration:
RgTextSetData (TxTitle, Data, Zero) -> Error code

Parameter:

TxTitle Object title

Data Data to be transferred (waveform, single value or text)

Zero Reserved, always set to 0

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function transfers data to place-holders in a text object.

The following place-holders are defined for text objects:

#d

Current date in WINDOWS format

#z

Current time in WINDOWS format

#u

Units of a single value or y-units of a data set

#e?

Floating-point number, number of decimal placesn

#f?.?

Floating-point number, number of decimal places before and after decimal

#s

Text

Note: "?" stands for digits.

Multi-page reports: A current page previously selected using RgDocSetActivePage(..) or RgDocInsertPage(..) is affected. If a page was previously
selected accordingly, then the system searches only on this page for an object having the specified title. Otherwise, the object search is carried
out on all of the document's pages and, if applicable, the operation is carried out multiple times, for every appropriate object.

Note:

The place-holder concept for text objects was much more important with earlier versions of the Report Generator (Report Generator). This was
mostly due to the lack of powerful remote control functions and table objects.

If you are integrating the reports in new programs or sequences, we generally recommend the usage of "masks", i.e. formatting a document
directly in the Report Generator using "dummy" text objects. The contents of these can be replaced with the appropriate text using the function
RgTextSet. Alternatively, the contents of a text object can be retrieved using the function RgTextGet, edited and then replaced using RgTextSet.

Table objects should always be used to display data from a waveform in a tabular form.

For a detailed description of "place-holders", please refer to the "Report Generator" chapterin the text object section.
The place holders "#d" (current date) and "#z" (current time) are replaced the first time the text object is accessed via the function
"RgTextSetData"..
If a complete waveform is to be transferred to a text object with real numbered place-holders, then a place-holder is replaced for each
sample (y-value). In this way, a complete table (or column/ row) can be replaced with a single command.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Once a place-holder has been replaced, it cannot be retrieved. If you want to create another report using the mask document, you have to open it
again using RgDocOpen!

Examples:

imc FAMOS Func on Reference - 883 -

(c) 2024 imc Test & Measurement GmbH

First, a mask document is loaded.

TxError$ = RgDocOpen ("report", 0)

2 text objects are defined in this mask:

Title

Contents

Name

#s

Number

x: #e2 and #f2.1

The following lines are executed:

RgTextSetData("Name", "Herbert", 0)
RgTextSetData("Number", 27.5, 0)
RgTextSetData("Number", 28.9, 0)

As a result, the text objects now contain the following:

Title

Contents

Name

Herbert

Number

x: 2.75E+01 and 28.9

See also:
RgTextSet, RgTextGet, RgCurveSet, RgTableSetCell, RgTableSetRow, RgTableSetColumn

imc FAMOS Func on Reference - 884 -

(c) 2024 imc Test & Measurement GmbH

RgWindow

Scope: Report Generator

Starts or closes the Report Generator

Declaration:
RgWindow (Task) -> Error code

Parameter:

Task Task

1 : Start Report Generator as a normal window

2 : Start Report Generator as an icon

3 : Close Report Generator

Error code

Error code Function result status

0 : Function executed successfully

< 0 : Error code

Description:
This function enables you to launch, close or minimize/maximize the Report Generator.

Any changes not saved are lost when the Report Generator is closed.
In case of error (return value < 0), the function RgGetErrorText can be used to retrieve the corresponding error message.

Examples:
In this code example, a mask document is opened. If the Report Generator is not already open, it is started (minimized). Various objects are
updated in the document and the finished report is displayed in normal size so that the user can decide whether or not to print the document as
it is. Finally, the Report Generator is closed.

err = RgDocOpen("d:\usr\report1", 0)
IF err = 0
 ...
 ;; various updatesn
 ...
 err = RgWindow(1)
 ok = BoxMessage ("Question", "Print?" "?2")
 IF ok
 RgDocPrint(0)
 END
 RgWindow(3)
END

See also:
RgDocOpen, RgDocClose

imc FAMOS Func on Reference - 885 -

(c) 2024 imc Test & Measurement GmbH

RMS

The RMS value (root-mean-square) of a data set's numerical values is determined.

Declaration:
RMS (Data) -> SvRMS

Parameter:

Data Data whose RMS-value is to be determined [ND].

SvRMS

SvRMS RMS-value of the data set

Description:
The root of the mean value of the square of all values in a data set are calculated. In electrical engineering, this value is referred to as the true
RMS. The RMS is defined as the root of the mean square; the mean square is the sum of the squares of all values, divided by the number of
values.

The true RMS never has a value less than zero. Unlike arithmetic mean, positive and negative values do not cancel each other, because their
squares are always positive.

Examples:
The RMS-value of a voltage plot is calculated:

RMS_voltage = RMS(voltage)

See also:
Mean, StDev, MvRMS, ExpoRMS, Stat

imc FAMOS Func on Reference - 886 -

(c) 2024 imc Test & Measurement GmbH

Rosette

Available in: Professional Edition and above

With rosettes, the principal strain and the principal stress are calculated from the strains measured.

Declaration:
Rosette (GridA, GridB, GridC, Rosette shape, Calculation [, Poisson's ratio] [, Modulus of elasticity] [,
Minimal strain]) -> Result

Parameter:

GridA Grid A

GridB Grid B

GridC Grid C

Rosette shape Which shape of rosette?

"0-45-90" : 0-45-90 degree rectangular rosette

"0-60-120" : 0-60-120 degree delta rosette

Calculation What is calculated?

"eps1" : Principal strain 1, eps1

"eps2" : Principal strain 2, eps2

"sig1" : Principal stress 1, sig1

"sig2" : Principal stress 2, sig2

"sigV" : Comparison stress as per Mises, sigV

"phi" : Orientation angle phi, principal direction 1 measured against Grid A

Poisson's ratio Transverse contraction number, transverse strain number, Poisson number, e.g. for meatals in the range 0.3 to 0.4 (optional ,
Default value: 0)

Modulus of
elasticity Modulus of elasticity in GPa, e.g. for steel: 210 GPa (optional , Default value: 0)

Minimal strain Limit for the strains from which the angle is determined by calculation of arctan. If the values are <= this limit, the angle is set
to zero. (optional , Default value: 0)

Result

Result Result

Description:
Numbering of the measurement grid: in order to obtain correct values in measuring with 3-element rosettes, the measurement grids must be
numbered in a very specific way.

It doesn't matter whether the rosette is square, or a rectangular or a round rosette. Only the angle between the grids is important and defines
the calculation.

0-45-90 degree rectangular rosette

Principal strain

0-60-120 degree delta rosette

Principal strain

imc FAMOS Func on Reference - 887 -

(c) 2024 imc Test & Measurement GmbH

Principal stress

Comparison stress as per Mises

Units
The input channels for the grids A, B and C are generally stated in the unit micrometer/meter or microstrain or 1e-6. The minimal strain for the
calculation of the angle must be stated in the same unit. The principle strains eps1 and eps2 are then also determined in te same unit.

The principal stress and the comparison stress according to Mises are determined in N/mm^2. The necessary precondition is that the input
channels be expressed in micrometers/meters. Also, the modulus of elasticity must be stated in GPa. If they are expressed in any other unit, the
user must subsequently correct he result's unit.

The angle is determined in degrees.

For the principal strains determined, the expression eps1 >= eps2 applies, i.e. the principal strain 1 is the greater of the two principal strains.

The Plus-sign in the formula calculates eps1, and the Minus-sign calculates eps2.

The Plus-sign in the formula for the principal strain causes absolute values to increase when the center point of the Mohr circles is positive, and
the Minus-sign causes the same when the center point is negative.

Angle calculation with minimal strain
The angle phi found is counted from Grid A going counterclockwise. It is the principal direction 1. It is expressed in the range -90 to +90 degrees.

Counterclockwise angle measurements are thus expressed with a positive sign, and with negative sign when clockwise.

Principal direction 2 always points perpendicular to Principal direction 1, and can be determined subsequently by adding 90 degrees.

Angle calculation with minimum strain: To determine an angle, the arctan of a fraction is found. If this fraction's numerator and denominator are
both very small, the angle will tend to be very inexact. If the sum of the absolute values of the numerator and denominator are less than or equal
to the specified "Minimal strain", the angle is set to zero for that reason.

In illustration, one could say that for a strain of zero, no angle can be determined, naturally. Thus, when there is signal noise around zero, this
prevents the angle from taking on random values, but instead being stated as zero.

When in doubt, the parameter "Minimal strain" is not stated and it receives its default value.

General notes
All 3 input channels (GridA, GridB, GridC) must have the same time base and the same structure with regard to length, segments and events.

The function expects equidistant input data. If the data are XY-data, the function can be applied to the .Y-component.

The Poisson ratio and modulus of elasticity are only needed for calculating the stresses and otherwise can be set to 0.

Examples:

eps1 = Rosette (epsA, epsB, epsC, "0-45-90", "eps1")
eps2 = Rosette (epsA, epsB, epsC, "0-45-90", "eps2")
phi = Rosette (epsA, epsB, epsC, "0-45-90", "phi", 0, 0, 0.001)
poisson = 0.3
emod = 210 ; GPa
sig1 = Rosette (epsA, epsB, epsC, "0-45-90", "sig1", poisson, emod)
sig2 = Rosette (epsA, epsB, epsC, "0-45-90", "sig2", poisson, emod)
sigV = Rosette (epsA, epsB, epsC, "0-45-90", "sigV", poisson, emod)

imc FAMOS Func on Reference - 888 -

(c) 2024 imc Test & Measurement GmbH

Round

A data set's Y-values are rounded to the specified precision.

Declaration:
Round (Data, SvFactor) -> Rounded

Parameter:

Data Data set to be rounded. Allowed types: [ND],[XY].

SvFactor The value are rounded to integer multiples of this value.

Rounded

Rounded The rounded data set

Description:
The Y-values are rounded in such a way that the results only contain integer multiples of the specified factor. With a factor of 0.01, for instance,
you round all values off to two decimal places; with a factor of 0.25, you obtain values such as 0, 0.25, 0.5, 0.75...

If a value is located exactly between two rounding values, the system rounds to the higher absolute value.

Result = Round(0.5, 1) ; Result: 1
Result = Round(-0.5, 1) ; Result: -1

Since real numbers can usually not be represented exactly, you may obtain unexpected results if the value displayed does not exactly match the
value saved in the system. For example, the number 0.3 may be saved internally as 0.299999..., but the result of Round(0.3, 0.2) would be 0.2
instead of the expected 0.4 (from rounding up) .

Examples:
Rounding to whole numbers:

Result = Round(2.156, 1) ; Result: 2.0

Rounding to 2 decimal digits:

Result = Round(2.156, 0.01) ; Result: 2.16

Rounding to multiples of 0.25:

Result = Round(2.156, 0.25) ; Result: 2.25

Rounding to multiples of 100:

Result = Round(51, 100) ; Result: 100

See also:
Floor

imc FAMOS Func on Reference - 889 -

(c) 2024 imc Test & Measurement GmbH

RSamp

Prototype-resampling; sampling of a data set at the sampling times of a reference, with linear interpolation

Declaration:
RSamp (Data, Reference) -> Result

Parameter:

Data Data set to be re-sampled. Allowed data types: [NW],[XY]

Reference Reference, prototype for re-sampling

Result

Result Result of re-sampling.

Description:
The first data set transferred is imagined to be extended in both x-directions to the length of the reference channel, with its begin and end
values continued beyond the original range. For instance, for all x-coordinates less than the x-offset, the beginning value of the data set will be
assigned as the y-coordinate. A constant extrapolation is performed. The specified data set is imagined to be linearly interpolated within its x-
range.

This function is thus defined for all x-coordinates and can be sampled at the times (x-coordinates) dictated by the reference channel (second
parameter), producing two data sets with completely synchronous sampling. The generated data set has the same sampling time and the same x-
offset as the reference channel.

With XY-data, the x-track must be monotonically increasing.

RSamp is particularly convenient when two data sets with different sampling times are to be compared or calculated in some way. The addition
of data sets only makes sense when the data sets have the same sampling rates (see the + (Addition) function).

The x-units of both parameters should be the same.
The RSamp function is useful in the x-range common to both parameters. Use the Cut function to limit the x-range to that of the reference
channel.
When the RSamp function reduces the amount of data, the aliasing effects common to all sampling functions may occur. Use a smoothing
function before sampling (Smo).
To combine two data sets with different sampling times, the RSamp function can in principle be used on each of the data sets. In view of
accuracy and aliasing effects, it is generally better to resample the data set with the slower sampling rate. Select only the faster-sampled
data set if the amount of data would become too large. Use a smoothing function first to prevent any aliasing effects.
If the sampling times of the data sets are integer multiples of each other, the functions Red, Ipol or Lip can be used instead of the RSamp
function.

If the linear interpolation upon which the RSamp function is based is insufficient (e.g. too angular), the data set to be resampled should be
processed with spline interpolation (Ipol function) first, for example:

NDbetter = RSamp(IPol(NDdata, 10), NDref)

A factor of 10 is appropriate when the sampling of the reference channel is approximately 10 times as high.

Examples:
The instantaneous power of the 50Hz power source is to be plotted. The voltage was sampled for 1 second with a sampling rate of 0.2ms. The
current has a much higher frequency because a current rectifier is connected; therefore the current was sampled at a rate of 0.005 ms over the
same period of time. The instantaneous power is the product of the current and voltage.

NDpower = NDcurrent * RSamp(NDvoltage, NDcurrent)

A data set with an unusual sampling rate of 0.15 s is to be resampled 100 times for a duration of 2 s, at a sampling rate of 0.1 s.

NDnew = RSamp(NDdata, Ramp(2, 0.1, 100))

See also:
RSamp0, RSampEx, RedEx, Red, Red2, IPol, Lip

imc FAMOS Func on Reference - 890 -

(c) 2024 imc Test & Measurement GmbH

RSamp0

Prototype re-sampling, sampling of a waveform at a reference waveform's sampling times, with constant interpolation.

Declaration:
RSamp0 (Data, Reference) -> Result

Parameter:

Data Data set to be re-sampled. Allowed data types: [NW],[XY]

Reference Reference, prototype for re-sampling

Result

Result Result of re-sampling.

Description:
The waveform named as the first parameter is re-sampled at the points in time (x-coordinates) determined by the reference waveform (2nd
parameter).

The result value associated with a particular reference channel's x-coordinate is considered to be the input data set's value at the x-coordinate
closest to the reference channel's coordinate.

Thus, in contrast to the function RSamp, interpolation is not linear, the result data set only consists of values which also exist in the input data
set.

With XY-data, the x-track must be monotonically increasing.

The function RSamp0() is best used when the input signal consists of pre-defined discrete values. This is the case, for instance, with digital data,
or also with measurement data which can only have the integer format (e.g. the currently operable gear in a transmission system).

Re-sampling provides for synchronized records of the two waveforms. The data set generated has the same sample times and x-offset as the
reference data set.

The result takes the same data format as the sampled waveform.

Outside of its x-range, the first waveform's values are considered to be its actual initial value, or respectively, end value (the boundary values are
repeated outwards). For instance, for all x-coordinates less than the x-offset, the waveform's initial value is taken as the y-coordinate (constant
extrapolation).

Examples:
The speed <velocity> and gear (<gear>, taking only the values 1 - 5) of a vehicle are measured. The task is to find all points in time at which the
speed is less than 50 km/h while in 3rd gear. Since the two channels were sampled at different times, they must be assimilated to the same
sampling time before they can be correlated with each other.

gear_resampled = RSamp0(gear, velocity)
result = (gear_resampled = 3) AND (velocity < 50)

See also:
RSamp, RSampEx, Red, RedEx, Red2

imc FAMOS Func on Reference - 891 -

(c) 2024 imc Test & Measurement GmbH

RSampEx

Prototype-resampling, a waveform is resampled at the sampling times of a reference data set, with adjustable interpolation..

Declaration:
RSampEx (Data, Reference, SvInterpolation, SvOption) -> Result

Parameter:

Data Waveform to be resampled. Permitted waveforms are of the types NW (sampled equidistantly) and XY..

Reference Reference, prototype for re-sampling

SvInterpolation Interpolation type

0 : Linear. The input waveform is interpolated linearly to find the values at the reference points. This is analogous to the
behavior of the function RSamp()..

1 : Constant, preceding value. The input waveform is interpolated at a constant level, i.e. each value remains valid until the
next value is determined. Thus, the return value for any particular x-coordinate of the reference is such value of the input
waveform whose x-coordinate is immediately PRIOR to the reference coordinate.

2 : Constant, closest value. The return value for any particular x-coordinate of the reference is such value of the input
waveform whose x-coordinate is CLOSEST to the reference coordinate. This is analogous to the behavior of the function
RSamp0.

SvOption Option parameter

0 : The trigger time of the two waveforms is not taken into account. The result has the same trigger time as the input
waveform.

1 : The trigger times of the two waveforms are taken into account. The result has the same trigger time as the prototype.

Result

Result Result of re-sampling.

Description:
The waveform supplied as the first parameter is resampled at the times (x-coordinates) determined by the reference waveform (2nd parameter).
Re-sampling causes both waveforms to have synchronized sampling values. The waveform generated has the same sampling time and the same
x-offset as the reference waveform.

Linear interpolation is generally used with continuous input signals.

The constant interpolation types are most effectively used when the input signal consists of pre-defined, discrete values. This is the case, for
instance, with digital data, or for measured data which by nature can only take integer values (for example, the current gear which is engaged in a
transmission). The resulting data set consists only of values which also exist in the input data set, and has te same data format.

Outside of its x-range, the first waveform's values are considered to be its actual initial value, or respectively, end value (the boundary values are
repeated outwards). For instance, for all x-coordinates less than the x-offset, the waveform's initial value is taken as the y-coordinate (constant
extrapolation).

Linear interpolation with digital input data is not posible; the interpolation parameter is automatically corrected to the value 1 (constant
interpolation).

Examples:
The speed <velocity> and gear (<gear>, taking only the values 1 - 5) of a vehicle are measured. The task is to find all points in time at which the
speed is less than 50 km/h while in 3rd gear. Since the two channels were sampled at different times, they must be assimilated to the same
sampling time before they can be correlated with each other.

gear_resampled = RSampEx(gear, velocity, 2, 0)
result = (gear_resampled = 3) AND (velocity < 50)

See also:
RSamp0, RSamp, Red, RedEx, Red2

imc FAMOS Func on Reference - 892 -

(c) 2024 imc Test & Measurement GmbH

SamplesGate

Available in: Professional Edition and above

Includes all values in the result which are selected by a controlling data set.

Declaration:
SamplesGate (Dataset, Control) -> Result

Parameter:

Dataset Dataset

Control Control

Result

Result Result

Description:
This function adopts a measured value from the input data set if the corresponding value in the control data set is nonzero. The measured value
is discarded if the corresponding value of the reference data set is zero.

Both parameters have the same structure regarding length and events.

The data set may not have any segments.

The data set may be equidistant, XY, or complex.

The x-offset (x0) remains intact.

Examples:
Determine all measured values for which the gear is 4

Data4 = SamplesGate (Data, Gear = 4)

Delete all values for which a marker is set (Marked[i] is 1).

Remain = SamplesGate (Data, not (Marked))

See also:
RemoveSamples, ValueIndex, CutIndex

imc FAMOS Func on Reference - 893 -

(c) 2024 imc Test & Measurement GmbH

SAVE

A variable is saved to a file. The imc/FAMOS file format is used.

Declaration:
SAVE VariableName Filename

Parameter:

VariableName Variable to be saved

Filename Filename (or also complete path), under which the variable is to be saved.

Description
This command is obsolete. Instead of it you can use the more powerful and convenient function FileSave().
The variable specified as the parameter is saved. If no file name is specified, the variable is stored under its name in the directory currently
selected for saving variables.

If a file name is specified, the variable is saved under this name. When a complete path is specified, this path is used; otherwise the path
currently set for saving files is used.

The filename may also specified to contain quotation marks. This can be necessary, if, for instance, the path contains spaces.

To save files in the imc/FAMOS format, you can also use the more powerful functionsFileSave() or FileOpenDSF(). With these functions, you can
also, for example, save multiple data sets together in one file.

Examples:

data = Int(data)
SAVE data

The variable data is integrated and saved to a file.

Hist = Histo(Data1, 10, 6)
SAVE Hist c:\data\histogr\hist001
Hist = Histo(Data2, 10, 6)
SAVE Hist c:\data\histogr\hist002

A histogram is calculated for each of the waveforms Data1 and Data2 and saved in the specified directory under the names 'hist001.dat' and
'hist002.dat'.

Hist:N001 = Histo(Data1, 10, 6)
Hist:N002 = Histo(Data2, 10, 6)
SAVE Hist c:\data\histogr\hist002

A data group consisting of 2 channels is created and stored under the specified file name.

SAVE Daten1 "c:\imc\My Data Files\result.dat"

The filename contains spaces and therefore it must be written inside of quotation marks.

See also:
FileSave, FileOpenDSF, SDIR, ASCSAVE, LOAD

imc FAMOS Func on Reference - 894 -

(c) 2024 imc Test & Measurement GmbH

SavitzkyGolay

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Savitzky-Golay filter for smoothing data sets

Declaration:
SavitzkyGolay (InputData, Order, Left, Right, Edge) -> Result

Parameter:

InputData Input data to be smoothed

Order Order/degree (0..9) of the polynomial used

Left Number of points at left, >= 0

Right Number of points at right, s>= 0

Edge Influencing of the signal transients and decay at the edges

0 : Edge regions are extended at a constant level from the last valid value.

1 : Edge regions are completely filled with zeroes.

2 : Edge regions result from filtering, and it is assumed that the data sets consists of zeroes outside of these regions.

3 : Edge regions result from filtering, and it is assumed that the data sets is extended at constant level ouside of these regions.

4 : Edge regions are truncated. The length is shortened, the x-offset is shifted.

Result

Result Filtered data

Description:
The Savitzky-Golay filter is a digital filter whose coefficients are determined by polynomial regression.

Although it was used mainly in spectroscopy in the past, the filter is useful not only for smoothing spectra, but also any arbitrary signals.

The width of the resulting digital filter is [left points + right points + 1].

The points to the left give weighting to past values. The points to the right give weighting to future values. If the count is > 0, the filter is not
causal.

When the width is large, the computational demands increase.

The points on the left determine how wide the transients at the start are. The points on the right determine how wide the decay at the end is.

There is only a smoothing effect when the order < [left points + right points].

Available from imc FAMOS 7.1 onwards

Examples:

Smoothed = SavitzkyGolay(vibration, 3, 10, 10, 0)

imc FAMOS Func on Reference - 895 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

Scale

Scales a data set by means of linear transformation to a specified new value range.

Declaration:
Scale (Data, SvTop, SvLow) -> Result

Parameter:

Data Data set to be scaled; allowed types: [ND],[XY]

SvTop Upper boundary

SvLow Lower boundary

Result

Result Rescaled data set. Y-value range lies between [SvBottom] and [SvTop]

Description:
The y-value range of a data set is rescaled to a predefined range. The new range is defined by an upper and lower limit (maximum and
minimum). The second and third parameters define the new value range. All numerical values of the data set are transferred linearly from the
old to the new value range. This function allows convenient normalizing to a suitable value range.

The first parameter may be structured (events/segments).
The unit of the data set remains unchanged. To normalize to a unitless number, divide by 1 times the unit.
The function Scale searches for the minimum and maximum of the data set and calculates the transformation formula from these values and
the desired range.

Examples:

NDnorm = Scale(NDdata, 0, 100) * 1 '%'

A data set with the numerical values 0.7, 0.8, 0.9, 0.8 should be set to a new range of 0 ... 100%: the generated data set then contains the values
0%, 50%, 100%, 50%.

See also:
Clip, Min, Max

imc FAMOS Func on Reference - 896 -

(c) 2024 imc Test & Measurement GmbH

SDIR

Sets folder for saving files

Declaration:
SDIR Folder

Parameter:

Folder Complete pathname of the desired folder

Description
Instead of the command SDIR, the function SetOption() should be used in ewly created sequences.

The folder for saving files is given a new setting.

Once this command has been executed, this folder is used for saving files. This folder is used by the commands SAVE and ASCSAVE, if no full
pathname is specified for the file.

The folder name may also be expressedd in quotation marks. This is obligatory when the name contains spaces.

This command can also be called without any parameters (so without any specified fodler). Then the folder set under "Options/Folders" is again
used as the default.

The folder elected here remains valid until:

the command SDIR is called again
the function SetOption("Dir.DataFiles",...) is called
a file is saved in a different folder by means of the dialog box "Save" in the menu "File"
a new folder is designated for saving files by means of the dilog under "Options"/"Folders"

Multithreading: The command has a global effect. The standard execution thread and each sequence function executed in a separate thread
using BEGIN_PARALLEL therefore share a common memory.

Examples:

FAMOS
LOAD data
data = 2 * data + 3
SAVE data
SDIR c:\test
SAVE data

The data set DATA is loaded and changed, then saved in the currently designated folder; then saved once again under C:\TEST\DATA.DAT.

SDIR "c:\My tests on 12/1/98"

The pathname contains spaces and must therefore be written in quotation marks.

See also:
SetOption, SAVE, ASCSAVE, LDIR, FileSave, FileOpenDSF

imc FAMOS Func on Reference - 897 -

(c) 2024 imc Test & Measurement GmbH

SDOF_Response

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

The SDOF (single degree of freedom system) is excited by the acceleration plot provided. The response is calulated.

Declaration:
SDOF_Response (Acceleration, Frequency, Attenuation, Model, AppendSamples) -> Response

Parameter:

Acceleration The course of the acceleration in time, the time scaled in seconds.

Frequency Natural frequency of the undamped system, in "Hz"

Attenuation 0 <= Attenuation< 0.9. (attenuation ratio) The system's relative attenuation. Typically 0.05 or 0.01. 0.0 is an undamped system.

Model model of calculation

0 : absolute acceleration model

1 : relative displacement model

AppendSamples The result will be longer than the input data by the number of samples specified, >= 0

Response

Response Response

Description:
The function determines the response of the system comprising a spring, a mass and a damper having a given natural frequency and damping.

The base (support) of the SDOF is excited by a measured acceleration. That acceleration is measured in absolute terms (with respect to a fixed
support). In consequense of the acceleration the SDOF will move.

If relative displacement is calculated, the displacement is the (zero initialised) distance from the base. The acceleration of the SDOF, however, is
calculated as an absolute value with respect to ground, not with repect to the base.

absolute acceleration model. The result is absolute acceleration values, where the acceleration is scaled exactly as in the acceleration specified
as the parameter, typically in "g" (gravitational acceleration) or "m/s^2".

relative displacement model. The result is the relative deflection (path) and comes with the unit "m" (Meter). This requires that the acceleration-
to-time curve be scaled in "m/s^2", not in "g".

The function assumes the system to be in steady state initially, which means displacement=0 and velocity=0.

The result is plotted over the natural frequency.

Then an appropriate length should be chosen.

Relationship with shock response spectrum (SRS): The SRS is calculated by calling SDOF_RResponse() for each desired frequency, then
determining the mininum/maximum of the result.

The result has the same sampling frequency as the input. If minimum or maximum values are to be determined subsequently, or (rainflow) class-
counting is to be performed, the following applies:

If the natural frequency is small compared with the sampling frequency, the result may lose accuracy, because sampling does not occur exactly at
the extremum. E.g the error can be up to 1% if the ratio of frequencies is 23. Alternatively, the input can be interpolated beforehand or
afterward.

If AppendSamples = 0, then the response is equal to the one calculated for the primary SRS (initial SRS).

Particularly with low natural frequencies, it sometimes occurs that within the (brief) duration of the plot of acceleration over time, the system
response does begin with an oscillation, but neither reaches the maximum or the minimum before the acceleration ends.

If later on only maximum values are determined, then it is sufficient to append a length equal to only one period of the natural frequency.

If (rainflow) class-counting is to be performed subsequently, as many periods must be appended as it takes for the response to decay to a
negligible value. For damping of 0.05, that can be about 30 periods of the natural frequency.

The input data can have events and segments.

(algebraic) signs, directions
The relative displacement z is the distance between the mass and the moving base. The moving base itself moves at the absolute acceleration
specified as the parameter. All variables are measured in the same direction; positive meaning away from the moving base.

Both the mass and the moving base are considerd initially at rest. Next, constant positive acceleration is to be applied to the moving base:

At the first moment, the mass is not yet moving; instead the spring becomes compressed. Gradually the mass goes into motion. Initially it moves
in the same direction as the moving base. Its absolute acceleration is also positive.

The mass next moves ever faster in the same direction as the moving base. But the moving base initially still accelerates faster than the mass. In
consequence, the distance z between the mass and the moving base is initially decreasing. Since the intial value of z is taken as 0, this means z
becomes negative.

imc FAMOS Func on Reference - 898 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

z < 0 therefore indicates that the mass is closer to the moving base than at the start. z > 0 means that the mass is further away from the moving
base than at the start.

Examples:
The base of the SDOF is continuously accelerated. The absolute acceleration of the SDOF is to be calculated; natural frequency=1000Hz,
damping=0.05

SDOF_Acc = SDOF_Response (Acceleration, 1000, 0.05, 0, 0)

The base of an SDOF is agitated by brief acceleration (shock) (in m/s^2). The relative displacement of the SDOF (in m) is to be calculated. Natural
frequency=100Hz, damping=0.05. The result is extended by 30 periods of the natural frequency in order to also obtain the oscillation after the
agitation subsides.

f0 = 100 ; Hz
append_samples = floor (30 / (xdel?(Acceleration) * f0))
RelativeDisplacement = SDOF_Response (Acceleration, f0, 0.05, 1, append_samples)

A selected line of the shock response spectrum is to be examined.

SRS = ShockResponseSpectrum (Acceleration, 5.0, 500.0, 100, 0.05, 14, 0)
B = SDOF_Response(Acceleration, SRS[1].x, 0.05, 0, 1+1 / (SRS[1].x*xdel?(Acceleration)))
B_max = abs (max (B)) ; == SRS[1].y

Examining the arithmentical signs during brief constant acceleration

It is seen how abs_a slowly increases. But a is already large for the whole time. By definition, z begins at 0. It then becomes ever smaller. In other
words, less than 0, because the mass and the moving base approach each other. Only later does the spring push the mass forward faster, causing z
to increase.

a = ramp(0,1e-4,100)*0+1
abs_a = SDOF_Response(a,100.0,0.0,0,0)
z = SDOF_Response(a,100.0,0.0,1,0)

See also:
ShockResponseSpectrum

imc FAMOS Func on Reference - 899 -

(c) 2024 imc Test & Measurement GmbH

SearchLevel

Finds selectable level and slope conditions in a data set.

Declaration:
SearchLevel (Data, SvLevelCondition, SvLevel1, SvLevel2, SvSlopeCondition, SvSlope1, SvSlope2, SvOption) ->
XYFound

Parameter:

Data Data set to be searched. Allowed types: [ND],[XY]

SvLevelCondition Condition for level (amplitude)

0 : Any level

1 : less than or equal to..

2 : Greater than or equal to....

3 : In the interval from.. to..

4 : Outside of the interval from.. to..

SvLevel1 Level value, whose meaning depends on the level condition. For Options 1 and 2, the limit; for 3 and 4, the lower interval
boundary. Otherwise, set to 0.

SvLevel2 Level value, whose meaning depends on the level condition. For Options 3 and 4, the upper interval boundary. Otherwise,
set to 0.

SvSlopeCondition Condition for slope

0 : Any slope

1 : less than or equal to..

2 : Greater than or equal to....

3 : In the interval from.. to..

4 : Outside of the interval from.. to..

SvSlope1 Slope value, whose meaning depends on the slope condition. For Options 1 and 2, the limit; for 3 and 4, the lower interval
boundary. Otherwise, set to 0.

SvSlope2 Slope value, whose meaning depends on the slope condition. For Options 3 and 4, the upper interval boundary. Otherwise,
set to 0.

SvOption Option for linking level and slope conditions

0 : The function determines all xy-pairs, which fulfill both conditions at the same time. The function therefore searches for
specified states.

1 : The function searches for all transitions, in which the level condition changes from false to true. The slope condition
must additionally be fulfilled. Linear interpolation is performed on the x-position at the transition. The function thus
searches for transitions, not for states.

XYFound

XYFound XY-data set with the pairs x, y, which fulfill defined conditions

Description:
This function searches for points in a data set which fulfill specified level and slope conditions.

A condition for the y-value (level, amplitude) can be defined first.

SvLevelCondition
0 Any level

1 Level <=SvLevel1

2 Level >= SvLevel1

3 SvLevel1 <= Level <= SvLevel2 (value in the interval from .. to..)

4 Level <=SvLevel1 OR Level >=SvLevel2 (value not in the interval from.. to..)
It is also possible to specify a condition for the slope at a point.

SvSlopeCondition

imc FAMOS Func on Reference - 900 -

(c) 2024 imc Test & Measurement GmbH

0 Any slope

1 Slope <=SvSlope1

2 Slope >=SvSlope1

3 SvSlope1 <= Slope <= SvSlope2 (slope in the interval from .. to..)

4 Slope <= SvSlope1 OR Slope >=SvSlope2 (slope not in the interval from .. to ..)
The last parameter [SvOption] specifies how the conditions are to be linked. The effect of these option parameters is illustrated in the following
example:

The data set to be checked has the values 0, 2, 6, 7, 9 V at a sampling rate of 1s. The function searches for a level > 4V using the formula

result = SearchLevel(data, 2, 4, 0, 0, 0, 0, 0)

The function returns an XY-data set with the value pairs (6V, 2s), (7V, 3s), (9V, 4s) If the option is set to search for transitions:

result = SearchLevel(data, 2, 4, 0, 0, 0, 0, 1)

the function returns a value pair, namely (4V, 1.5s). This is the time determined (through linear interpolation) at which the condition was met.

Examples:
Data set to be examined:

Search for all values in the range 10-50 °C, regardless of slope:

result = SearchLevel(temp, 3, 10, 50, 0, 0, 0, 0)

Search for all values in the range of 10-50 °C with positive slope:

result = SearchLevel(temp, 3, 10, 50, 2, 0, 0, 0)

Search for all values with a negative slope, regardless of level:

result = SearchLevel(temp, 0, 0, 0, 1, 0, 0, 0)

Searches for all transitions in which the temperature enters in the interval 30- 40°C from the top or bottom:

result = SearchLevel(temp, 3, 30, 40, 0, 0, 0, 1)

imc FAMOS Func on Reference - 901 -

(c) 2024 imc Test & Measurement GmbH

The result data set consists of 2 points (shown below as circles).

With extensive zooming, the interpolation at the 30°C -limit becomes clear:

See also:
Top, All0, xMax, PosiEx2

imc FAMOS Func on Reference - 902 -

(c) 2024 imc Test & Measurement GmbH

SegLen?

Determines a data set's segment length

Declaration:
SegLen? (Data) -> SvSegLeng

Parameter:

Data Data set whose segment length is to be determined

SvSegLeng

SvSegLeng Segment length; 0 means no segmenting

Description:
This function returns a data set's segment length. A length of 0 means no segmenting.

Examples:

IF SegLen?(data) > 0
 SetSegLen(data, 0)
END

Any segmenting of the data set is voided.

See also:
SetSegLen, MatrixInfo

imc FAMOS Func on Reference - 903 -

(c) 2024 imc Test & Measurement GmbH

SelBuildVarName

From the given channel and measurement identifier a complete FAMOS variable name is constructed. Channel and measurement may be
specified either by fixed name or by their index in the Data selector's measurement/channel list.

Declaration:
SelBuildVarName (Measurement, Channel, SvOption) -> TxVarName

Parameter:

Measurement Name of the measurement or index (1,2,..) of the measurement list entry.

Channel Name of the channel or index (1,2,..) of the channel list entry.

SvOption Options parameter

0 : The function checks whether a corresponding FAMOS variable exists. If not, an empty text is returned.

1 : The variable name is returned unchecked.

TxVarName

TxVarName Complete variable name for FAMOS.

Description:
The returned variable name has the following structure:

ChannelName@MeasurementName

If channel- and/or measurement name do not comply with the rules for a valid variable name (e.g. contain spaces or special characters), then the
corresponding identifier will be enclosed in {...}, whereby the returned variable name can still be used in sequences.

To subsequently use the returned variable name in sequences, you will need to use the Indirection Operator for text variables <...>. Before using
the returned name, you should also check whether a variable with this name actually exists in imc FAMOS (see example #2).

The contents of the data selector's measurement/channel list is determined either by manual selection in the Variables list/ Measurement View
and/or the functions SelMeasListSetName()/SelChanListSetName().

Examples:

ChannelName MeasurementName Result
"Channel1" "Test1" "Channel1@Test1"

"Channel1" Empty "Channel1"

"CH**1" "Test1" "{CH**1}@Test1"

"CH**1" "Test[1]" "{CH**1}@{Test[1]}"
All entries in the data selector are enumerated. If an entry refers to an existing FAMOS variable, the X-offset of this variable will be adjusted.

MCount = SelMeasListSize?()
FOR M = 1 TO MCount
 CCount = SelChanListSize?()
 FOR C = 1 TO CCount
 TxVarName = SelBuildVarName(M, C, 0)
 ; Option 0: If variable does not exist, return empty text!
 IF TxVarName <> ""
 XOFFSET <TxVarName> 10
 END
 END
END

In case the Measurement #1 in the Dataselector contains the channels "Voltage" and "Current", the power is calculated and displayed in a
separate curve window.

TxUName = SelBuildVarName(1, "Voltage", 0)
TxIName = SelBuildVarName(1, "Current", 0)
; Option 0: If variable does not exist, return empty text!
IF (TxUName <> "") AND (TxIName <> "")
 Power = <TxUName> * <TxIName>
 SHOW Power
END

See also:
SelMeasListName?, SelMeasListSize?, SelChanListName?, SelChanListSize?, SelMeasListSetName, SelChanListSetName

imc FAMOS Func on Reference - 904 -

(c) 2024 imc Test & Measurement GmbH

SelChanListName?

An entry from the dataselector's channel list is returned.

Declaration:
SelChanListName? (SvIndex) -> TxName

Parameter:

SvIndex Index of the requested entry.

TxName

TxName Name of the channel.

Description:
This function is seldom used. To build a complete FAMOS variable name from measurement and channel name, use the function
"SelBuildVarName" instead.

The contents of the data selector's measurement/channel list is determined either by manual selection in the Variables list/ Measurement View
and/or the functions SelMeasListSetName()/SelChanListSetName().

Examples:
All entries in the Data Selector's Channels list are enumerated and displayed.

count = SelChanListSize?()
c = 1
WHILE c <= count
 TxMeas = SelChanListName?(c)
 BoxOutput(TxMeas, EMPTY, "", 1)
 c = c + 1
END

See also:
SelMeasListName?, SelChanListSize?, SelBuildVarName, SelMeasListSetName, SelChanListSetName

imc FAMOS Func on Reference - 905 -

(c) 2024 imc Test & Measurement GmbH

SelChanListSetName

An entry in the Data Selector's channel list is set.

Declaration:
SelChanListSetName (SvIndex, TxName, GroupName [, SvOption])

Parameter:

SvIndex Index of the entry in the Data Selector's channel list to be set. The index of the first entry is 1.

TxName Name of the channel. An empty text deletes the existing entry.

GroupName Name of the higher-level group, or empty text

SvOption Option (optional , Default value: 0)

0 : The change takes immediate effect (default).

1 : The change takes effect only upon calling SelListControl(0).

Description:
This function sets an entry in the Data Selector's channel list, thus assigning a number to a channel name.

Thus, the function represents the automation of manually selecting a channel in the Variables list/Measurement view.

To specify a channel belonging to a group, either the channel name and group name can be specified separately in the 2nd and 3rd parameters, or
they can be specified together in the 2nd parameter in the customary notation 'GroupName:ChannelName'. In the latter case, the 3rd parameter
is left empty.

The parameter [option] controls whether the change takes effect immediately or only after an explicit call of SelListControl(0). This affects the
updating of display elements which use the Data Selector (e.g. a curve window with a link to a measurement- or channel number), as well as the
display of the corresponding numbering in the Variables list/Measurement view and the resolution of the Panel-event 'Data selection changed'.
Enter a "1" if you wish to set multiple entries in the Data Selector in succession, and then in conclusion call SelListControl(0).

The system does not check whether a channel having the specified name actually exists at the time of the call.

Multithreading: The function has a global effect. The standard execution thread and each sequence function executed in a separate thread using
BEGIN_PARALLEL therefore share a common memory.

Examples:
A Panel contains a curve window, which is configured for displaying the 1st channel of the 1st selected measurement ('Channel #1 @
Measurement #1') and a button 'Show'. The user initially loads all desired measurements manually. At the push of a button, then for each
measurement, all channels starting with 'U_' are each displayed for 2 seconds.

Event-sequence 'Button pressed (Show)':

measurements = MeasNames?("*")
FOREACH ELEMENT name in measurements
 SelMeasListSetName(1, name, 1)
 channels = MeasChanNames?(name, "U_*")
 FOREACH ELEMENT chan in channels
 SelChanListSetName(1, chan, "", 1)
 SelListControl(0) ; refresh curve windows now
 Sleep(2)
 END
END

See also:
SelChanListName?, SelMeasListSetName, SetMeasurementName, SelBuildVarName, MeasChanNames?

imc FAMOS Func on Reference - 906 -

(c) 2024 imc Test & Measurement GmbH

SelChanListSize?

The amount of sequentially numbered entries in the data selector channel list is returned.

Declaration:
SelChanListSize? () -> SvCount

Parameter:

SvCount

SvCount Count of entries in the channel list.

Description:
Only channels having a sequential numbering from 1 are taken into account; in the rare case of a "gap" in the channel list, the count is
interrupted. If, for instance, the channels #1 through #3 are selected, a 3 is returned. But if channels #1, #2 and #4 are selected, because channel
#3 is not occupied, the result is 2.

The contents of the data selector's measurement/channel list is determined either by manual selection in the Variables list/ Measurement View
and/or the functions SelMeasListSetName()/SelChanListSetName().

Examples:
All entries in the data selector are enumerated. If an entry refers to an existing FAMOS variable, the X-offset of this variable will be adjusted.

MCount = SelMeasListSize?()
M = 1
WHILE M <= MCount
 CCount = SelChanListSize?()
 C = 1
 WHILE C <= CCount
 TxVarName = SelBuildVarName(M, C, 0)
 ; Option 0: If variable does not exist, return empty text!
 IF TxVarName <> ""
 XOFFSET <TxVarName> 10
 END
 C = C+1
 END
 M = M+1
END

See also:
SelMeasListName?, SelChanListName?, SelBuildVarName, SelMeasListSetName, SelChanListSetName

imc FAMOS Func on Reference - 907 -

(c) 2024 imc Test & Measurement GmbH

SelListControl

Control of the Data Selector

Declaration:
SelListControl (SvTask)

Parameter:

SvTask Task

0 : Displays (curve window, Panel elements, Variables list/Measurement view) are updated. In consequence, the Panel-event 'Data
selection changed' may be triggered.

1 : The Measurement and Channel lists are completely deleted. The change takes effect immediately.

2 : The Measurement and Channel lists are completely deleted. The change only takes effect upon the next call of SelListControl(0).
Use this value if you wish to refill the list subsequently.

Description:
With [Task] = 0, any previous changes of the Data Selector are put into effect. This affects the updating of display elements which use the Data
Selector (e.g. a curve window with a link to a measurement- or channel number), the display of the associated numbering in the Variables
list/Measurement view, and the triggering of the Panel-event 'Data selection changed'.

Examples:
The Data Selector's entries are set to fixed names:

SelListControl(2) ; delete current content
SelMeasListSetName(1, "Measurement_12_04_2015", 1)
SelMeasListSetName(2, "Measurement_12_05_2015", 1)
SelChanListSetName(1, "channel1", "", 1)
SelChanListSetName(2, "channel2", "", 1)
SelListControl(0) ; Refresh display

See also:
SelMeasListSetName, SelChanListSetName, MeasNames?, SetMeasurementName

imc FAMOS Func on Reference - 908 -

(c) 2024 imc Test & Measurement GmbH

SelMeasListName?

An entry from the dataselector's measurement list is returned.

Declaration:
SelMeasListName? (SvIndex) -> TxName

Parameter:

SvIndex Index of the requested entry.

TxName

TxName Name of the measurement.

Description:
This function is seldom used. To build a complete FAMOS variable name from measurement and channel name, use the function
"SelBuildVarName" instead.

The contents of the data selector's measurement/channel list is determined either by manual selection in the Variables list/ Measurement View
and/or the functions SelMeasListSetName()/SelChanListSetName().

Examples:
All entries in the Data Selector's Measurements list are enumerated and displayed.

MCount = SelMeasListSize?()
FOR M = 1 TO MCount
 TxMeas = SelMeasListName?(M)
 BoxOutput(TxMeas, EMPTY, "", 1)
END

All channels belonging to measurement #1 in the data selector are deleted.

measurement = SelMeasListName?(1)
DELETE *@{<measurement>}

See also:
SelMeasListSize?, SelChanListSize?, SelBuildVarName, SelMeasListSetName, SelChanListSetName

imc FAMOS Func on Reference - 909 -

(c) 2024 imc Test & Measurement GmbH

SelMeasListSetName

Sets an entry in the Data Selector's Measurements list.

Declaration:
SelMeasListSetName (SvIndex, TxName [, SvOption])

Parameter:

SvIndex Index of the entry to set in the Measurements list. The first entry's index is 1.

TxName The measurement's name. An empty text deletes the existing entry. "." stands for [no measurement].

SvOption Option (optional , Default value: 0)

0 : The change takes immediate effect (default).

1 : The change takes effect only upon calling SelListControl(0).

Description:
The function sets an entry in the Data Selector's Measurements list, thus assigning a number to a measurement's name.

This function represents the automation of manual selection of a measurement in the Variables list/Measurement view.

The parameter [option] controls whether the change takes effect immediately or only after an explicit call of SelListControl(0). This affects the
updating of display elements which use the Data Selector (e.g. a curve window with a link to a measurement- or channel number), as well as the
display of the corresponding numbering in the Variables list/Measurement view and the resolution of the Panel-event 'Data selection changed'.
Enter a "1" if you wish to set multiple entries in the Data Selector in succession, and then in conclusion call SelListControl(0).

The system does not check whether at the time of the call there actually is any measurement with the specified name.

Multithreading: The function has a global effect. The standard execution thread and each sequence function executed in a separate thread using
BEGIN_PARALLEL therefore share a common memory.

Examples:
A panel contains a curve window which is configured for display of the 1st channel of the 1st selected measurement ('Channel #1 @
Measurement #1') and a button 'Show'. The user initially manually loads all measurements desired and selects a channel name (assigned the
number #1) in the Variables list/Measurement View. At the push of a button, all currently available measurements are enumerated and each
associated curve plot for the selected channel is displayed for 2 seconds.

Event-sequence 'Button pressed (Show)':

measurements = MeasNames?("*")
FOREACH ELEMENT name IN measurements
 SelMeasListSetName(1, name)
 Sleep(2)
END

The same situation as above, but here, for each measurement, all channels which start with 'U_' are displayed in succession.

measurements = MeasNames?("*")
FOREACH ELEMENT name in measurements
 SelMeasListSetName(1, name, 1)
 channels = MeasChanNames?(name, "U_*")
 FOREACH ELEMENT chan in channels
 SelChanListSetName(1, chan, "", 1)
 SelListControl(0) ; refresh curve windows now
 Sleep(2)
 END
END

A folder structure contains a number of subfolders, each representing a measurement and which contain the channels 'Voltage' and 'Current'. A
Panel contains 3 curve windows, which are configured for the display of the channels 'Voltage', 'Current' and 'Power' of the first selected
measurement. When a folder is loaded by means of the Data Source Browser, the new measurement is automatically selected as the 1st
measurement, the variable 'Power' is calculated and saved in the same folder as the source data. The Panel display is updated accordingly.

Event-sequence 'Measurement available'

IF PA2 = 0 ; new measurement
 SelMeasListSetName(1, PA1) ; new measurement gets the number 1
 SelUseMeasurement(1)
 Power = Voltage * Current
 SetMeasurementName(Power, PA1)
 fileName = FsSplitPath(FileName?(Voltage), 8) + "\power"
 FileSave(fileName, "", 0, Power)
END

imc FAMOS Func on Reference - 910 -

(c) 2024 imc Test & Measurement GmbH

See also:
SelMeasListName?, SelChanListSetName, SelBuildVarName, SetMeasurementName, MeasNames?

imc FAMOS Func on Reference - 911 -

(c) 2024 imc Test & Measurement GmbH

SelMeasListSize?

The amount of sequentially numbered entries in the data selector measurement list is returned.

Declaration:
SelMeasListSize? () -> SvCount

Parameter:

SvCount

SvCount Count of entries in the measurement list.

Description:
Only measurements having a sequential numbering from 1 are taken into account; in the rare case of a "gap" in the measurement list, the count is
interrupted. If, for instance, the measurements #1 through #3 are selected, a 3 is returned. But if measurements #1, #2 and #4 are selected,
because measurement #3 is not occupied, the result is 2.

The contents of the data selector's measurement/channel list is determined either by manual selection in the Variables list/ Measurement View
and/or the functions SelMeasListSetName()/SelChanListSetName().

Examples:
All entries in the data selector are enumerated. If an entry refers to an existing FAMOS variable, the X-offset of this variable will be adjusted.

MCount = SelMeasListSize?()
FOR M = 1 TO MCount
 CCount = SelChanListSize?()
 FOR C = 1 TO CCount
 TxVarName = SelBuildVarName(M, C, 0)
 ; Option 0: If variable does not exist, return empty text!
 IF TxVarName <> ""
 XOFFSET <TxVarName> 10
 END
 END
END

See also:
SelMeasListName?, SelChanListSize?, SelBuildVarName, SelMeasListSetName, SelChanListSetName

imc FAMOS Func on Reference - 912 -

(c) 2024 imc Test & Measurement GmbH

SelUseMeasurement

Formula Interpreter: Sets which measurement of which variables are used.

Declaration:
SelUseMeasurement (MeasNameOrNumber) -> SvStatus

Parameter:

MeasNameOrNumber

The measurement to be used. Either number or text. The number then refers to the corresponding entry in the Data
Selector (Variables list/Measurement View). A "1" means, for example, that the first selected measurement is used.
Alternatively, the measurement's name can also be stated directly, this always works regardless of the current
assignment in the data selector.

SvStatus

SvStatus Result of function

0 : No measurement is currently assigned to the measurement number entered.

1 : OK

Description:
The measurement specified here is used by the Formula Interpreter to locate variables. The variable name is then automatically supplemented
with this measurement. This is very helpful if sequences are to be used on channels having the same name byte belonging to different
measurements.

The contents of the data selector's measurement/channel list is determined either by manual selection in the Variables list/ Measurement View
and/or the functions SelMeasListSetName()/SelChanListSetName().

The function offers a simple alternative to the complete variable designation structure ChannelName@MeasurementName by means of the
function SelBuildVarName().

A 0 or empty text for the parameter means that no standard measurement is used.

Once a standard measurement has been constructed using SelUseMeasurement(), when generating a new variable by means of making an
assignment, the simplified notation

NewVariable@ = ...

can also be used. The new variable is then automatically asignedd to the current standard measurement.

Example: The measurements currently processed contain the channel 'current'. The channel belonging to Measurement #1 is to be provided with
a fixed offset:

Variant 1:

SelUseMeasurement(1)
current = current + 10

Variant 2:

TxVarName = SelBuildVarName(1, "current", 0)
<TxVarName> = <TxVarName> + 10

The measurement set here remains valid until:

next call of the function SelUseMeasurement()
next restart of a top-level sequence
Menu command 'Restart'.

Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Note: Unless a measurement is explicitly stated with a variable, the formula interpreter first searches among the variables with the selected
measurement assignment. Only when this fails will the search be continued among the variables without measurement assignment.

Examples:
The measurements currently processed contain the channels 'Voltage' and 'Current'. For the currently selected Measurement #1, the power is
calculated and displayed in a separate curve window.

IF SelUseMeasurement(1) = 0
 EXITSEQUENCE
END
Power = Voltage * Current
; or: Power@ = Voltage * Current ;=> the variable 'Power' is assigned to the current measurement.

imc FAMOS Func on Reference - 913 -

(c) 2024 imc Test & Measurement GmbH

SHOW Power

If the above sequence is to be structured in a more robust way, you can have an additional check useing the function VarExist?() of whether the
expected channels are actually available at runtime:

IF SelUseMeasurement(1)
 IF VarExist?("Voltage") AND VarExist?("Current")
 Power = Voltage * Current
 SHOW Power
 END
END

A Panel serves the purpose of visualizing measured data. The measurements to be investigated each contain a channel "channel1", which is to be
smoothed prior to display and subseuent evaluation. The smoothing is performed in the Panel-event sequence "Measurement available":

IF PA2 = 0 ; new measurement?
 SelUseMeasurement(PA1) ; PA1: Name of the new measurement
 channel1 = Smo(channel1, 2)
END

See also:
SelMeasListName?, SelChanListName?, SelBuildVarName, SelMeasListSetName, SelChanListSetName

imc FAMOS Func on Reference - 914 -

(c) 2024 imc Test & Measurement GmbH

SEQUENCE

Run sequence

Declaration:
SEQUENCE Filename Par1 Par2 Par3 Par4 Par5 Par6 Par7 Par8 Par9 ...

Parameter:

Filename Filename of the sequence file

Par1 1st parameter

Par2 2nd parameter

Par3 3rd parameter

Par4 4th parameter

Par5 5th parameter

Par6 6th parameter

Par7 7th parameter

Par8 8th parameter

Par9 9th parameter

... More parameter (up to 20)

Description
A sequence is executed. The name of the sequence is a file name and is transferred as the first parameter. If the sequence to be executed
expects parameters, these must be transferred as further parameters. The parameters passed are addressed within the sequence called via the
symbolic designators PA1, PA2 etc.

The filename may also specified to contain quotation marks. This can be necessary, if, for instance, the path contains spaces.

Unless a complete path is provided along with the filename, the system searches for the sequence file in this order of folders:

Project folder: When a project is opened, the system looks for it in the current project folder.
Current working directory: Upon starting FAMOS, initially set to the folder specified under "Options"/ "Folders". It can be modified using
either the command MDIR or the function SetOption(). Otherwise it is the folder from which the sequence making the call was opened.

Please refer to the chapter 'Sequences' for more information about working with sequences, especially those with parameters.

The maximum number of parameters is 20.
The number of parameters actually passed can be determined within the sequence using the ParametersPassed?() function.
When a sequence is active, the Windows taskbar's notification area contains an additional icon. Right-clicking the mouse calls a context
menu which offers a command for interrupting the current run.
To interrupt, it's also possible to use the combination of keys "CTRL" + "Break".

Examples:

SEQUENCE Series

The sequence named Series is executed; it does not expect any parameters.

SEQUENCE Sum Wave1 Wave2

A sequence named Sum is executed. It calculates the sum of two channels. The data sets to be added are transferred as parameters.

SEQUENCE c:\imc\seq\LoadAll.seq d*.dat

A sequence used to load a file is executed for all files which begin with a "D" and have the extension ".DAT" .

SEQUENCE "c:\imc\My Sequences\Evaluate.dat" Data1

imc FAMOS Func on Reference - 915 -

(c) 2024 imc Test & Measurement GmbH

The filename contains a space and therefore it must be written inside of quotation marks

See also:
Dialog, SetOption, MDIR, ParametersPassed?

imc FAMOS Func on Reference - 916 -

(c) 2024 imc Test & Measurement GmbH

Set

Sets points of a data set at a specified x-position to specified new y-values.

Declaration:
Set (Data, XPositions, YValues) -> ResultData

Parameter:

Data Data set to be changed; allowed types: [ND].

XPositions X-coordinates at which the associated y-values are to be changed

YValues Y-values to which the data set's values are to be set at the specified x-coordinates

ResultData

ResultData Changed data set with corresponding new values

Description:
A data set's numerical value can be reset to a new value in a targeted way.

To be specified:

the data set in which a value is to be re-set,
the x-coordinate(s) at which the new value is to be entered,
the new y-coordinate(s), i.e. the new numerical value(s).

A new data set is generated in which a series of values is changed from the original data set passed to the function. The 2nd and 3rd parameters
must have the same length.

The data set's units are adopted. The 2nd parameter should represent the x-unit, the 3rd should represent the y-unit.

The x-position of the value to be set as the x-coordinate, not as the index.

If the x-position lies outside the x-range of the data set, no value is changed.

Alternatively, you can use the function SetIndex if you wish to specify the setting position in terms of the point's index in the data set. This
function is also adapted to XY-data sets.

To change numerical values in a data set manually without automating the procedure, use the Data Editor in imc FAMOS.

To change individual values, you can also accomplish this directly by assignment:

NDData[Index] = newSingleValue

Examples:
The value is set to the position 5s to 4.2A in a data set with the range 0s to 20s .:

NDdata = Set(NDdata, 5 's', 4.2 'A')

The seventh point in the data set is set to the value 5. The x-coordinate of the point is calculated from the point's index within the data set and
the x-scaling.

NDnew = Set(NDold, xOff?(NDold) + (7 - 1) * xDel?(NDold), 5)
; or much more simply:
NDNew[7] = 5

See also:
SetIndex, Value2, ValueIndex, MatrixSet, MatrixFromLine, Repl, ReplIndex

imc FAMOS Func on Reference - 917 -

(c) 2024 imc Test & Measurement GmbH

SetBoxPos

Sets position of input/output boxes

Declaration:
SetBoxPos (TxFuncName, SvLeft, SvTop, SvWidth, SvHeight, Zero)

Parameter:

TxFuncName Name of the window-creating function

"BoxValue?" : BoxValue?

"BoxText?" : BoxText?

"BoxOutput" : BoxOutput

"BoxMessage" : BoxMessage

"BoxVarSelector" : BoxVarSelector

"DlgFileName" : DlgFileName

"FsDlgSelectDirectory" : FsDlgSelectDirectory

SvLeft X-position of the top left corner of box

SvTop Y-position of top left corner of box

SvWidth Width of the box

SvHeight Height of the box

Zero Reserved parameter. Always set to 0.

Description:
Sets the display position for boxes created by subsequent calls to BoxValue?(), BoxText?(), BoxOutput(), BoxMessage() or DlgFileName().

Position specifications refer to screen pixels. At a resolution of 800x600, the top left corner of the screen has the coordinates (0,0) and the
bottom right the coordinates (799,599).

Boxes generated by means of BoxMessage() or DlgFileName() always have a fixed, automatically detetermined size. [Height] and [Width] are
ignored here.

All boxes have a default height and width. Smaller values of [Width] and [Height] are ignored.

The coordinates may be corrected if necessary, so that the box fits completely within the visible region.

If [Left] is set to -1, the position upon the next call is again determined automatically.

Multithreading: The function has a global effect. The standard execution thread and each sequence function executed in a separate thread using
BEGIN_PARALLEL therefore share a common memory.

Examples:

SetBoxPos("BoxMessage", 0, 0, 0, 0, 0)
BoxMessage("Result: ", res, "f20", 0)

Output top left in the screen corner with default width and height

SetBoxPos("BoxText?", 600, 450, 200, 150, 0)
TxName = BoxText?("Name of the variable?","var1",0)

Output bottom right (at screen resolution of 800x600 pixels).

See also:
BoxOutput, BoxMessage, BoxValue?, BoxText?, DlgFileName

imc FAMOS Func on Reference - 918 -

(c) 2024 imc Test & Measurement GmbH

SetColor

Assigns a color for display of a data set as a curve.

Declaration:
SetColor (Data, SvColorValue)

Parameter:

Data Data set whose color attribute is to be configured.

SvColorValue Color value; -1 means automatic color assignment

Description:
Normally, data sets are displayed in the curve window configuration's color for graphs. But you ca assign to the data set a fixed color in which it
will appear in any curve window, regardless of the curve window's current color setting.

The color value is a so-called RGB-value in which the portions of the 3 primary colors red, green and blue are stated.

To achieve a color value from primary color components, you can use the function RGB().

Examples:

green = RGB(0, 255, 0)
clr = Color?(data)
IF clr = -1
 SetColor(data, green)
END

Unless a fixed color has already been assignedd to the data set, it will be colored green in the future.

See also:
Color?, RGB

imc FAMOS Func on Reference - 919 -

(c) 2024 imc Test & Measurement GmbH

SetComm

Specifies the comment on a data set, text or data group.

Declaration:
SetComm (Dataobject, TxComment)

Parameter:

Dataobject Data set, text or data group whous comment is to be specified

TxComment New comment

Description:

Examples:
The comment on a data set is queried. If none has been specified (length: 0), the user is prompted to enter a comment, which will then be
assigned to the data set.

txComment = Comm?(data)
IF TLeng(txComment) = 0
 txComment = BoxText?("Please enter comment:", "",0)
 SetComm(data, txComment)
END

See also:
Comm?

imc FAMOS Func on Reference - 920 -

(c) 2024 imc Test & Measurement GmbH

SetDataFormat

A data set is converted to a different data format.

Declaration:
SetDataFormat (Data, SvFormatCode [, SvScalMin] [, SvScalMax])

Parameter:

Data Data set whose data format is to be set

SvFormatCode Format specification

0 : 4 Byte real (float)

1 : 8 Byte real (double)

2 : 1 Byte integer

3 : 2 Byte integer

4 : 4 Byte integer

5 : 1 Byte unsigned integer

6 : 2 Byte unsigned integer

7 : 4 Byte unsigned integer

8 : Digital

10 : 6 Byte unsigned integer

12 : 8 Byte integer

13 : 8 Byte unsigned integer

SvScalMin With integer data formats, the lower value range boundary; else unimportant. (optional , Default value: 0)

SvScalMax
With integer data formats, the upper limit of the value range; else not applicable. When [SVScalMin] and [SVScalMax] are
identical, scaling is performed automatically. If the optional parameters [SVScalMin] and [SVScalMax] are both not specified,
the complete numerical range of the integer data format is assumed. (optional , Default value: 0)

Description:
This function converts a data set to a new data format.

The data format specifies how the individual values are saved in memory/the data carrier. The memory requirements for a data set, the value
range and the achievable precision are determined by the data format.

When an XY-data set is transformed using this function, the data format of the y-component is set; when a complex data set is transformed, the
data format of the magnitude or real part is set. To convert the other components, use the component identification codes:

SetDataFormat(MagnitudePhase.P, 0, 0, 0)
SetDataFormat(XYdata.X, 5, 0, 255)

The data format set by this function can change due to subseqent processing of the data set. To prevent this and to make the format permanent,
you must activate the "Fixed data format" property using the function SetFlag.

Special features of integer data formats:
For integer data formats, a scaling factor and offset are additionally taken into account internally, in order to derive the physical values from the
integer raw data:

PhysicalValue = IntegerValue * ScaleFactor + Offset

For signed formats having the bit width [BitCount], the characteristic values [ScaleFactor] and [Offset] are calculated as follows:

Offset = (SvScalMin+SvScalMax)/2
ScaleFactor = (SvScalMax-Offset) / (2^(BitCount-1)-1)

Thus, for a 1:1-mapping of the entire possible number range, specify [SvScalMin] = -2^(BitCount-1)-1 and [SvScalMax] = 2^(BitCount-1)-1.

For unsigned formats, we have the equation:

Offset = SvScalMin
ScaleFactor = (SvScalMax-Offset) / (2^BitCount-1)

Thus, for a 1:1-mapping of the entire possible number range, specify [SvScalMin] = 0 and [SvScalMax] = 2^BitCount-1.

Example:

imc FAMOS Func on Reference - 921 -

(c) 2024 imc Test & Measurement GmbH

Format = 2 (1Byte signed), SvScalMin= -127, SvScalMax = 127 ==> Offset = 0, ScaleFactor = 1

Format = 5 (1Byte unsigned), SvScalMin= -128, SvScalMax = 127 ==> Offset = -128, ScaleFactor = 1

If the optional parameters [SVScalMin] and [SVScalMax] are omitted, then for integer formats, a 1:1 mapping (ScaleFactor=1, Offset=0) is applied.

Examples:

format = DataFormat?(myData)
IF format <> 0
 SetDataFormat(myData, 1)
 SetFlag(myData, 0, 1)
END

If the data set is not already in the 4-bytes real format, it is converted. Next, this format is fixed, so that it isn't changed by subsequent
calculations.

Examples for scaling in conjunction with integer formats:

SetDataFormat(myData, 2) ;Value range -128..127 (Scaling factor = 1, offset = 0)
SetDataFormat(myData, 2, -127, 127) ;Value range -128..127 (Scaling factor = 1, offset = 0)
SetDataFormat(myData, 2, 0, 10) ;Value range 0..10 (Scaling factor = 5/127, offset = 5)
SetDataFormat(myData, 5) ;Value range 0..255 (Scaling factor = 1, offset = 0)
SetDataFormat(myData, 5, 0, 10) ;Value range 0..10 (Scaling factor = 10/255, offset = 0)

See also:
DataFormat?, GetScale, SetFlag

imc FAMOS Func on Reference - 922 -

(c) 2024 imc Test & Measurement GmbH

SetDisplayY

Assigns a fixed Y-scaling for the display in the curve window.

Declaration:
SetDisplayY (Data, SvMin, SvMax)

Parameter:

Data Data set whose Y-scaling is to be specified

SvMin Bottom scale value

SvMax Top scale value

Description:
A fixed Y-axis scaline can also be assiged to a data set as an additional property. It is then used for the display of the data set in a curve window if
the curve window's setting "Automatic Y-axis scaling" is active.

The fixed scaling is canceled using SvMin = SvMax = 0. The data set is then scaled automatically according to its range of values.

Examples:

yMin = DisplayY?(data, 0)
IF yMin > 0
 SetDisplayY(data, 0, DisplayY?(data, 1))
ELSE
 yMax = DisplayY?(data, 1)
 IF yMax < 0
 SetDisplayY(data, DisplayY?(data, 0),0)
 END
END

If no fixed scaling has been assigned to the data set and the zero-line is not included, either the bottom or top scale value is corrected to 0.

See also:
DisplayY?, SetColor

imc FAMOS Func on Reference - 923 -

(c) 2024 imc Test & Measurement GmbH

SetFlag

This function toggles special attributes of a waveform on and off.

Declaration:
SetFlag (Data, SvFlag, SvOnOrOff)

Parameter:

Data Waveform whose attribute is to be changed.

SvFlag Attribute selection

0 : The current data format of the waveform is fixed, i.e. for subsequent processing, the data format (and for integer formats the
scaling) is retained if possible.

1 : The values of the data set can be interpreted as color information for 1 pixel of an image. Only allowed for data formats '4 byte
unsigned' (color information is encoded as RGB-value) or '1 byte unsigned' (color information is encoded as grey scale value in the
range 0..255). By default, the attribute is only set by import filters for image files or special functions such as VpGetImages(). It is
used by the curve window to optimize the display of image data.

SvOnOrOff New value

0 : Off

1 : On

Description:
This function sets certain data set attributes which can only take the boolean values [On] (or "True") or [Off] (or "False").

Activating the option [SvFlag] = 1 (interpret as image data) is only allowed for data sets having the data format "4 Byte unsigned Integer" or "1
Byte unsigned integer". For segmented data, each segment corresponds to one image row, the data set's first sample corresponds to the pixel at
bottom left.

Examples:
The data format of the data set [Signal] is set and fixed as 1-Byte Integer (unsigned, value range 0..255). Any subsequent processing (see line [*])
doesn't change the data format. Without the call to SetFlag, the [Signal's] data format after line [*] would be converted to 4- or 8-Byte Real
(depending on the global default for the result data format of math functions).

signal = ...
SetDataFormat(signal, 5, 0, 255)
SetFlag(signal, 0, 1)
;...
signal = signal/2 ;[*]

See also:
Flag?, RGB, VpGetImages, SetDataFormat

imc FAMOS Func on Reference - 924 -

(c) 2024 imc Test & Measurement GmbH

SetIndex

Sets points in a data set to new y-values at specified indices.

Declaration:
SetIndex (Data, Indices, YValues) -> ResultData

Parameter:

Data Data set to be changed; allowed types: [ND],[XY].

Indices Indices, at which the associated y-values are to be changed

YValues Y-values to which the data set's values are to be changed at the specified positions

ResultData

ResultData Changed data set with corresponding new values

Description:
Sets one or more points of a data set to new y-values at specified indices.

The positions [indices] specified must lie between 1 and the data set lenth of [Data].

Indices lying outside of this range are ignored (a warning is posted).

A new data set is generated in which a series of values is changed from the original data set passed to the function. The 2nd and 3rd parameters
must have the same length.

There first point in a data set has the index 1; the index of the last point matches the data set length.

Alternatively, you can use the function Set, which requires the positions of the replacement points to be specified in terms of their x-
coordinates.

To change numerical values in a data set manually without automating the procedure, use the Data Editor in imc FAMOS.

If you wish to change a single value in FAMOS, you can also accomplish this directly by assignment:

NwData[Index] = SvNewValue

Examples:
The second value of the data set is set to 10.

data = SetIndex(data, 2 , 10)
; equivalent to:
data[2] = 10

Every second Y-value of the data set is doubled:

Indizes = Ramp(1, 2, Leng?(Data)/2) ;Indizes = 1,3,5..
NewY= ValueIndex(Data, Indizes) * 2
DataNew = SetIndex(Data, Indizes, NewY)

See also:
Set, Value2, ValueIndex, MatrixSet, MatrixFromLine, Repl, ReplIndex

imc FAMOS Func on Reference - 925 -

(c) 2024 imc Test & Measurement GmbH

SetMeasurementName

Sets the name of the measurement to which the variable is assigned.

Declaration:
SetMeasurementName (Variable, TxMeasName)

Parameter:

Variable Variable to be changed

TxMeasName Name of the measurement to which the variable is to be assigned.

Description:
An empty measurement name means that any association to a measurement is deleted.

The concept of a variable's measurement association has until now mainly been applicable to the Data Source Browser. There, when a file of
measured values is loaded, a measurement name is automatically assigned to each variable generated, as a way of conveniently distinguishing
between multiple variables having the same name buut belonging to different data sources. Changing a variable's measurement association
automatically causes the system to update the measuremetn and Cahnnel lists in the Variables List/Measurement View.

Since FAMOS 7.1, when generateing a variable by means of making an assignment, the desired measurement name can also be specified directly
(see examples).

Examples:
Once a new measurement has been set up using the Data Source Browser, a check is made of whether it contains a channel with the name
"speed". If yes, then the channel's maximum value is calculated and the result is marked with the current measurement name.

Event-sequence 'Measurement available'

TxVarName = SelBuildVarName(PA1, "speed", 0)
IF TxVarName <> ""
 MaxSpeed = max(<TxVarName>)
 SetMeasurementName(MaxSpeed, PA1)
END
Or more simply:
...
IF TxVarName <> ""
 MaxSpeed@<PA1> = max(<TxVarName>)
END

The measurements currently being processed contain the channels 'Voltage' and 'Current'. The power associated with the currently selected
measurement #1 is computed and assigned the corresponding measurement name. This means that the calculated variable is automatically
displayed in the Variables List/Measurement View also, in the Channels list.

IF SelUseMeasurement(1) = 0
 EXITSEQUENCE
END
TxMeasName = MeasurementName?(Voltage)
Power = Voltage * Current
SetMeasurementName(Power, TxMeasName)

Or more simply:

IF SelUseMeasurement(1) = 0
 EXITSEQUENCE
END
Power@ = Voltage * Current

See also:
MeasurementName?

imc FAMOS Func on Reference - 926 -

(c) 2024 imc Test & Measurement GmbH

SetOption

Sets various defaults, such as default folders and parameters for math functions.

Declaration:
SetOption (TxOptionName, TxNewSetting) -> OldSetting

Parameter:

TxOptionName Designation of the option

"Dir.DataFiles" : Default folder for loading/saving measurement data files. Used by the commands LOAD, SAVE and the like, as
well as the functions FileOpenDSF() and FileOpenFAS().

"Dir.Sequences" : Default folder for loading sequences. Used by the command SEQUENCE.

"Func.WarnLevel" : Determines which warning messages triggered during the execution of functions are displayed

"Func.NoInfoMessages" : Some functions (Stat, LFit) print their results by default in the output window. Output can be
suppressed with this option.

"Func.FFT.Window" : Determines the FFT window function. Used by functions FFT(), Spec() and the like.

"Func.FFT.Mode" : The FFT algorithm implemented requires the length of the input data set to be a power of 2. This option
determines how to deal with other data set lengths.

"Func.ResultFormat" : Determines the data format in which the functions return their results by default.

"Func.ErrorBoxes" : Some functions have the choice of responding to an error by posting an error box or by indicating the error
(silently) by their return values. To date only pertains to the file function group including FileOpenDSF() and the like.

"DLLImport.DefinitionFile" : Filename containing definitions for external DLL-functions. The functions listed here are
imported to FAMOS via the general-purpose DLL-interface and can be used in sequences. The file needs to have been
generated by means of the dialog 'Options'/'Register DLL-functions'. If no complete path is specified, the system looks for the
file in the following folders in succession: Project folder (when project active) - current sequence folder - default folder for
definitions-files (see 'Options'/'Folders'). If no file extension is specified, ".def" is assumed.

"Display.DecimalSeparator" : Sets the character displayed for separating real numbers' decimal places.

"DDE.Text.NumFormat" : Determines the numerical format for sending data in text format by DDE.

"DDE.Text.Delimeter" : Determines the separator(s) used between 2 numbers when sending data in text-format by DDE.

"DDE.TimeOut" : Sets the maximum amount of time FAMOS waits for an answer in DDE communication with another
application.

"Units.Ctrl.Compatible" : Units: Compatibility

"Units.Display.Greek" : Units: Font for Greek letters

"Units.Display.Ohm" : Units: Ohm

"Units.Create.Delim" : Units: Separator character between units, e.g. V*A

"Units.Create.Nm" : Units: Separator character for Nm and the like

"Units.Create.Pow.1/2" : Units: Use special character for 1/2

"Units.Create.Pow.2" : Units: Use special character for ^2

"Units.Create.Pow.3" : Units: Use special character for ^3

"Units.Create.Pow.Neg" : Units: Negative exponents in denominator

"Units.Create.u" : Units: generate u instead of µ (prefix 10^-6)

"Units.Create.Num.Space" : Units: Spaces between automatically amended power of 10 and unit

"Units.Create.1e3" : Units: 10, 100, 1000

"Units.Create.1e-3" : Units: 0.1, 0.01, 0.001

"Units.Create./s" : Units: Unit with numerator = 1

"Units.Read.cal" : Units: Unit symbol cal

"Units.Read.Exp" : Units: Number as exponent

"Units.Read.g" : Units: g

"Units.Read.Gs" : Units: Unit symbol for Gauss

imc FAMOS Func on Reference - 927 -

(c) 2024 imc Test & Measurement GmbH

"Units.Read.hp" : Units: Unit symbol hp

"Units.Read.kt" : Units: Unit symbol kt

"Units.Read.L" : Units: Unit symbol L

"Units.Read.lb" : Units: Unit symbol lb

"Units.Read.oz" : Units: Unit symbol oz

"Units.Read.pt" : Units: Unit symbol pt

"Units.Read.quot" : Units: Units in quotation marks, e.g. "Clocks"

"Units.Read.s" : Units: Plural s allowed

"Units.Read.ton" : Units: Unit symbol ton

"Units.Read.u" : Units: Unit symbol u

"Units.Reduce.C" : Units: Generate C (Coulomb)

"Units.Reduce.F" : Units: Generate F (Farad)

"Units.Reduce.H" : Units: Generate H (Henry)

"Units.Reduce.J" : Units: Generate J (Joule)

"Units.Reduce.Ohm" : Units: Generate Ohm

"Units.Reduce.Pa" : Units: Generate Pa (Pascal)

"Units.Reduce.S" : Units: Generate S (Siemens)

"Units.Reduce.T" : Units: Generate T (Tesla)

"Units.Reduce.Wb" : Units: Generate Wb (Weber)

TxNewSetting [TxOptionsName] determines the possible settings:

"Func.FFT.Window" : FFT window function

"Rectangle" Rectangular window.

"Hamming" Hamming window

"Hanning" Hanning window

"Blackman" Blackman window

"Blackman_Harris" Blackman/Harris window

"Flat_Top" Flat-Top window

"Func.FFT.Mode" : Set FFT mode (if waveform length is not a power of 2)

"Truncate" The waveform length is truncated to the next lower power of 2.

"AppendZeroes" The waveform length is extended to the next higher power of 2 with appended zeroes.

"Func.ResultFormat" : Set default data format for results

"Auto" Automatically

"Float" 4 Byte real

"Double" 8 Byte Real

"Func.WarnLevel" : Which warning messages are displayed?

"None" No warnings

"Important" Important warnings

"All" All warnings

"Func.ErrorBoxes" : Error boxes (file functions)

"Yes" The error is indicated and sequence processing interrupted.

"No" An error code is returned, if possible. The caller is responsible for interpreting the return value.

"Func.NoInfoMessages" : Information output

imc FAMOS Func on Reference - 928 -

(c) 2024 imc Test & Measurement GmbH

"No" The results of functions like Stat() or LFit() are displayed in the output window.

"Yes" No output of results.

"Display.DecimalSeparator" : Decimal separator

"." Period

"," comma

"region" Windows-setting (Control Panel / Region)

"Units.Ctrl.Compatible" : Compatibility

"no" no

"7.0" Like imc FAMOS 7.0 and predecessors

"Units.Display.Greek" : Font for Greek letters

"keep" Greek characters in selected font

"symbol" Use 'Symbol' font

"Units.Display.Ohm" : Ohm

"Omega" Prefer Greek letter Omega

"Ohm" Always display string Ohm

"Units.Create.Delim" : Separator character between units, e.g. V*A

"dot" Period

"*" *

"blank" Space

"Units.Create.Nm" : Separator charater for Nm and the like

"no" no (e.g. Nm)

"yes" yes (e.g. N*m)

"Units.Create.Pow.1/2" : Use special character for 1/2

"yes" yes

"no" no, always write as ^1/2

"Units.Create.Pow.2" : Use special character for ^2

"yes" yes

"no" no, always write as ^2

"Units.Create.Pow.3" : Use special character for ^3

"yes" yes

"no" no, always write as ^3

"Units.Create.Pow.Neg" : Negative exponents in the denominator

"1/m" yes (e.g. 1/m)

"m^-1" no (e.g. m^-1)

"Units.Create.u" : generate u instead of µ (prefix 10^-6)

"no" no

"yes" yes

"Units.Create.Num.Space" : Spaces between automatically amended power of 10 and unit

imc FAMOS Func on Reference - 929 -

(c) 2024 imc Test & Measurement GmbH

"yes" yes, e.g. 10^3 V

"no" no, e.g. 10^3V

"Units.Create.1e3" : 10, 100, 1000

"e3" give preference to 10^3 etc.

"1000" give preference to 1000 etc.

"Units.Create.1e-3" : 0.1, 0.01, 0.001

"e-3" give preference to 10^-3 etc.

".001" give preference to 0.001 etc.

"Units.Create./s" : Unit with numerator = 1

"default" regular (e.g. 1/m)

"no1" omit 1(e.g. /m)

"Units.Read.cal" : Unit symbol cal

"internat" International 1 cal = 4.1868 J

"thermo" Thermochemical 1 cal = 4.184 J

"Units.Read.Exp" : Number as exponent

"no" no, e.g. keep "g CO2"

"try" Interpret in clear arrangements, e.g. "m2/s2" as "m^2/s^2"

"Units.Read.g" : g

"gram" Gram

"gravity" Standard gravity 9.81 m/s^2

"Units.Read.Gs" : Unit symbol for Gauss

"Gs" Gs (Default)

"G" G

"Units.Read.hp" : Unit symbol hp

"NIST" mechanical horsepower, NIST, 745.6999 W

"metric" metric horsepower, 735.49875 W = 1 PS

"electric" electric horsepower, 746 W

"hydraulic" hydraulic horsepower, 745.69988145 W

"Units.Read.kt" : Unit symbol kt

"kiloton" Kiloton

"knot" Knots

"Units.Read.L" : Unit symbol L

"Liter" Liter

"Lambert" Lambert

"Units.Read.lb" : Unit symbol lb

"Force" Force, 1 lb = 1 lbs = 4.4 N = 1 lbf

"Mass" Mass, 1 lb = 1 lbs = 0.45 kg = 1 lbm

"Units.Read.oz" : Unit symbol oz

imc FAMOS Func on Reference - 930 -

(c) 2024 imc Test & Measurement GmbH

"Force" Force, 1 oz = 0.28 N

"Mass" Mass, 1 oz = 0.028 kg

"Units.Read.pt" : Unit symbol pt

"pintUS" United States liquid pint, 1 pt = 473.1765 ml

"pintUK" Imperial pint, UK, 1 pt = 568.26125 ml

"pintDry" United States dry pint, 1 pt = 550.6104713575 ml

"point" printer point, 1 pt = 0.35146e mm

"Units.Read.quot" : Units in quotation marks, e.g. "Clocks"

"no" Don't interpret contents

"try" Attempt interpretation of contents, e.g. "N" as N

"Units.Read.s" : Plural s allowed

"no" no (e.g. Volts = V * s)

"yes" yes (e.g. Volts = V)

"Units.Read.ton" : Unit symbol ton

"short" ton (short) (2000 lb), US

"long" ton (long) (2240 lb), UK

"Units.Read.u" : Unit symbol u

"atom" Unified atomic mass unit

"mju" µ (Prefix 10^-6)

"Units.Reduce.C" : Generate C (Coulomb)

"no" no

"yes" yes

"Units.Reduce.F" : Generate F (Farad)

"no" no

"yes" yes

"Units.Reduce.H" : Generate H (Henry)

"no" no

"yes" yes

"Units.Reduce.J" : Generate J (Joule)

"no" no

"yes" yes

"Units.Reduce.Ohm" : Generate Ohm

"yes" yes

"no" no

"Units.Reduce.Pa" : Generate Pa (Pascal)

"no" no

"yes" yes

"Units.Reduce.S" : Generate S (Siemens)

imc FAMOS Func on Reference - 931 -

(c) 2024 imc Test & Measurement GmbH

"no" no

"yes" yes

"Units.Reduce.T" : Generate T (Tesla)

"no" no

"yes" yes

"Units.Reduce.Wb" : Generate Wb (Weber)

"no" no

"yes" yes

OldSetting

OldSetting Previous value of the option changed.

Description:
This function enables changing of various default settings' values which are applied in the execution of commands and math functions.

All options which can be set here are initialized with the defaults valid upon activation of imc FAMOS, as they are set in the dialogs "Options/
Folders", "Options/DDE" or "Options/Functions".

These default settings can be changed within the course of a sequence by calling this function.

The option value specified here remains valid until either imc FAMOS is re-started or the respective Options dialog is called and exited with [OK],
which resets all defaults to their current values in the dialogs.

This function is supported from Version 4.0 onward. Some of the settings which can be changed here can also be affected by 'old' commands such
as FFTOPTION, SDIR, MDIR... But the function SetOption, aside from being easier to use (especially when using the Function Assistant), has the
advantage that the old state is returned. This makes it easily possible to reverse changes made, when the sequence has been completed. This is
seriously recommended in order to avoid side effects. For newly created sequences, SetOption is generally preferable.

In addition to the values for the 2nd parameter mentioned above, "Reset" can also be specified. This command (re)activates the FAMOS default
setting (as set in the dialog "Options") for the respective option.

Multithreading: The function has a global effect. The standard execution thread and each sequence function executed in a separate thread using
BEGIN_PARALLEL therefore share a common memory.

Examples:
The following sequence fragment first restores the default sequence folder set in the dialog. Then the sub-folder of the set default data folder,
"Test1", is set as the new data folder. Next, the system tries to use a loop to load the files "experim1.dat" to "experim10.dat". If a file is not
present, no error message is posted (error boxes were already de-activated) and the procedure continues with the next file. After successful file
loading, a sequence is called from the default sequence folder for processing the files.

SetOption("Dir.Sequences", "Reset")
StdFolder = GetOption("Dir.DataFiles")
SetOption("Dir.DataFiles", StdFolder + "\test1")
SetOption("Func.ErrorBoxes", "No")
i = 1
WHILE i <= 10
 fh = FileOpenDSF("experim"+ TForm(i, ""), 0)
 IF fh > 0
 data = FileObjRead(fh, 1)
 SHOW data
 SEQUENCE Auswertung.seq data
 ; ... further analysis
 err = FileClose(fh)
 END
 i = i+1
END

The following subsequence carries out an FFT on the waveform it is given. The waveform is shortened to the next smaller power of 2, and
Blackman windowing is used. The results are expressed in Double format (8 Byte Real). Warnings are suppressed. Upon finishing the sequence,
the old settings are restored.

; Sequence DoFFT
; Call with "SEQUENCE DoFFT MyData"
oldWindow = SetOption("Func.FFT.Window", "Blackman")
oldMode = SetOption("Func.FFT.Mode", "Truncate")
oldFormat = SetOption("Func.ResultFormat", "Double")
oldLevel = SetOption("Func.WarnLevel", "None")
Result = FFT(PA1)
...; further analyses

imc FAMOS Func on Reference - 932 -

(c) 2024 imc Test & Measurement GmbH

SetOption("Func.FFT.Window", oldWindow)
SetOption("Func.FFT.Mode", oldMode)
SetOption("Func.ResultFormat", oldFormat)
SetOption("Func.WarnLevel", oldLevel)

Data are transfered to EXCEL by means of DDE. The numerical format is set as fixed point with decimal comma and 6 decimal places. First, a
column of the table is filled (separator ASCII-13+ ASCII-10 = line break). Next, the separator is set to Tabulator (ASCII-9) and a row of the table is
filled.

ColData = ...
RowData = ...
SetOption("DDE.Text.NumFormat", "f1.6")
SetOption("DDE.Text.Delimeter", "~013~010")
result = DDESet("EXCEL", "Mappe1", "Z2S1:Z100S1", ColData, 1)
SetOption("DDE.Text.Delimeter", "~009")
result = DDESet("EXCEL", "Mappe1", "Z1S1:Z1S100", RowData, 1)

See also:
GetOption, FFTOPTION, MDIR, LDIR, SDIR

imc FAMOS Func on Reference - 933 -

(c) 2024 imc Test & Measurement GmbH

SetSegLen

Specifies a data set's segment length.

Declaration:
SetSegLen (Data, SvSegLeng)

Parameter:

Data Data set whose length is to be specified

SvSegLeng New segment length; 0 means no segmenting.

Description:
The segment length for a data set is specified. The data set is suplemented with zeroes up to a multiple of the segment length (for scalable
integer data formats the unscaled raw values are set to zero).

Examples:

IF SegLen?(data) > 0
 SetSegLen(data, 0)
END

Any segmenting of the data set is voided.

See also:
SegLen?, MatrixInit, MatrixChangeDim

imc FAMOS Func on Reference - 934 -

(c) 2024 imc Test & Measurement GmbH

SetTime

Specifies a data set's trigger time.

Declaration:
SetTime (Data, SvTime)

Parameter:

Data Data set whose trigger time is to be specified

SvTime New trigger time

Description:
A data set's trigger time is specified. The time value specified must be expressed in the imc FAMOS time format, such as functions like Time?(),
TimeSystem?() and TimeJoin() generate.

Examples:
The trigger time of one data set is assigned to another data set:

time = Time?(dataA)
SetTime(dataB, time)

See also:
Time?, TimeJoin, TimeSystem?, TimeSplit

imc FAMOS Func on Reference - 935 -

(c) 2024 imc Test & Measurement GmbH

SetUnit

Specifies a data set's units

Declaration:
SetUnit (Data, TxUnit, SvCode)

Parameter:

Data Data set whose unit is to be changed

TxUnit New unit

SvCode Selection of unit to be set

0 : X-unit for single-component data. For XY-data, the unit of the X-component. For complex data, unit of the phase/imaginary part.

1 : Y-unit for single-component data. For XY-data, the unit of the Y-component. For complex data, unit of the magnitude/real part.

2 : Z-unit

3 : Unit of the parameter for 2-component data

Description:

Examples:
A data set's Y-unit is queried. If the unit is "W", it is converted to "VA":

unitY = Unit?(data, 1)
cmp = TComp(unitY, "W")
IF cmp = 0
 SetUnit(data, "VA", 1)
END

See also:
Unit?, ConvertUnit, XUNIT, YUNIT

imc FAMOS Func on Reference - 936 -

(c) 2024 imc Test & Measurement GmbH

SetZDel

The increment in the z-direction (Delta-Z) is set

Declaration:
SetZDel (Data, SvZDelta)

Parameter:

Data Data set whose z-increment is to be specified

SvZDelta New Delta-Z (>0)

Description:
The increment in the z-direction is set. Examples of the use of this value include for the scaling of the z-axis in 3D-displays of segmented data.

See also:
ZDel?, ZOff?, SetZOff

imc FAMOS Func on Reference - 937 -

(c) 2024 imc Test & Measurement GmbH

SetZOff

Sets the offset in the z-direction

Declaration:
SetZOff (Data, SvZOffset)

Parameter:

Data Data set whose z-offset is to be specified

SvZOffset New z-offset

Description:
A data set's initial value in the z-direction is set. Examples of the use of this value include for the scaling of the z-axis in 3D-displays of segmented
data.

See also:
ZDel?, ZOff?, SetZDel

imc FAMOS Func on Reference - 938 -

(c) 2024 imc Test & Measurement GmbH

Sharpness

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

The sharpness [acum] is calculated from the specific loudness [sone/Bark].

Declaration:
Sharpness (Specific_Loudness, Method) -> Result

Parameter:

Specific_Loudness The specific loudness over a Bark-scale, calculated by e.g. LoudnessSpectrum(). Its y-unit is sone/Bark, its x-unit is Bark.

Method Method for calculating sharpness

0 : DIN 45692:2009-08

1 : Aures

2 : von Bismarck

Result

Result The result takes the unit "acum".

Description:
The calculation is based on the specific loudness over Barks, which is a plot of the specific loudness N' over a Bark scale.

If the specific loudness is a normal dataset, the resulting sharpness will be a single value.

If the specific loudness is a dataset with segments, the resulting sharpness will be a normal dataset with one sample per input segment.

The x-axis of the specific loudness has a typical range of 0 to 24 Barks. Values beyond this will not be taken into account.

The calculation of sharpness is based on the specific loudness which itself is based on the thirds spectrum. The precision of the sharpness is
strongly influenced by the precision of the thirds filter. Even the small tolerances of class 1 filters can cause significant deviations in sharpness: E.g.
0.4dB is similar to 5%, but the influence is non-linear.

Examples:
Sharpness from a microphone signal "mic", measured in Pa over time. Recorded outdoors

Thd = SpecThirds_1(mic, 25, 12500, 0)
Thd_dB = dB (Thd / 2e-5)
N = LoudnessSpectrum(Thd_dB, 2, 0)
S = Sharpness(N, 0)

Sharpness over time from a microphone signal "mic", measured in Pa over time. The noise is supposed to be almost static; it changes only slowly.

Thd = SpecThirds(mic, 25, 12500, 0, -2, 1)
Thd_dB = dB (Thd / 2e-5)
N = LoudnessSpectrum(Thd_dB, 2, 0)
S = Sharpness(N, 0)

Specific loudness from a microphone signal "mic", measured in Pa over time. Recorded inside a vehicle. Aures algorithm

Thd = SpecThirds_1(mic, 25, 12500, 0)
Thd_dB = dB (Thd / 2e-5)
N = LoudnessSpectrum(Thd_dB,3, 0)
S = Sharpness(N, 1)

Third octave spectrum with narrow-band noise at 1kHz and sharpness of about 1.0 acum

Thd_dB = [-60,-60,-60,-60,-60,-60,-60,-60,-60,-60,-60,-60,-60,0,20,40,60,40,20,0,-60,-60,-60,-60,-60,-60,-60,-60]
xoffset Thd_dB 14
N = LoudnessSpectrum(Thd_dB,2, 0)
S = Sharpness(N, 0)

See also:
LoudnessSpectrum, SpecThirds_1

imc FAMOS Func on Reference - 939 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

ShockResponseSpectrum

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Shock Response Spectrum, SRS

Declaration:
ShockResponseSpectrum (Acceleration, f_Start, f_Stop, FrequencyLines, Attenuation, Model, MiniMaxi) -> Result

Parameter:

Acceleration The course of the acceleration in time, the time scaled in seconds.

f_Start SRS starting frequency. Scaled in Hz. Evaluation begins at this frequency.

f_Stop
SRS stopping frequency. Scaled in Hz. Evaluation ends at this frequency. f_Start < f_Stop. f_Stop should be far less than half
the sampling rate, preferably smaller by a factor of 5. For reasons intrinsic to the algorithm, significant imprecision results
from very high f_Stop.

FrequencyLines
This number of frequency lines is calculated. >= 1. The frequency lines are distributed over the frequency range with equal
logarithmic spacing from f_Start to f_Stop. The number specified should at least be large enough to result in 6 lines per
octave.

Attenuation 0 <= Attenuation< 0.9. (attenuation ratio) The system's relative attenuation. Typically 0.05 or 0.01. 0.0 is an undamped system.

Model model of calculation

14 : absolute acceleration model. Calculation of all values both primary and secondary

15 : PVSS: pseudo velocity. Calculation of all values, both primary and secondary

16 : relative displacement model. Calculation of all values, both primary and secondary

17 : absolute acceleration model. Only calculation of primary values during the shock

18 : PVSS: pseudo velocity. Only calculation of primary values during the shock

19 : relative displacement model. Only calculation of primary values during the shock

20 : absolute acceleration model. Only calculation of secondary values, after the shock

21 : PVSS: pseudo velocity. Only calculation of secondary values after the shock

22 : relative displacement model. Only calculation of secondary values after the shock

MiniMaxi Stipulates whether minima and maxima are calculated

0 : The greater of the absolute values of the minimum and the maximum of the system response is found. This is the most
common setting.

4 : positive SRS or maximum positive SRS: The highest positive value is calculated. Zero, if there are no positive values.

5 : negative SRS or maximum negative SRS: The most negative value is calulated. Its sign is omitted. Zero, if there are no
negative values.

Result

Result SRS Spectrum

Description:
absolute acceleration model. The result is a spectrum with values of acceleration, where the acceleration is scaled in the same manner as for the
accelration-to-time curve, typically in "g" (gravitational acceleration) or "m/s^2". This is the most common model.

relative displacement model. The result is the relative deflection (path) and comes with the unit "m" (Meter). This requires that the acceleration-
to-time curve be scaled in "m/s^2", not in "g".

primary SRS or initial SRS. Calculation only during the shock, not after the shock. Minimum and maximum are calculated only for the duration of
the given plot of acceleration over time.

secondary SRS or residual SRS: Calculation only after the end of the shock, not during the shock. Minimum and maximum are calcuated only after
the end of the supplied acceleration over time.

Normally a MaxiMax calculation is performed. Positive and negative SRS are only required for the analysis of symmetry.

PVSS: pseudo velocity. It is calculated from the relative displacement shock spectrum, which is multplied by 2*PI*f. This requires that the
acceleration-to-time plot be scaled in "m/s^2", not in "g".

The function assumes the system to be in steady state initially, which means displacement=0 and velocity=0.

The function determines the maximum displacement of a SDOF with given natural frequency and damping ratio.

The result is plotted over the natural frequency.

imc FAMOS Func on Reference - 940 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

Particularly with low start frequencies, it sometimes occurs that the system response to the course of the acceleration over time begins with an
oscillation, but neither reaches the maximum or the minimum before the acceleration ends.

Then a calculation of all values, both primary and secondary, shold be performed.

The function uses the input's sampling rate for determining the extreme values.

If the natural frequency is small compared with the sampling frequency, the result may lose accuracy, because sampling does not occur exactly at
the extremum. E.g the error can be up to 1% if the ratio of frequencies is 23. Alternatively, the input can be interpolated beforehand or
afterward.

No longer supported parameters:
Model=0: absolute acceleration model

Model=1: relative displacement model

Model=2: absolute acceleration model, without appended zeroes

Model=3: relative displacement model, without appended zeroes

Model=4: absolute acceleration model, different calculation

Model=5: PVSS: pseudo velocity

Model=6: relative displacement model, different calculation

Model=7: absolute acceleration model, without appended zeroes, different calculation

Model=8: PVSS: pseudo velocity, without appended zeroes

Model=9: relative displacement model, without appended zeroes, different calculation

Model=10: absolute acceleration model; only secondary

Model=11: PVSS: pseudo velocity; only secondary

Model=12: relative displacement model; only secondary

MiniMaxi=1: The absolute value of the system response maximum is found.

MiniMaxi=2: The lesser of the absolute values of the minimum and the maximum of the system response is found.

MiniMaxi=3: The absolute value of the system response minimum is found.

Examples:
Finds the SRS. The acceleration-to-time curve has a sampling time of 0.1ms and contains 5000 data points. Its y-unit is "m/s^2". The SRS is
determined between 5.0Hz and 500Hz with 100 nodes. The attenuation is 0.05. The Maximax-spectrum is determined as the absolute
acceleration. The result is subsequently displayed in the curve window in two-logarithmic-axes representation.

SRS = ShockResponseSpectrum (Acceleration, 5.0, 500.0, 100, 0.05, 14, 0)

In this case the frequency is rescaled to correspond to the third-octave scaling convention, in other words (1Hz: 0, 10Hz: 10, 100Hz: 20, ...). For the
graphical representation in the curve window, the x-axis has to be set to third-octave axis labelling.

SRS = ShockResponseSpectrum (Acceleration, 5.0, 500.0, 100, 0.05, 14, 0)
SRS_Thirds = XYof (log (SRS.x) * 10, SRS.y)

Numerical example, half sine pulse, 1ms, 1m/s^2. That is a theoretical signal. After the shock there is a constant relative velocity. That signal
cannot be produced on a shaker.

Acceleration = sin (ramp(0, 1e-5, 101) * PI2 * 500)
yunit Acceleration m/s^2
xunit Acceleration s
SRS = ShockResponseSpectrum (Acceleration, 0.1, 10000.0, 1000, 0.0, 14, 0)

Numerical example, half sine pulse, 1ms, 1m/s^2. However, it begins with a period of constant speed. At the end of the shock the velocity is zero
again. The resulting pseudo velocity shock spectrum is determined.

in1 = sin (ramp (0, 1e-5, 101) * PI2 * 500)
insum = sum(in1)
in2 = xdel (leng (0, 50000), xdel?(in1))
Acceleration = join (in2-insum/leng?(in2), in1)
yunit Acceleration m/s^2
xunit Acceleration s
PVSS = ShockResponseSpectrum (Acceleration, 0.1, 20000.0, 1000, 0.0, 15, 0)

See also:
SDOF_Response

imc FAMOS Func on Reference - 941 -

(c) 2024 imc Test & Measurement GmbH

SHOW

A variable is displayed in a free-floating window.

Declaration:
SHOW VariableName

Parameter:

VariableName Variable to be displayed

Description
The variable specified as a parameter is displayed. If the variable is a waveform or data group, a free-floating curve window is opened.

If the variable is a text variable, it is displayed in a special text window.

If a window already exists for this variable, it is brought into the foreground.

Wildcards can also be specified in order to display a series of variables. The wildcard '?' stands for exactly one arbitrary character; the wildcard '*'
stands for an undefined number of any characters.

SHOW *

All variables are displayed.

SHOW ??

All variables whose names are exactly 2 characters long are displayed.

SHOW *1a*

All variables containing the string '1a' (at the beginning or end) are displayed.

SHOW a*:channel?

All channels with the name 'channel' belonging to all data groups whose name begins with an 'a', are displayed along with one arbitrary character.

Examples:
A data set is enlarged with spline interpolation and displayed. This data set's maximum value is calculated and displayed.

Data = IPol(Data, 3)
SHOW Data
x = Max(Data)
SHOW x

See also:
CwLoadCCV, CwNewWindow

imc FAMOS Func on Reference - 942 -

(c) 2024 imc Test & Measurement GmbH

signum

Available in: Professional Edition and above

Function extracting a number's sign

Declaration:
signum (x) -> Result

Parameter:

x x

Result

Result Result

Description:
The function returns 1 when x > 0; returns -1 when x < 0; returns 0 when x = 0.

The function only performs comparison with exactly 0.0. If only approximately zero is meant, then the signal can be processed beforehand, e.g
with round().

The input data can have events and segments. Equidistant and XY-data are supported; with XY-data, the Y-component is subjected to the
calculation.

This function is only implemented for real (not complex) number arguments.

Examples:

sign = signum (x)

imc FAMOS Func on Reference - 943 -

(c) 2024 imc Test & Measurement GmbH

sin

Sine, trigonometric function

Declaration:
sin (Parameter) -> Result

Parameter:

Parameter Input data (angle). Allowed types: [ND],[XY].

Result

Result Sine of the parameter

Description:
The trigonometric function sin is calculated using radians or degrees, corresponding to the unit of the specified parameter.

The x-coordinate(s) of the results and the parameter are the same.

Remarks

The parameter of the cos function should not have a unit or the units 'rad', 'degr', or '° '. Any other units will cause an error message to be
generated and the unit will be used for the result.
The parameter may be structured (events/segments).
The corresponding inverse function is asin().

Examples:
For the corresponding unit, the parameter is interpreted in degrees.

one = sin(90 '°')

Two options for creating a data set to display exactly the first half-wave of the sine function.

NDhalfWave = sin(Ramp(0, PI/100, 100))
NDhalfWave = sin(Ramp(0, 1, 180) * 1 'degree')

See also:
cos, tan, asin

imc FAMOS Func on Reference - 944 -

(c) 2024 imc Test & Measurement GmbH

SlClip

Slope limiting for a data set

Declaration:
SlClip (Data, SvMaxSlope) -> Filtrate

Parameter:

Data Data set to be filtered [NW].

SvMaxSlope Maximum permitted slope dy/dx

Filtrate

Filtrate Filtered data set

Description:
Slope limiter, the maximum slope dy/dx between two adjacent values in a data set is clipped. The function can thus be used to filter out
measurement values from a data set, which are invalid due to the signal's physically limited rate of change.

The slope at one point is thus defined as the slope to the next measurement value and is calculated as follows:

Slope[i] = (y[i+1]-y[i]) / dx

If the calculated slope is greater than the maximum slope in one point, the next data point with the specified maximum slope is calculated and
the algorithm is continued with the new value.

y[i+1] = y[i] + SvMaxSlope * dx

The data set's first value remains unchanged since it is used as the initial value for the algorithm.

Examples:
The measurement values of a temperature sensor were distorted due to noise in data transfer. Occasionally values occur, which should be
filtered out. Temperature changes of more than 4° Celsius per second at one measuring point are not possible.

TempFilt = SlClip(Temp, 4)

See also:
Smo, Hyst, SearchLevel

imc FAMOS Func on Reference - 945 -

(c) 2024 imc Test & Measurement GmbH

Sleep

Pause, processing of the sequence is interrupted for a specified amount of time..

Declaration:
Sleep (SvWaitingTime)

Parameter:

SvWaitingTime Waiting time (in seconds)

Description:
The processing of the sequence is interrupted for the specified amount of time, the function returns only when the interval has elapsed.

While the function is waiting, FAMOS cannot be operated (exception: curve window). However, a running sequence can be stopped in the usual
ways ("Sequence"-symbol with context menu in System Tray or [Ctrl+Break]).

During the waiting time, FAMOS is partially accessible via DDE: data can be received, but no instructions can be carried out.

Examples:
All channels in a file of readings are opened in a loop. Each channel is displayed for 5s, then closed and the next channel is opened.

fh = FileOpenDSF("c:\tmp\test.dat", 0)
IF fh > 0
 count = FileObjNum?(fh)
 n = 1
 WHILE n <= count
 data = FileObjRead(fh, n)
 SHOW data
 Sleep(5)
 n = n+1
 END
END

See also:
PAUSE

imc FAMOS Func on Reference - 946 -

(c) 2024 imc Test & Measurement GmbH

sMax

Stat()-function: A data set's maximum value

Description
sMax is a predefined variable and has been calculated by an earlier call of the statictical function Stat().

Alternatively, the function Max() can be used.

Examples:
Peak-to-peak value of a sinusoidal voltage signal:

Stat(U)
Uss = sMax - sMin

This is equivalent to:

Uss = Max(U) - Min(U)

See also:
Stat, Max, sMin

imc FAMOS Func on Reference - 947 -

(c) 2024 imc Test & Measurement GmbH

sMaxPos

Stat()-function: Position (x-value) of a data set's maximum value

Description
sMaxPos is a predefined variable and has been calculated by an earlier call of the statictical function Stat().

Examples:
Determining a voltage plot's maximum value:

Stat(U)
u_max = sMax
t_max = sMaxPos

This is equivalent to:

u_max = Max(U))
t_max = Pos(U, u_max)

See also:
Stat, sMax, Pos, PosiEx2

imc FAMOS Func on Reference - 948 -

(c) 2024 imc Test & Measurement GmbH

sMean

Stat()-function: Arithmetic mean of a data set

Description
sMean is a predefined variable and has been calculated by an earlier call of the statictical function Stat().

Alternatively, the function Mean() can be used.

Examples:
"Zero-meaning" a data set:

Stat(U)
U = U - sMean

This is equivalent to:

U = U - Mean(U)

See also:
Stat, Mean, sRMS

imc FAMOS Func on Reference - 949 -

(c) 2024 imc Test & Measurement GmbH

sMin

Stat()-function: A data set's minimum value

Description
sMin is a predefined variable and has been calculated by an earlier call of the statictical function Stat().

Alternatively, the function Min() can be used.

Examples:
Peak-to-peak value of a sinusoidal voltage signal:

Stat(U)
Uss = sMax - sMin

This is equivalent to:

Uss = Max(U) - Min(U)

See also:
Stat, Min, sMax

imc FAMOS Func on Reference - 950 -

(c) 2024 imc Test & Measurement GmbH

sMinPos

Stat()-function: Position (x-value) of a data set's minimum value

Description
sMinPos is a predefined variable and has been calculated by an earlier call of the statictical function Stat().

Examples:
Determining the minimum of a voltage plot:

Stat(U)
u_min = sMin
t_min = sMinPos

This is equivalent to:

u_min = Min(U))
t_min = Pos(U, u_min)

See also:
Stat, sMin, Pos, PosiEx2

imc FAMOS Func on Reference - 951 -

(c) 2024 imc Test & Measurement GmbH

Smo

Smoothing with a specified averaging time.

Declaration:
Smo (Data, SvWidth) -> Smoothed

Parameter:

Data Waveform to be smoothed [NW]

SvWidth Width of the smoothing interval

Smoothed

Smoothed Smoothed data set

Description:
The specified data set is smoothed by taking a weighted average over a define interval. The width of this interval is determined through the
second parameter: the larger the interval width, the more pronounced the effect of smoothing.

Periodic noise occurring in the data set can be suppressed completely by setting the interval width equal to the period of the noise or an integer
multiple of the period.

The Smo() function is a digital filter with a time constant in the same order of magnitude as the interval width.

The weighting function is triangular if the interval width is greater than five points of the data set. The weighting function can only be an odd
number of points; otherwise the specified width will be rounded to the next possible value.

The coefficients for the digital filter (triangular filter, preserves the mean value) underlying the smoothing function , which represent the
parameters for the smoothing width in points, can most easily be calculated in FAMOS from the filter's impulse response, see example below.

If the chosen interval is so small that only five points are averaged, the Smo function has the same effect as the Smo5() function; for three
points, as the Smo3() function.
The implemented filter is a non-causal filter with a phase of zero. This means that the position of any slopes will not be distorted; the length
of the data set does not change.
Because this function uses a non-causal filter, the edges of the data set exhibit natural start-up phenomena.
For filtering near the edges, it is assumed that the data sets are extended with the same values as the edges.
The interval width may not be greater than the length of the specified data set.
To suppress only high-frequency distortion, it is more effective to use the Smo function several times over a short interval rather than once
over a longer interval.

Fof a filter width of n points, the digital filter can be described by the following differential equation:

Examples:

NDsmooth = Smo(NDdata, 1E-3 's')

A data set with a sampling rate of 10-4s is smoothed with a filter of the width 10-3s to reduce many high-frequency distortions.

Determine the filter coefficients as funtion of the smoothing interval (in samples) with the pulse response

imp = Ramp(0,1,100)*0
imp[50] = 1
resp = Smo(imp, SMO_INTERVAL_IN_POINTS)

Example: Signal with sampling time 0.15s, interval width 1s => SMO_INTERVAL_IN_POINTS = 7

[resp] contains the values which differ from 0: (0.04, 0.12, 0.20, 0.28, 0.20, 0.12, 0.04)

Thus:

y[k] = 0.04*u[k-3] +0.12*u[k-2] +0.2*u[k-1] +0.28*u[k] +0.20*u[k+1] +0.12*u[k+2] +0.04*u[k+3]

See also:
Smo3, Smo5, DFilt, Median, FiltLP, FiltLpZ, SavitzkyGolay

imc FAMOS Func on Reference - 952 -

(c) 2024 imc Test & Measurement GmbH

Smo3

Smoothing over 3 points

Declaration:
Smo3 (Data) -> Smoothed

Parameter:

Data Data set to be smoothed [ND]

Smoothed

Smoothed Smoothed data set

Description:
The data set is smoothed by averaging each group of 3 adjacent points. The underlying digital filter applies the following equation:

y[k] = 0.25 * u[k-1] + 0.5 * u[k] + 0.25 * u[k+1]

Here k is a running index; u the value of the transferred data set, and y a value of the resulting data set.

This is a non-causal filter which does not change the position of any slopes since its phase is equal to zero.

The length of the data set is not changed by smoothing.

For filtering near the edges of the data set, the data set is assumed to be extended with the same constant values from its end values.

Examples:
This function is applied twice for targeted suppression of high-frequency noise.

NDsmooth = Smo3(Smo3(NDdata))

See also:
Smo5, Smo, DFilt, Median, FiltLP, FiltLpZ, SavitzkyGolay

imc FAMOS Func on Reference - 953 -

(c) 2024 imc Test & Measurement GmbH

Smo5

Smoothing over 5 points

Declaration:
Smo5 (Data) -> Smoothed

Parameter:

Data Data set to be smoothed [ND]

Smoothed

Smoothed Smoothed data set

Description:
The data set is smoothed by taking a weighted average of five adjacent values. The underlying digital filter applies the following equation:

y[k]=(1/9)*u[k-2]+(2/9)*u[k-1]+(3/9)*u[k]+(2/9)*u[k+1]+(1/9)*u[k+2]

Here k is a running index; u the value of the transferred data set, and y a value of the resulting data set.

This is a non-causal filter which does not change the position of any slopes since its phase is equal to zero.

The length of the data set is not changed by smoothing.

For filtering near the edges of the data set, the data set is assumed to be extended with the same constant values from its end values.

The smoothing effect is more pronounced than from the function Smo3().

Examples:
This function is applied twice for targeted suppression of high-frequency noise.

NDsmooth = Smo5(Smo5(NDdata))

See also:
Smo3, Smo, DFilt, Median, FiltLP, FiltLpZ, SavitzkyGolay

imc FAMOS Func on Reference - 954 -

(c) 2024 imc Test & Measurement GmbH

SolveLinEq

Available in: Professional Edition and above

Solution of a system of linear equations

Declaration:
SolveLinEq (Matrix A, Column vector b [, Error handling] [, MultipleSolution]) -> Result

Parameter:

Matrix A Matrix A with coefficients of the left side

Column vector b Column vector b with coefficients of the right side

Error handling Determines the system response to an error. (optional , Default value: 0)

0 : Cancel and post error message

1 : Return empty data set

MultipleSolution Behavior in response to infinitely many solutions (optional , Default value: 0)

0 : Return only unique solutions. Infinite amounts of solutions is an error.

1 : Return both unique and multiple solutions. In the case of infinitely many solutions, one is selected.

Result

Result Solution vector

Description:
A matrix is a segmented data set. The segments are the columns.

In this context, a vector refers to a single-row or single-column matrix.

A column vector is a matrix with only one column. It is a data set without segments.

A column vector can also be represented as a segmented data set with exactly one segment.

A * x = b is solved, meaning the value of x is determined. A is a square matrix. x and b are column vectors.

The result of the function is a column vector, meaning a data set without segments.

When called with incorrect parameter values or insufficient memory, the system cancels the operation with the usual error message.

Units and sampling intervals are not taken into account.

Homogenous system of linear equations
The parameter MultipleSolution governs the system response

If only unique solutions are desired, the following applies: Return the trivial solution (all zeroes) only if it is the only one and thus unique.
Infinitely many (non-trivial) solutions are an error.

If multiple solutions are also desired, the following applies: if it exists, the non-trivial solution is returned by the ssytem selecting one of the
infinite many solutions. For example, the result can be multiplied by any arbitrary factor and is still a solution. If the non-trivial solution does not
exist, the trivial solution (all zeroes) is returned.

If the matrix A can be inverted, then only the trivial solution exists, otherwise also the non-trivial.

Examples:
Solution of a sytem of linear equations A * x = b

A = leng(0,9) ; test data
setsegLen(A,3)
A[3,1] = 4 ; row 1, column 3
A[1,2] = 1
A[2,3] = 2
; A:
; 0 0 4
; 1 0 0
; 0 2 0
b = [4, 2, -2]
xi = SolveLinEq (A, b)
; result: xi = [2, -1, 1]

See also:
MatrixInverse

imc FAMOS Func on Reference - 955 -

(c) 2024 imc Test & Measurement GmbH

Sort

Sorting of a data set's y-values

Declaration:
Sort (Data, SvOption) -> Sorted

Parameter:

Data Data set to be sorted; allowed types: [ND],[XY].

SvOption Defines the type of sorting

1 : [only for ND] output of the ascendingly ordered y-values

2 : [ND] output of the descendingly ordered y-values

3 : [ND] Ascendingly ordered y-values; output of associated x-positions

4 : [ND] Descendingly ordered y-values; output of associated x-positions

5 : [only for XY] Ascendingly ordered according to Y

6 : [XY] Descendingly ordered according to Y

7 : [XY] Ascendingly ordered according to X

8 : [XY] Descendingly ordered according to X

Sorted

Sorted Sorted data set

Description:
The values of a data set are sorted using the quick-sort algorithm; the values can be sorted in either ascending or descending order.

The result data type is the same as the data type of the data set to be sorted; the data format is also retained.

The values 1 through 4 for the parameter SvChoice are only permitted for equidistantly sample data sets (NW)::

By specifying 1 for the parameter [SvOption], the y-values of the data set are sorted and outputted in ascending order.

Selecting 2 for the parameter [SvOption] sorts and outputs the y-values of the data set in descending order.

When 3 is specified for the [SvOption] parameter, the y-values of the data set are sorted in ascending order and the (non-sorted) x-positions of
these y-values are output. The x-position of the smallest y-value is output first, followed by the x-position of the second-smallest y-value, etc.
The x-position of the largest y-value is outputted last.

When 4 is specified as the [SvOption] parameter, the y-values of the data set are sorted in descending order and the (non-sorted) x-positions of
these y-values are output. The x-position of the largest y-value is output first, followed by the x-position of the second-largest y-value, etc. The
last value outputted is the x-position of the smallest y-value.

The values 5 through 8 are only permitted for XY-data:

For 5 or 6, the XY-data set is sorted in such a way that the Y-values in the result are arranged ascending/ descending, respectively.

For 7 or 8, the XY-data set is sorted in such a way that the X-values in the result are arranged ascending/ descending, respectively. Option 7 is
particularly useful for transforming an XY-data set with a non-monotonic X-track into a data set with a monotonic X-track.

Examples:
The data set illustrated below is to be sorted. It consists of 21 values:

NwUp = Sort(NwData, 1)
NwDown = Sort(NwData, 2)

The result of sorting with the parameter [SvOption] specified as 1 (ascending sorting of y-values) is outputted in imc FAMOS as the data set
[NDUp], displayed at the left. When the [SvOption] parameter is specified as 2 (descending sorting of y-values), the result is outputted as the
data set [NDDown], displayed at the right:

imc FAMOS Func on Reference - 956 -

(c) 2024 imc Test & Measurement GmbH

NwUpX = Sort(NwData, 3)
NwDownX = Sort(NwData, 4)

Selection of 3 as the [SvOption] parameter (associated x-positions of y-values in ascending order) results in the data set [NDUpx], displayed in
the illustration at the left. Selecting 4 for the parameter [SvOption] (associated x-positions of the y-values in descending order) results in the
data set [NDDownx], displayed in the illustration at the right:

See also:
Mirror, Top

imc FAMOS Func on Reference - 957 -

(c) 2024 imc Test & Measurement GmbH

SoundIndex

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Articulation index and others characteristics of a sound signal. Calculation over the entire sound signal.

Declaration:
SoundIndex (Sound signal, Calculation) -> Result

Parameter:

Sound signal Time-plot of sound signal, the time scaled in seconds

Calculation Calculation

0 : Articulation Index (0 .. 100%)

1 : Open Articulation Index (0 .. 224.78%)

Result

Result

Description:
To calculate the articulation index, the input data must already be scaled according to the reference pressure (e.g. 2e-5 Pa) for the purpose of the
internal calculation of dBs.

The articulation index (AI) was introduced by Leo L. Beranek for evaluating the quality of telephone equipment. In the early 70s B. Braune
modified the algorithm for acoustics in the automotive area, so that it could be calculated from a 1/3-octave spectrum. The 1/3-octave spectrum
is compared with two empirically determined reference curves. For each frequency band one percentage is calculated.

The articulation index results from the sum of the individual proportions from 200Hz to 6300Hz. The intelligibility is very good if AI=100% but
becomes bad as AI approaches 0%.

For instance, the reference curves values are 44.0 and 74.0 dB(A) at 1000Hz, and 23.1 and 53.1 dB(A) at 200Hz.

The open articulation index differs from the articulation index only in the lower reference curve, which is 0dB for all frequencies.

The articulation index is calculated internally by means of a call of SpecThirds_1 (..., 1).

Examples:

AI = SoundIndex(vibration / 2e-5'Pa', 0)

See also:
LoudnessLevel

imc FAMOS Func on Reference - 958 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

SoundIntensityThirds

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Sound intensity over time (per 1/3 octave).

Declaration:
SoundIntensityThirds (Sound_pressure_1, Sound_pressure_2, f1, f2, Frequency weighting, Time rating,
OutputInterval, Spacer, AirDensity [, Filter start-up]) -> Result

Parameter:

Sound_pressure_1 Time-plot of sound pressure signal in Pa at Microphone 1; the time scaled in seconds

Sound_pressure_2 Time-plot of sound pressure signal in Pa at Microphone 2; the time scaled in seconds

f1 Center frequency of lowest 1/3 octave in Hz

f2 Center frequency of highest 1/3 octave in Hz

Frequency
weighting Frequency weighting for the result

0 : linear

1 : A-weighting

2 : B-weighting

3 : C-weighting

4 : D-weighting

Time rating Averaging, time rating of sound intensity

-5 : mean value in interval

-6 : mean value from start

OutputInterval Output interval; 1/3 octave spectra are calculated using this time increment. Integer multiple of the sound pressure's
sampling time. Specified in seconds.

Spacer Distance between the microphones, scaled in m; > 0; normally in the range of a few cm

AirDensity Density of the air stated in kg/m^3. E.g. 1.204 (at 0°C) or 1.2038; > 0

Filter start-up Treatment of the transients at the beginning of the calculation (optional , Default value: 0)

0 : During the transients, the result is set to zero in case the 1/3-octave is still experiencing transients.

1 : The first valid result of each 1/3-octave is extended forward as a constant.

2 : The region in which any filter is still in transients is truncated. The length is shortened, the starting time point of the
result is shifted.

Result

Result Sound intensity referenced to time

Description:

Method
Sound intensity is determined by a two-microphone-based technique. For this purpose, an intensity probe is used in which two microphones are
mounted at a small and fixed distance from each other.

The course of the sound pressure over time at each microphone is provided as a signal.

The calculation is performed as the multiplicative product of the sound pressure and the sound particle velocity.

The sound pressure used is the average of the sound pressures at the two microphones.

The sound particle velocity is determined by integration of the pressure difference. The pressure difference is an approximation of the
derivative of the sound pressure appearing in the Euler equation.

To prevent the calculated integral from drifting away due to initial values and (small) offset errors, and thereby (strongly) distorting the result, a
high-pass filter is applied.

For the purpose of the output, an average is taken, for which the parameter Time Weighting sets the averaging region.

All result values are intensities and stated in W/m^2 if the input data are scaled in Pa over s.

Sign
The calculated sound intensity is an average with an arithmetical sign.

imc FAMOS Func on Reference - 959 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

The sign expresses the direction.

The sign is positive when the energy first hits the first microphone and next the second. This means it is positive when Microphone 1 is aimed at
the source.

Limitations of the procedure
The microphone distance determines what frequency range is possible for the analysis:

When frequency components become very low, they are no longer possible to evaluate precisely because their phase difference is either very
difficult or impossible to determine.

When frequency components become very high, they are no longer possible to evaluate precisely because their wavelength approaches the size
of the distance between microphones.

The approximation of the derivative by a pressure difference, mentioned above, only works well when the frequency components are
significantly less than 1/4 of the sampling frequency.

1/3-octave-based analysis
The calculation is performed for each 1/3-octave: First the 1/3-octave filtering is performed, next the calculation of the sound intensity.

The two frequency boundaries f1 and f2 should be specified as 1/3-octave midband frequencies, e.g. f1 = 63 Hz and f2 = 5000 Hz. f1 <= f2.

The top 1/3-octave along with its frequency band must lie completely within one-half of the sampling frequency.

The top 1/3-octave should lie clearly within 1/4 of the sampling frequency.

The duration of transient oscillations for the 1kHz 1/3-octave is assumed to be 20ms.

This duration is inversely proportional to the 1/3-octave frequency.

For very low 1/3-octaves, this duration becomes substantial.

The duration of the measurement must be set accordingly.

The result is a segmented data set. Each segment contains one 1/3-octave spectrum.

The result?s x-coordinate counts the 1/3-octaves (just like the FAMOS-function OctA).

To achieve a useful display in the curve window, 1/3-octave labeling should be selected there.

The z-coordinate of the result represents the time. The time difference between the segments, delta-z, corresponds to the parameter
"OutputInterval"

The 1/3-octave filter and analyses are in accordance with IEC 651 (sound level measurement), DIN 45652 (1/3-octave filter for electro-acoustic
measurements) and EN61260-1:2014 or IEC61260-1:2014 (band-pass filter for octaves and fractions of octaves, filter Class 1).

In addition to the signal transients due to the 1/3-octave filter, the high-pass filter used also causes transient oscillations.

If f1=f2, then for this 1/3-octave, a normal time data set is generated, not a segmented one.

Total sound intensity
The input signal?s sound intensity is determined. There is no 1/3-octave filtering. f2=-1 must be specified.

f1 is the frequency used for the high-pass filtering performed internally. f1 lies within the range [SamplingFrequency/1e2] ..
[SamplingFrequency/1e6].

Only Frequency Weighting = linear is supported. For instance, if A-weighting is desired, it is necessary to first perform ABCRating() for each of the
two microphone signals.

The signal transients are determined by the high-pass filter. Their duration is inversely proportional to the filter?s cutoff frequency.

The result is a time-domain channel. The output interval specified is its sampling interval.

dB
If conversion to dB is desired, it can be performed subsequently.

The mathematical sign which indicates the direction is determined previously and needs to be handled separately. See example.

With the dB calculation, you must consider that the calculation is in terms of 10*log(), as with the power.

With the dB calculation, you must consider that the magnitude of the result can also be < 1E-12, which is equivalent to negative dB-values. It is
often helpful to limit these values to 0 by means of UpperValue().

As the reference value for the dB calculation in air, 1E-12W/m^2 is generally used.

Notes
The signal propagation delay between the two microphones is of decisive importance for the analysis. All filters and pre-processing applied to
the microphone signals, which affect the signal phase, must always proceed identically for both channels.

The transient oscillation procedure depends on what filters are used.

During the transient oscillation procedure, the intensities are assumed to be 0.0.

Input data are allowed to have events.

If a single value is desired for the sound intensity for the entire measurement, the time weighting selected is =-6. The last value of the result is
read.

Examples:
We want to determine the sound intensity from 2 microphone signals p1 and p2. The microphone distance is 12mm.

The sampling frequency is 50kHz. Every 100ms, one result is desired for the 1/3-octaves 50Hz through 5kHz with A-weighting.

imc FAMOS Func on Reference - 960 -

(c) 2024 imc Test & Measurement GmbH

The sign representing the direction is to be calculated separately. The sound intensity is to be stated in dB.

omega_t = ramp(0,2e-5,50000)*(500*PI2)
p1=sin(omega_t)
p2=sin(omega_t-0.1)
in10c = SoundIntensityThirds(p1, p2, 50, 5000, 1, -5, 0.1, 0.012, 1.204, 0)
Sign = signum(in10c)
in10c_dB = 0.5 * dB(in10c / 1E-12)

P1 is nearer to the source. Therefore the sign representing the direction is positive.

The sound intensity is to be determined from the 2 microphone signals p1 and p2. A high-pass is applied at 3Hz; the signal from 50Hz on is of
interest.

Subsequently, conversion to dB, where the sign attached to the dB-value represents the direction.

omega_t = ramp(0,1e-5,100000)*(1000*PI2)
p1=sin(omega_t)
p2=sin(omega_t-1*PI2/360)
in10c = SoundIntensityThirds(p1, p2, 3, -1, 0, -5, 0.1, 0.012, 1.204, 0)
in10c_dB_sign = signum(in10c) * UpperValue(0.5 * dB(in10c / 1E-12), 0)

See also:
SpecThirds

imc FAMOS Func on Reference - 961 -

(c) 2024 imc Test & Measurement GmbH

SpeakConfig

Configuration of the voice output using the function SpeakText().

Declaration:
SpeakConfig (TxVoice [, TxRequestedLanguage] [, TxRequestedGender] [, TxRequestAge] [, SvVolumne] [, SvRate])
-> SvSucess

Parameter:

TxVoice Name of the speaking voice to be selected. For empty text, the speaking voice is selected according to the next three
parameters.

TxRequestedLanguage Name of the preferred output language. Only taken into account if [TxVoice] is empty. For the syntax of the parameter,
see below; typical values include "en" or "de" for English or German, respectively. (optional , Default value: "")

TxRequestedGender Preferred gender of speaking voice. Only taken into account if [TxVoice] is empty. (optional , Default value: 0)

0 : no preference

1 : male

2 : female

3 : neutral

TxRequestAge
Preferred age of speaking voice. Only taken into account if [TxStimme] is empty. In Windows, by default only voices of
normal age timbre (adult) are installed, so that this parameter usually can be left at the setting 0 (=no preference).
(optional , Default value: 0)

0 : no preference

1 : normal

2 : older

3 : youthful

4 : childlike

SvVolumne Specifies the desired volume of voice output. Expressed in percent of the system's volume setting for the default
audio playback device (permitted range: 0..100). (optional , Default value: 100)

SvRate Specifies the desired speaking rate. The permitted values range from -10 (very slow) to 10 (very fast).The default value
is 0 (normal talking speed). (optional , Default value: 0)

SvSucess

SvSucess Success of the function: 1, if the function could be performed successfully; 0 on error. In case of error, the cause can be
determined using the function GetLastError().

Description:
This function serves the purpose of configuring the voice output for subsequent calls of the function SpeakText().

You can select the speaking voice as well as adjust the volume and playback speed.

By default, the Windows-Desktop Control Panel's settings for Text-to-Speech conversion are applied ("Control Panel"->"Ease of Access"-
>"Speech Recognition"->"Text-to-Speech").

Selection of speaking voice

There are two basic options for selecting the speaking voice:

Explicitly specifying the name in the parameter [TxVoice]

Searches for the name among the voices installed; the function's next 3 parameters are then ignored. If there is no voice having this name, the
function cancels and returns 0. The list of available voices is found in the Windows-Desktop Control Panel ("Control Panel"->"Ease of Access-
>"Speech Recognition"->"Text-to-Speech"). The entries in the list "Voice selection" take the form "Name - Language". For example, if a list entry
reads "Microsoft Zira Desktop - English (United States)", then the name to specify here is "Microsoft Zira Desktop". It is recommended to use the
FAMOS Functions Assistant, which lists the languages available. Enter "Default" in order to restore the default voice selected in the Control
Panel.

Automatic setting based on desired voice characteristics

Toward this end, [TxVoice] must be passed as an empty text and the next 3 parameters must be filled accordingly. The language to be used in the
parameter [TxRequestedLanguage] has the highest priority . If the desired language can not be obtained, the previous voice setting is retained. If
multiple voices in the specified languages are available, an attempt is made then the system attempts to obtain the specified voice gender and
age in succession. If this is not possible, the default voice in the language selected is used.

Format of [TxRequestedLanguage]: Enter an empty string to select the current system language. Otherwise, the language is specified by language
identifier in the form "xx-yy". The identifier consists of two characters for the language code as per ISO 639 and (optionally) 2 characters for

imc FAMOS Func on Reference - 962 -

(c) 2024 imc Test & Measurement GmbH

country/region-code as per ISO 3166. Examples:

Identifier Meaning
"de" German

"en" English. No region preference

"en-US" English, USA pronunciation

"ja" Japanese

"zh-CN" Chinese - People's Republic of China

"zh-TW" Chinese - Taiwan
If all parameters for the language selection are entered as empty text or 0, the language currently set is not changed and only the volume and if
applicable the talking speed are changed.

The settings made here remain intact until the next restart of a Top-Level-sequence or the menu item 'Restart'.

Calling this function stops any asynchronous voice output still running, which had previously been started by means of SpeakText().

As an alternative to this command, it is possible to specify the text to be outputted in SpeakText() in the SSML-format. With SSML, you can
explicitly govern such aspects as the language, pronunciation, and talking speed by means of tags in the text.

Multithreading: The function has a global effect. The standard execution thread and each sequence function executed in a separate thread using
BEGIN_PARALLEL therefore share a common memory.

Examples:
For texts not expressed in the system language, it is recommended to explicitly specify the language:

; English edition:
SpeakConfig("Microsoft Zira Desktop")
; or e.g.
; SpeakConfig("", "en")
SpeakText("Sequence is finished")
; German edition:
SpeakConfig("Microsoft Hedda Desktop")
; or e.g.
; SpeakConfig("", "de")
SpeakText("Sequenz ist fertig.")

Output in English is desired. A female voice is preferred:

SpeakConfig("", "en", 2)
SpeakText("I prefer a female voice")

The volums is set to 50% of the system volume; playback slightly slower than normal:

SpeakConfig("", "", 0, 0, 50, -5)
SpeakText("Not so loud and slower, please!")

The default settings in the Control Panel are restored:

SpeakConfig("standard")

See also:
SpeakText

imc FAMOS Func on Reference - 963 -

(c) 2024 imc Test & Measurement GmbH

SpeakText

Voice output of the specified text via the default audio playback device

Declaration:
SpeakText (Text [, Mode]) -> SvSucess

Parameter:

Text The text to play back

Mode Output mode (optional , Default value: 0)

0 : Output is performed asynchronously; the function's return jump is immediate, without waiting for the end of the voice output. If
asynchronous output is currently active, the text is placed in a waiting list and outputted once all "older" texts have been processed..

1 : The function waits until output is concluded. The output begins immediately; any asynchronous output currently running is
interrupted.

SvSucess

SvSucess Success of the function: 1, if the function could be performed successfully; 0 on error. In case of error, the cause can be determined
using the function GetLastError().

Description:
The specified text is played by the default audio playback device. Windows' built-in Text to Speech ('TTS') is used.

By default, the voice specified in the Window's desktop Control Panel is used ("Control Panel"->"Speech"->"Text-to-Speech"). The voice, volume
and playback speed can be adjusted using the function SpeakConfig().

An asynchronous playback started here is concluded if:

SpeakText() is called with an empty text-parameter
SpeakText() is called with the mode='synchronous'
SpeakConfig() is called
a TopLevel-sequence is started
the menu item "Restart" is selected
FAMOS is closed

Errors which occur in asynchronous output only after a delay can, of course, not be reported by the function's return value.

The text to be outputted can be restructured or outputted in the SSML-format (Speech Synthesis Markup Language, Version 1.0,
https://www.w3.org/TR/speech-synthesis). With SSML, you can explicitly govern such aspects as language, pronunciation, volume and talking
speed. The function automatically detects SSML by checking the first 100 characters for the string '<speak'.

Example of a typical header of an SSML-string:

<?xml version="1.0"?>
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="en-US">

The 'speak'-tag must at least contain the attributes 'version' and 'xml-lang'. The parts not underlined here are optional.

Examples:
The end of a longer evaluation can be announced by an appropriate auto-message, and a calculated result read out loud:

_max = ...
...
SpeakText("Sequence is finished.")
SpeakText("The calculated maximum is "+ TForm(_max,""))

For texts not expressed in the system language, it is recommended to explicitly specify the language:

; English edition:
SpeakConfig("Microsoft Zira Desktop")
; or e.g.
; SpeakConfig("", "en")
SpeakText("Sequence is finished.")
; German edition:
SpeakConfig("Microsoft Hedda Desktop")
; or e.g.
; SpeakConfig("", "de")
SpeakText("Sequenz ist fertig.")

Synchronous output of an English text in accordance with SSML. The text consists of 2 sentences. Between the two sentences, a pause is inserted;

imc FAMOS Func on Reference - 964 -

(c) 2024 imc Test & Measurement GmbH

the 2nd sentence is played back at high speed:

; SSML start- and end-tags for English language: <speak version="1.0" xml:lang="en">...</speak>
ssmlHeader = "<speak version=~0341.0~034 xml:lang=~034en~034>"
ssmlFooter = "</speak>"
; The tag <p>...</p> marks a paragraph in the text:
ssmlText = "<p>This is the first paragraph. There should be a pause after this text is spoken.</p>"
; The tag <prosody rate="fast">...</prosody> causes higher playback speed:
ssmlText = ssmlText+ "<p><prosody rate=~034fast~034>Speak faster.</prosody></p>"
SpeakText(ssmlHeader + ssmlText + ssmlFooter, 1)

Here, SSML is used to output a date in English in long form (month name pronounced):

ssmlHeader = "<speak version=~0341.0~034 xml:lang=~034en~034>"
ssmlFooter = "</speak>"
; pronouncement of a date as "January 29, 2009" by means of <say-as type="date"..
ssmlText = "<say-as type=~034date:mdy~034>"+ "1/29/2009" + "</say-as>"
SpeakText(ssmlHeader + ssmlText + ssmlFooter)

See also:
SpeakConfig

imc FAMOS Func on Reference - 965 -

(c) 2024 imc Test & Measurement GmbH

Spec

Calculates a meaningful spectrum (Spectral lines as amplitudes)

Declaration:
Spec (Data [, SvWindow] [, SvMode]) -> Spectrum

Parameter:

Data Waveform whose spectrum is to be calculated [NW, CX].

SvWindow Window-function (optional , Default value: -1)

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman/Harris

5 : Flat-Top

-1 : The global preset (dialog: 'Options'/'Functions', SetOption(), FFTOPTION) is used.

SvMode Procedure (optional , Default value: -1)

0 : Radix 2: Before the calculation, the length of the data set is reduced (truncated) to the next lower power of 2.

1 : Radix 2: Before the calculation, the data set's length is increased (by adding zeroes) up to the next higher power of 2.

2 : Radix 2: Before the calculation, the data set is re-sampled so that the data set's length becomes a power of 2. This corresponds
to a previous application of the function Red2().

3 : Mixed-Radix: The length of the data set needs to be a product of powers of the numbers 2, 3 and 5. Other data set lengths can
not be processed.

-1 : The global preset (dialog: 'Options'/'Functions', SetOption(), FFTOPTION) is used. Compatibe with older versions of FAMOS (<
V2022).

Spectrum

Spectrum Spectrum of the data set.

Description:
This function calculates a meaningful spectrum in which the spectral lines can be interpreted as amplitudes. If a normal (real) data set is
specified, the spectrum is determined as with the FFT() function, except that it is automatically followed by any necessary correction.

The spectrum indicates the amplitudes and phases of the harmonics contained in the signal. The values of the spectrum are sorted by frequency,
with the first value corresponding to a frequency of 0, i.e. the mean value of the signal.

The remaining values characterize the basic frequency and harmonics of the signal. A cosine-shaped signal with an amplitude 1 creates an
amplitude of 1 and a phase of 0° in the spectrum. A sine-shaped signal also creates an amplitude of 1, but a phase of -90°.

If the signal contains the sum of multiple sine-shaped signals, the amplitudes and phases of the individual components can be recognized at the
corresponding frequencies of the spectrum.

When a complex data set is provided, only a correction is performed in which all middle spectral lines are increased by a factor of 2. This
generates the same result, content-wise, for all complex data types. However, this requires the last harmonic of the complex data set to actually
be real, as is the case when using the FFT on input data with even number lengths, for example. For an FFT having an odd number input length
(possible with the Mixed-Radix-procedure), the last harmonic is complex and the last spectral ine must also be doubled.

It is important to note that the calculated spectrum is discrete, not continuous. This means that the spectrum is calculated only for certain
discrete frequencies, i.e. all frequencies at which a whole number of periods are contained within the calculation interval. If the FFT is executed
on a data set with the length 0.5 s, the spectrum is determined at the frequencies 0, 2 Hz, 4 Hz, 8 Hz

An important concept in this context is that a discrete spectrum is the spectrum of a periodic signal. In calculating the spectrum, the signal is
interpreted as if it consisted of a long chain of identical signals. If the actual signal represents only one pulse, the spectrum is calculated not for
this pulse, but for a signal containing a series of pulse identical to it. This periodic concatenation is noticeable whenever a non-integer number of
periods are contained in a signal. For example, a data set contains 3.5 periods of a sine-shaped signal. One single harmonic would be expected as
the spectrum. However, since the signal is extended periodically for the spectrum calculation, the signal no longer appears as a sine wave, but as
a series of sine-shaped sections, which appear to have been put together incorrectly. The spectrum of this signal will include many harmonics,
which are particularly strong in the vicinity of the actual frequency.

This apparent disadvantage of the Spec function can be avoided in two ways.The first option is to specify a section of the signal which contains an
integer number of periods before calculating the spectrum, a standard task for periodic signals. The other option is to use a window function.
These two options can also be combined.

imc FAMOS Func on Reference - 966 -

(c) 2024 imc Test & Measurement GmbH

A window function assigns different significance to different values of a data set. The edges of the signal are especially weak, the center values
influence the result very strongly.

Six different window functions are available:

Rectangle
Hanning
Hamming
Blackman
Blackman-Harris.
Flat Top

The rectangular window evaluates all values equally, representing the standard setting for which no extra calculation is required. The Flat Top
window at the end of the list represents the other extreme. The "windowing" effect increases from the top to the bottom of this list. The effect
of the window function is demonstrated using a 3.5-period sine signal:

The spectrum exhibits additional harmonics around the actual frequency, whose amplitude decreases with distance from the actual frequency.
The rectangular window creates a noticeable, sharp peak around 3 or 4, but a distorting influence on the spectrum is noticeable even at greater
distances. Using other windows will increase the width of the peak, but the greater the distance from the actual frequency, the less distortion is
apparent. Each window function represents a compromise between the two extremes.

To differentiate between harmonics located very close to one another, the rectangular window is appropriate; to ascertain the exact amplitudes
and phases of harmonics located further away from one another, use the Blackman window.

Differences from the "FFT" function:
The FFT() function determines a spectrum according to the FFT algorithm, whereby the only automatic processing of the signal is the removal of
the negative side of the spectrum.

Now in order to be able to interpret the spectral lines as amplitudes of oscillations, the function Spec() performs a certain correction of the
spectrum. Toward this end, all complex harmonics are multiplied by the factor 2.

For an input data set of even-number length, all spectral lines except the first and last are multiplied by the factor 2.

If the length of the input data set is an odd number (only possible with the Mixed-Radix-procedure), the last harmonic is also complex, and all
spectral lines except the first are multiplied by 2.

If further calculations are to be performed with a spectrum, use the FFT() function. Using the inverse FFT or multiplication produce incorrect
results for spectra created with the Spec() function.
The Spectral package (included in the Professional/Enterprise edition) contains additional functions which are substantially more powerful
and closely adapted to the requirements of signal analysis, for the calculation of spectra. Example: AmpSpectrumRMS() calculates an
amplitude spectrum (harmonics as RMS-value), with moving windows and linear averaging.
The optional parameters for the window function and mode are suported as of FAMOS 2022. If these parameters are omitted, then as with
earlier versions the global settings set by means of the dialog: 'Options'/'Functions', by means of the command FFTOPTION or by means of
the function SetOption() are in force.
Spec() can be used to process spectra calculated with the FFT() function to correctly interpret the amplitudes.
The optional parameters for the window function and mode are supported as of FAMOS-Version 2022. If these parameters are omitted, then
as with earlier versions the global settings which are set by means of the dialog 'Options'/'Functions', or by the command FFTOPTION, or by
the function SetOption() are in force.
When the length of the data set exceeds 2^27, a warning message is generated and calculation is not possible. Use the functions Leng or
Red2 to shorten the data set. The maximum number of points which can be processed is 134.217.728, resulting in a complex data set with a
length of 4.194.304.
The FFT function accessed by the Spec function to process specified equidistant data sets requires temporary working memory for execution.
If insufficient memory is available (especially in longer data sets), a warning message is generated.
The Spec function implemented here only supplies the positive side of the spectrum. When using real data sets, the spectrum is
symmetrical, so that the other half does not contain any additional information. representing negative frequencies or frequencies greater
than half of the sampling rate is meaningless.
If the data set provided has N points and if N is even, then the spectrum generated has N/2 + 1 points. Since the first and last value (center
value and highest harmonic) are always only real while the other spectral lines are complex, it follows that the spectrum has exactly as many
significant digits as the data set contains, so that no information has been lost. If N is odd (only possible with Mixed-Radix procedure), then
the spectrum generated has (N-1)/2 + 1 points. The highest harmonic is then complex.
The Mixed-Radix-procedure has the advantage of returning spectra with "round" frequency line distances from data sets having common
sampling frequencies (e.g. 1kHz and multiples in the pattern1/2/5) and an appropriate selection of the input length. For a data set sampled
at 1kHz, for instance, and a length of 1000 samples (1000 = 2^3 * 5^3), the procedure returns a spectrum having a frequency line distance of
1Hz; for a length of 20000 samples (= 2^5 * 5^4), the frequency line distance is 50mHz.
The x-unit of the spectrum is always Hz; the y-unit of the magnitude corresponds to that data set. The phase is given in degrees.
The x-offset of the specified data set should be zero. If it is not, a warning message is generated and the x-offset is treated as zero. To
include the influence of an x-offset in the phase, adjust the phase after the spectrum calculation, correcting it with a linear function.

Examples:

MPspec = Spec(NWdata, 1, 0)

Finds a data set's spectrum in order to be able to derive the signal's upper harmonic amplitudes from the spectrum (Hamming window; truncated
if necessary to the next-lower power of 2).

imc FAMOS Func on Reference - 967 -

(c) 2024 imc Test & Measurement GmbH

First1000Samples = CutIndex(data1kHz, 1, 1000)
Spec_with_1Hz_distance = Spec(First1000Samples, 0, 3)

The amplitude spectrum of the first 1000 samples of adata set sampled at 1kHz is calculated. The result has 501 spectral lines at the frequencies 0,
1, 2, ... 500 Hz.

; Pay attention when the input length is odd:
First125amples = CutIndex(data1kHz, 1, 125)
Spec_with_8Hz_distance = Spec(First125Samples, 0, 3)

The amplitude spectrum of the first 125 samples of a data set sample at 1kHz is calculated. The result has 63 spectral lines at the frequencies 0, 8,
16,... 496 Hz. The last spectral line is complex and is not located at half of the sampling frequency.

maxValue = Max(Cmp1(Spec(NWdata, 0, 1)))

Determines the greatest harmonic in the spectrum.

NDwrong = iFFT(Spec(NDdata))

Warning! Serious error! The inverse FFT can only be used on spectra whose amplitudes have not been corrected, i.e. those calculated with the
FFT function.

See also:
FFT, iFFT, Red2, AmpSpectrumPeak, AmpSpectrumPeak_1, AmpSpectrumRMS_1

imc FAMOS Func on Reference - 968 -

(c) 2024 imc Test & Measurement GmbH

SpecThirds

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

From the time-histories of a vibration, the 1/3 octave spectrum referenced to time is determined.

Declaration:
SpecThirds (Vibration, f1, f2, Frequency weighting, Time rating, Output interval) -> Result

Parameter:

Vibration Time-history of vibration signal, the time scaled in seconds

f1 Center frequency of lowest 1/3 octave in Hz

f2 Center frequency of highest 1/3 octave in Hz

Frequency
weighting Frequency weighting for the result

0 : linear

1 : A-weighting

2 : B-weighting

3 : C-weighting

4 : D-weighting

Time rating Averaging time, time rating of filtered data. How is the floating RMS calculated?

-1 : Fast (0.125s)

-2 : Slow (1s)

-3 : Pulse

-4 : Peak

> 0.0 : Time constant is defined by the user, given in seconds

Output interval 1/3 octave spectra are calculated using this time increment (delta-time, dt). Integer multiple of the vibration's sampling
time. Specified in seconds.

Result

Result 1/3 octave spectrum referenced to time

Description:
The two frequency limits f1 and f2 are to be given as the 1/3-octave center frequencies, e.g. f1 = 8 Hz and f2 = 12500 Hz. f1 < f2. The upper 1/3-oct.
with its frequency band must lie entirely within half of the sampling frequency.

The individual 1/3-octave values are stated as root mean square (RMS) values.

While the transients in the individual 1/3-octave (band-pass) filters are subsiding at the start of the measurement, the input signal's values are
ignored. The transient time for the 1kHz 1/3-octave is is assumed to be 20ms. This time interval is inversely proportional to the 1/3-octave
frequency. For very low 1/3-octaves, this time interval becomes considerable. A correspondingly long measurement must then be expected.

During the settling phase the RMS is assumed to be 0.0.

The result is a segmented data set. Each segment contains one 1/3 octave spectrum. The x-coordinate of the result counts the 1/3-octave bands
(just like the Famos-function OctA). For good representation in the curve window, 1/3-octave labeling should be selected.

The z-coordinate of the result represents time. The first spectrum is taken where time is equal to the output interval.

The 1/3-octave filter and analyses are in accordance with IEC 651 (sound level measurement), DIN 45652 (1/3-octave filter for electro-acoustic
measurements) and EN61260-1:2014 or IEC61260-1:2014 (band-pass filter for octaves and fractions of octaves, filter Class 1).

Time rating "Pulse": For increasing amplitudes the time constant is 35ms, for decreasing amplitudes 1.5s. Thus impulse-shaped signals are
captured quickly, the response decays slowly.

Time rating "Peak": Extreme response for very short impulses; ensuring capture of the peak value. Time constant is zero during increasing
amplitude (can be performed exactly by computer, by analog operation only in approximation); during decreasing amplitude 3s.

Examples:
The 1/3 octave spectrum is to be calculated from the time-history of the vibration every 0.1s. The signal is sampled every 0.025 ms.

fEval = 1 ; 0 (linear) 1 (A-weighting)
f1 = 10
f2 = 12500

imc FAMOS Func on Reference - 969 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

tEval = -1 ; -1 (Fast)
tInterval = 0.1 ; [s]
Thirds = SpecThirds (vib, f1, f2, fEval, tEval, tInterval)

See also:
OctA, OtrRpmThirds, SpecThirds_1

imc FAMOS Func on Reference - 970 -

(c) 2024 imc Test & Measurement GmbH

SpecThirds_1

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

From the time-histories of a vibration, the averaged 1/3 octave spectrum determined.

Declaration:
SpecThirds_1 (Vibration, f1, f2, Frequency weighting) -> Result

Parameter:

Vibration Time-history of vibration signal, the time scaled in seconds

f1 Center frequency of lowest 1/3 octave in Hz

f2 Center frequency of highest 1/3 octave in Hz

Frequency weighting Frequency weighting for the result

0 : linear

1 : A-weighting

2 : B-weighting

3 : C-weighting

4 : D-weighting

Result

Result 1/3 octave spectrum

Description:
The two frequency limits f1 and f2 are to be given as the 1/3-octave center frequencies, e.g. f1 = 8 Hz and f2 = 12500 Hz. f1 < f2. The upper 1/3-oct.
with its frequency band must lie entirely within half of the sampling frequency.

The individual 1/3-octave values are stated as root mean square (RMS) values.

While the transients in the individual 1/3-octave (band-pass) filters are subsiding at the start of the measurement, the input signal's values are
ignored. The transient time for the 1kHz 1/3-octave is is assumed to be 20ms. This time interval is inversely proportional to the 1/3-octave
frequency. For very low 1/3-octaves, this time interval becomes considerable. A correspondingly long measurement must then be expected.

During the settling phase the RMS is assumed to be 0.0.

The result is a normal data set (vector). The x-coordinate of the result counts the 1/3-octave bands (just like the Famos-function OctA). For good
representation in the curve window, 1/3-octave labeling should be selected.

The 1/3-octave filter and analyses are in accordance with IEC 651 (sound level measurement), DIN 45652 (1/3-octave filter for electro-acoustic
measurements) and EN61260-1:2014 or IEC61260-1:2014 (band-pass filter for octaves and fractions of octaves, filter Class 1).

Examples:
The 1/3 octave spectrum is to be calculated from the time-history of the vibration. The signal is sampled every 0.025 ms.

fEval = 1 ; 0 (linear) 1 (A-weighting)
f1 = 10
f2 = 12500
Thirds = SpecThirds_1 (vib, f1, f2, fEval)

See also:
OctA, OtrRpmThirds, SpecThirds

imc FAMOS Func on Reference - 971 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

sqr

Square

Declaration:
sqr (Parameter) -> Result

Parameter:

Parameter Parameter. Allowed types: [ND],[XY].

Result

Result Square of the parameter

Description:
The parameter passed is squared.

Remarks

The y-unit is squared.
The x-coordinate(s) of the parameter and the result are the same.
The function Sqr() works more effectively than the explicitly expressed product using the operator * (multiplication).
The parameter may be structured (events/segments).

Examples:
The electral power at an ohmic resistor is the square of the voltage divided by the resistance.

power = sqr(voltage) / resistance

See also:
sqrt, ^(hoch)

imc FAMOS Func on Reference - 972 -

(c) 2024 imc Test & Measurement GmbH

sqrt

Square root

Declaration:
sqrt (Parameter) -> Result

Parameter:

Parameter Parameter. Allowed types: [ND],[XY].

Result

Result Square root of the parameter

Description:
The square root is calculated.

Remarks

The square root of the unit is taken. Toward this end, the unit must contain at leas squared terms.
This root is only defined for numbers greater than zero.
The square root can also be calculated as an exponent: Sqrt(x) is equivalent to (x ^ 0.5).
The x-coordinate(s) of the parameter and the result are the same.
The parameter may be structured (events/segments).

Examples:
The square root of 9 is 3:

three = sqrt(9)

See also:
sqr, ^(hoch)

imc FAMOS Func on Reference - 973 -

(c) 2024 imc Test & Measurement GmbH

sRMS

Stat()-function: A data set's RMS-value

Description
sRMS is a predefined variable and has been calculated by an earlier call of the statictical function Stat().

Alternatively, the function RMS() can be used.

Examples:
Displaying the RMS-value of a voltage plot:

Stat(U)
BoxMessage("RMS Value", "Urms = " + TForm(sRMS, ""), "!1")

This is equivalent to:

BoxMessage("RMS Value", "Urms = " + TForm(RMS(U), ""), "!1")

See also:
Stat, RMS, sMean

imc FAMOS Func on Reference - 974 -

(c) 2024 imc Test & Measurement GmbH

sStDev

Stat()-function: A data set's standard deviation

Description
sStDev is a predefined variable and has been calculated by an earlier call of the statictical function Stat().

Alternatively, the function StDev() can be used.

Examples:
Display of a voltage plot's standard deviation:

Stat(U)
BoxMessage("Standard deviation", "Us = " + TForm(sStDev, ""), "!1")

This is equivalent to:

BoxMessage("Standard deviation", "Us = " + TForm(StDev(U), ""), "!1")

See also:
Stat, StDev, sMean

imc FAMOS Func on Reference - 975 -

(c) 2024 imc Test & Measurement GmbH

Stat

Determines various statistical quantities of a data set and evaluates the predefined variables sMin, sMax, sMean, sRMS, sStDev, sMinPos,
sMaxPos.

Declaration:
Stat (Data)

Parameter:

Data Data set from which the statistical characteristic values are to be calculated [ND]

Description:
This function has the form of a procedure; it returns no value and cannot be used with an assignment.

FAMOS contains a number of pre-defined variables calculated by calling the Stat()-function:

sMin Minimum

sMax Maximum

sMean arithmetic mean

sStDev Standard deviation

sRMS RMS value, square root of the mean of squares

sMinPos Position (x-value) of the minimum

sMaxPos Position (x-value) of the maximum
The statistical function calculates these predefined variables each time it is called. Once it has been called, many important statistical quantities
of the data set are available for use in subsequent processing formulas.

The statistical quantities are created by the statistical function with the corresponding units.
The predefined variables sMin, sMax, etc. can be used in all formulas, but they do not appear in the variable list. They cannot be changed by
hand or assigned any new values; they can only receive the values calculated by the Stat function. The predefined variables are initialized to
values of zero when the program starts.
The predefined variables are recalculated each time the statistical function is called. The old values are lost, so be sure to use any variables
of interest before calling the statistical function again.
The Stat function displays a list containing all of the calculated quantities in the imc FAMOS main window's output box.
The results of the Stat function can be obtained individually with other imc FAMOS functions.
Multithreading: The function acts locally on the execution thread in which it was called. The standard execution thread and each sequence
function executed in a separate thread using BEGIN_PARALLEL thus each have their own, independent memory.

Examples:

Stat(NDdata)
specificValue = (sMax - sMin) / sMean

Both of these formulas calculate a quantity from standard quantities of the data set, minimum and maximum. The call is equivalent to:

specificValue = (Max(NDdata) - Min(NDdata)) / Mean(NDdata)
Stat(NDdata)
delta1 = sMax - sMean
Stat(NDdata * 2)
delta2 = sMax - sMean

Please note that SvDelta1 and SvDelta2 are different because the statistical function was called a second time for a different data set, one twice
as large as the first.

See also:
Min, Max, Mean, Pos, PosiEx, RMS, StDev

imc FAMOS Func on Reference - 976 -

(c) 2024 imc Test & Measurement GmbH

StDev

The standard deviation of a data set's numerical values is determined.

Declaration:
StDev (Data) -> SvStDev

Parameter:

Data Data whose standard deviation is to be calculated [ND].

SvStDev

SvStDev Standard deviation of the data set

Description:
Standard deviation is a statistical characteristic of a data set, indicating how far the data are located from their arithmetic mean value. Waveforms
with very similar numerical values have a small standard deviation, whereas data sets with very different values exhibit a very large standard
deviation.

The standard deviation is calculated according to the following algorithm:

The deviation of each value of the data set from the arithmetic mean is squared and then all of these square values are summed. This value is
then divided by the number of values in the data set minus 1; finally, the square root is calculated.

Examples:
A data set with the values 1, 3 and 5 has a standard deviation of 2.

data = [1, 3, 5]
SD = StDev(data)

See also:
Mean, Min, Max, Stat

imc FAMOS Func on Reference - 977 -

(c) 2024 imc Test & Measurement GmbH

STri

Schmitt-trigger with specified upper and lower threshold values

Declaration:
STri (Data, SvUpper, SvLower) -> Result

Parameter:

Data Data set to be shaped. Allowed types: [ND].

SvUpper Upper threshold

SvLower Lower threshold

Result

Result Rectangular shaped result of the Schmitt-trigger

Description:
The Schmitt trigger function sTri is used to shape impulses; this function generates ideally shaped rectangular impulses. Only two different
function values are generated: +1 and -1. The configuration of this function requires two threshold values, one lower and one upper.

The Schmitt trigger functions according to the following algorithm:

The Schmitt trigger returns -1 as the initial value if the signal's first value is less than the top threshold value, otherwise the intial value is +1.
If the Schmitt trigger last returned -1 and the signal is less than the lower threshold, it returns -1 again, otherwise +1.
If the Schmitt trigger last returned +1 and the signal is greater than the lower threshold, it generates +1 again, otherwise -1.
The last two steps are repeated until the entire data set has been run through. It is important to note that the Schmitt trigger function has a
memory.

This function is used to "clean up" impulses distorted with noise before further processing. All distortion is eliminated, but the shape of the
original signal is lost. The greater the difference between the thresholds, the less sensitive the Schmitt trigger reacts to distortion.

It is worthwhile to use the Schmitt trigger when the frequency of and spacing between impulses in a series is important, but the exact shape is
insignificant.

The Schmitt trigger does not have a y-unit, but matches the x-scaling of the specified data set.
Select the stairstep display mode for graphical display of Schmitt trigger signals or other rectangular curves. See the "Y" menu in the curve
window.
Short but very noisy impulses often cannot be suppressed with the Schmitt trigger if the distance between the threshold values cannot be
large enough. Use one of the smoothing functions Smo3, Smo5 or Smo to eliminate this noise, or change the individual values by hand.
If the upper and lower thresholds are the same, the Schmitt trigger functions as a comparator, establishing whether a signal is greater than or
less than the specified value.
The 2nd and 3rd parameters may be interchanged. The lower value will always be adopted as the lower limit.

Examples:

peakCount = Peaks(STri(NDdata, 10 'V', 20 'V'))

A signal has a general level of 3V to 8V, but a few important peaks between 25V and 30V. The number of these peaks is to be determined. The
threshold is set to between 8V and 25V, somewhat generous, but small enough to suppress noise on the slopes of the peaks. The Schmitt trigger
function idealizes the peaks to rectangular impulses, which are counted in the final step.

See also:
Hyst, Peaks, Scale, Smo, Perio

imc FAMOS Func on Reference - 978 -

(c) 2024 imc Test & Measurement GmbH

Sub

Time-/x-correct subtraction

Declaration:
Sub (Minuend, Subtrahend, SvOption) -> Difference

Parameter:

Minuend First parameter, minuend; allowed types: [ND],[XY].

Subtrahend Second parameter, subtrahend; allowed types: [ND],[XY].

SvOption Option

0 : The trigger time of the two summands is ignored.

1 : Time-correct superposition with regard to trigger-time

Difference

Difference Difference; results of the subtraction [XY]

Description:
Two data sets undergo time-correct or x-correct subtraction, meaning that the y-values at each point of the minuend is subtracted from the value
at the corresponding point of the subtrahend.

The result is defined only within the x-range which is shared by both data sets. Within this range a resultvalue is determined for every point at
which at least one of the data sets possesses a value. If no value exists for the other data set, one is determined by linear interpolation.

The x-tracks of both parameter data sets must be monotonous, i.e. the x-coordinates must increase continuously.

The subtraction operator, by contrast, performs subtraction on the values of data sets.

Examples:
Two channels are measured; one between 11:00 and 13:00, and the other between. 12:00 and 14:00.

difference = Sub(voltage11_13h, voltage12_14h, 1)

A time-correct subtraction of the two data sets with respect to the trigger time is performed. The result is defined for the time between 12:00
and 13:00 hours.

See also:
-(Subtraktion), Add, Mult, Div, Append

imc FAMOS Func on Reference - 979 -

(c) 2024 imc Test & Measurement GmbH

Sum

Sums all of a data set's values

Declaration:
Sum (Data) -> SvSum

Parameter:

Data Data set whose sum to calculate [ND, XY].

SvSum

SvSum Sum of all of a data set's y-values

Description:
The sum of all of the data set's y-values is calculated.

Examples:
Both formulas compute the sum of all of an equidistantly sampled data set's y-values.

dataSum = Sum(data)
dataSum = Int(data) / xdel?(data)

See also:
Int, MInt

imc FAMOS Func on Reference - 980 -

(c) 2024 imc Test & Measurement GmbH

SvToChar

A text with an arbitrary character is generated:

Declaration:
SvToChar (SvChar) -> TxChar

Parameter:

SvChar The ASCII code of the character to be displayed as text (0..255)

TxChar

TxChar Text (of length 1) with the specified character

Description:
The ASCII-code of a character specified as the parameter is used to generate a text containing exactly this one character. This is helpful for special
characters such as Tab and Line Break

Tom specify special characters in text constants, it is alternatively possible to use the "tilde" character (~), followed by a three-digit number
representing the ASCII code.

The ASCII-codes permitted are 1..255.
The ASCII code 0 is returned for an empty text.
For example, tabulator character's code = 9, carriage return = 13, line feed = 10.
Not all ASCII codes can be displayed in Windows. Above all be sure that ANSI character set is used. ASCII tables made for the DOS
environment display the characters in the OEM character set.

Examples:
A text with the combination Carriage Return/ Line Feed is generated:

TxCrlf = SvToChar(13) + SvToChar(10)

The same result can be obtained with

TxCrlf = "~013" + "~010"

or more briefly:

TxCrlf = "~013~010"

See also:
CharToSv, TtoSv, TReplace, TConv

imc FAMOS Func on Reference - 981 -

(c) 2024 imc Test & Measurement GmbH

SWITCH

Initiates a case distinction (multiple branching). Depending on the result of the expression specified here, a maximum of one of multiple
subsequent alternative instruction blocks (CASE/DEFAULT) is performed.

Declaration:
SWITCH ComparisonValue

Parameter:

ComparisonValue Comparison value for subsequent CASE instructions. The evaluation of the expression specified here must return either be
a single value or a text.

Description
After the SWITCH, at least one CASE or DEFAULT command must follow, the end of the case distinction is denoted by the command END.

As the CASE-condition, you can either specify a single value, a comma-separated list of values, or a range (with the keyword 'TO').

The construct

SWITCH value
CASE c1
 ...Instructions1
CASE c2,c3
 ...Instructions2
CASE c4 TO c5
 ...Instructions3
DEFAULT
 ...Instructions4
END

is equivalent to:

IF value = c1
 ...Instructions1
ELSEIF value = c2 OR value = c3
 ...Instructions2
ELSEIF value >= c4 AND value <= c5
 ...Instructions3
ELSE
 ...Instructions4
END

Examples:
A descriptive text is formed for a value normally lying between 0 and 100.

SWITCH Round(value, 1)
CASE 0
 Tx = "Lower limit"
CASE 1 TO 48
 Tx = "Lower half"
CASE 49,50,51
 Tx = "Center"
CASE 52 To 99
 Tx = "Upper half"
CASE 100
 Tx = "Upper limit"
DEFAULT
 Tx = "Invalid Value"
END

The user is prompted to select a file to load. On the basis of the file extension, the file format is recognized and the corresponding function for
loading is called.

TxFileName = DlgFileName("", "", "",0)
TxFileExt = FsSplitPath(TxFileName, 3)
SWITCH TxFileExt
CASE ".dat", ".raw"
 ; Load imc data file
 fh = FileOpenDSF(TxFileName, 0)
 ;...
CASE ".xls"
 ; Load EXCEL file
 fh = FileOpenXLS(TxFileName, 0)

imc FAMOS Func on Reference - 982 -

(c) 2024 imc Test & Measurement GmbH

 ;...
DEFAULT
 PAUSE ==> Invalid file format
END

See also:
CASE, DEFAULT, IF, CodeRange

imc FAMOS Func on Reference - 983 -

(c) 2024 imc Test & Measurement GmbH

TAdd

Two texts appended together

Declaration:
TAdd (TxFront, TxBack) -> TxWhole

Parameter:

TxFront Text to which another is appended

TxBack Text to be appended

TxWhole

TxWhole What is returned is the concatenation of the two texts specified.

Description:
The two texts specified are concatenated.

Alternatively, the addition operator + can be used.

Examples:

Path = TAdd(TAdd("c:\", "imc\"), "dat")
; or:
Path = "c:\" + "imc\" + "dat"

After execution, the variable Path contains the text "c:\imc\dat".

See also:
TForm, TConv, TPart, TtoSv

imc FAMOS Func on Reference - 984 -

(c) 2024 imc Test & Measurement GmbH

tan

Tangent, trigonometric function

Declaration:
tan (Parameter) -> Result

Parameter:

Parameter Input data (angle). Allowed types: [ND],[XY].

Result

Result Tangent of the parameter

Description:
The trigonometric function tan is calculated using radians or degrees, corresponding to the unit of the specified parameter.

The x-coordinate(s) of the results and the parameter are the same.

Remarks

The parameter of the cos function should not have a unit or the units 'rad', 'degr', or '° '. Any other units will cause an error message to be
generated and the unit will be used for the result.
The parameter may be structured (events/segments).
The corresponding inverse function is atan().

Examples:
tan and atan reverse each other:

one = tan(atan(1))

The tan function can be used to correct a measurement quantity subject to a saturation effect by stretching the saturation range:

NDcorr = 3 * tan(NDdata / 10)

An angle in degrees is specified as the parameter. Additional valid formulas: tan(PI/4) = 1, tan(0) = 0, tan(-PI/4) = -1 or tan(45'Deg') = 1, etc.

one = tan(45'°')

See also:
sin, cos, atan2

imc FAMOS Func on Reference - 985 -

(c) 2024 imc Test & Measurement GmbH

TComp

Two tests or text arrays are compared with each other.

Declaration:
TComp (TxText1, TxText2) -> Result

Parameter:

TxText1 The first of the parameters to be compared

TxText2 The second of the two parameters to be compared

Result

Result Results of the comparison; single value or data set with the following values:

-1 : The first text is ordered alphabetically before the second text.

0 : Both texts are the same

1 : The first text is ordered alphabetically after the second text.

Description:

The following parameter combinations are allowed:

Text - Text: The result is a single value with the value -1, 0 or 1.

Textarray -
Textarray

An element-by-element comparison of the two text arrays is performed. The result is a data set consisting of -1, 0, 1 and
having the length of the shorter of the two text arrays.

Textarray -
Text:

Each element of the text array is compared with the 2nd parameter. The result is a data set consisting of -1, 0, 1 and having
the length of the text array.

The function does not differentiate between upper and lower case letters; comparison of the texts "hello" and "Hello" returns a value of 0.
An empty text is alphabetically ordered before any other texts.
For the purpose of comparing texts and text arrays, the operators "<>" and "=" can also be used (with text arrays, these operators do not
return an element-by-element comparison, but rather check the whole array for equality).

Examples:

DatName = "wave0001"
WavVergl = TComp(TPart(DatName, 1, 4), "WAVE")

[WavComp] contains the value 0.

Txa1 = ["Channel1", "CHANNEL2", "Channel5"]
Txa2 = ["Channel2", "channel2", "Channel4", "Channel7"]
v = TComp(Txa1, Txa2)
v2 = TComp(Txa1, "channel5")

v => [-1, 0, 1].

v2 => [-1, -1, 0].

See also:
TLike, TForm, TPart, TReplace, TxWhere, TxRegExMatch

imc FAMOS Func on Reference - 986 -

(c) 2024 imc Test & Measurement GmbH

TConv

A text can be converted in various ways, e.g. uppercase/lowercase spelling.

Declaration:
TConv (TxText, SvTask) -> TxConverted

Parameter:

TxText Text to be converted

SvTask Specificatino of how to perform conversion

1 : All uppercase letters are converted to lowercase letters.

2 : All lowercase letters are converted to uppercase letters

3 : A text is transferred from ANSI to the OEM character set; files with OEM texts are read correctly by the DOS application.
Windows applications expect texts in ANSI format.

4 : All spaces at the beginning of the textes are deleted.

5 : All spaces at the end of the text are deleted.

6 : All spaces are deleted.

7 : A text is converted from the OEM to the ANSI character set.

TxConverted

TxConverted Converted text

Description:

Examples:

TxPfad= TConv(" c:\imc\ dat ",6)

TxPath contains the contents "c:\imc\dat"

See also:
TForm, TPart, TComp, TtoSv

imc FAMOS Func on Reference - 987 -

(c) 2024 imc Test & Measurement GmbH

TForm

A number is converted to a formatted text.

Declaration:
TForm (SvNumber, TxFormat) -> TxFormatted

Parameter:

SvNumber Real number to be converted

TxFormat Specification of the designed format

TxFormatted

TxFormatted The formatted text

Description:
A number is converted to a formatted text, where a variety of format types can be specified. The parameter [TxFormat] contains the
specifications needed for this purpose.

The following formats are available, selected with the bold-print letter codes for the type, followed by the desired numerical values (replacing
the normal letters):

TxFormat Description Example

"e.N" Floating point format
N: Count of decimal places 3.456 with "e.2" -> "3.46E+00"

"FV.N"

Fixed point format
V: Minimum count of pre-decimal digits
N: Count of post-decimal digits
Excess pre-decimal places are filled with spaces.

3.456 with "f2.2" -> " 3.46"

"gV.N"

Fixed point format
V: Count of pre-decimal digits
N: Count of post-decimal digits
Excess pre-decimal places are filled with zeroes.

3.456 with "g2.2" -> "03.46"

"a.N"

Automatic
N: Maximum outputted digit count
The shortest possible notation is used, depending on the numerical value.
Appended zeroes after the decimal point are omitted.
or even the decimal if applicable. Thus, ideal for integers.

3.40056 with "a.2" -> "3.4"

"" Corresponds to "a.6"

"xG" Hexadecimal format.
G: Total amount of digits 127 with "x2" -> "7F"

"x" Hexadecimal format (for integer data formats)
[SvNumber] muss ganzzahlig und unskaliert sein.

127 (4 Byte unsigned integer) -> "0000007F"
-1 (4 Byte signed integer) -> "FFFFFFFF"

"bG" Binary format.
G: Total amount of digits 34.56 with "b4" -> "100011"

"b" Binary format (for integer data formats)
[SvNumber] muss ganzzahlig und unskaliert sein.

127 (1 Byte unsigned integer) -> "01111111"
-1 (1 Byte signed integer) -> "11111111"

Comma or period
If the period is replaced by a comma in these format strings, the output features a decimal comma instead of a decimal point. Otherwise, the
period can be omitted (Example: "f23" is equivalent to "f2.3"; however, "f2,3" forces the use of a decimal comma).

If the period is replaced by a semicolon in these format strings, the output is formatted in accordance with the global presetting for the preferred
decimal separator for real numbers ("Extra"/"Options"/"Display & Curve Window", or SetOption("Display.DecimalSeparator",...).

Special remarks to floating point format:
In floating point format, the exponent is specified with 2 places and an "E" is used as the character for the exponent, followed by the sign.

Special remarks to fixed point format:
In fixed point display, spaces are filled in front of the specified number until the define number of places left of the decimal is reached. If spaces
in front of the number are not desired, set the number of places left of the decimal to 1. If the number has more places left of the decimal than
specified in the TxFormat, all places left of the decimal are created so that the number is not distorted.

Rounding
If necessary, the outputted value will be rounded off in accordance with the decimal position count.

Special remarks to Binary- or Hexadecimal format:

imc FAMOS Func on Reference - 988 -

(c) 2024 imc Test & Measurement GmbH

The number to be converted must be in the numerical range -2^63..2^63-1.

With negative numbers, the two's-complement representation is used.

For "xG" and "bG", the resulting minimum output width is respectively:
Hex-format: range: -2147483648..0: 8 positions, else 16 positions.
Binary format: range: -32768..0: 16 positions; -2147483648..-32769: 32 positions, else 64 positions.

"x" and "b" (without specified width) are to be preferred when the data format of the number to be formatted is an integer. In that case there is
no internal data converion, for which reason it is also possible to format 8-Byte numbers without losing precision. The number of positions to
output is determined automatically according to the numerical format: for "x", twice the Byte-count; for "b" it is 8 times the Byte-count. The
positions are packed with zeroes if appropriate.

Examples:

txValue= TForm(1.2345, "f2,3")
; txValue contains: " 1,234"

txValue= TForm(31, "f4.2")
; txValue contains: " 31.00" (2 preceding spaces)

txValue= TForm(31, "g4.0")
; txValue contains: "0031"

txValue= TForm(31.000, "")
; txValue contains: "31"

txValue= TForm(1.200, "a.6")
; txValue contains: "1.2"

txValue= TForm(1.201, "a.6")
; txValue contains: "1.201"

txValue= TForm(31, "x2")
; txValue contains: "1F"

value = 128
SetDataFormat(value, 6) ; 2 Byte unsigned integer
txValue= TForm(value, "x")
; txValue contains: "0080"
txValue= TForm(value, "b")
; txValue contains: ""0000000010000000""

value = -2
SetDataFormat(value, 2) ; 1 Byte signed integer
txValue= TForm(value, "x")
; txValue contains: "FE"
txValue= TForm(value, "b")
; txValue contains: "11111110"

See also:
TConv, TPart, TtoSv

imc FAMOS Func on Reference - 989 -

(c) 2024 imc Test & Measurement GmbH

ThrowError

Generate error

Declaration:
ThrowError (TxErrorText)

Parameter:

TxErrorText Error text to be posted

Description:
The function generates a user-defined runtime error message with the error text specified. The display and additional handling proceeds in the same way as for errors reported
during runtime by the Formula Interpreter - and thus depends on the error handling mode selected and specified by means of OnError().

When the error handling mode is set to "Default", a message box containing the specified text is displayed and execution of the routine is cancelled. With the error modes "Return"
and "ResumeEnd", execution resumes accordingly; the error text can be queried later by means of GetLastError(). "ReturnFail" returns the error to the caller. "ResumeNext" usually is
not useful in combination with ThrowError().

Examples:
The function Sqrt() included in FAMOS for calculating a square root returns 0 for negative input values and also posts a correpsonding warning. The following sequence function
instead returns an error.

; Declaration: !Sqrt_Strict(Par) => Result
OnError("ReturnFail")
IF min(Par) < 0
 ThrowError("The parameter contains negative values!")
END
Result = Sqrt(par)

The following sequence function checks whether the entire course of a data set's signal is above a specified reference data set's signal course. If the function can not be executed due
to inappropriate parameters, this is indicated by a special return value. The caller ca query the error cause by using GetLastError().

; Declaration: !CheckAbove(TestData, Lower) => Result
; Result = 1: OK
; Result = 0: At least 1 value of [TestData] is lower than the corresponding value in [Lower]
; Result = -1: Error: Input data do not match (in terms of x-axis) or have events/segments

OnError("Return", "Unknown error", "Result", -1)
IF NOT(VerifyVar(TestData, "!SegEvn")) OR NOT(VerifyVar(Lower, "!SegEvn"))
 ThrowError("The paramater may not have segments or events!")
END
Verify(Leng?(TestData)=Leng?(Lower) AND xdel?(TestData)=xdel?(Lower) AND xoff?(TestData)=xoff?(Lower), "Parameter: x-scaling incompatible!")
Result = Max(Lower - TestData) < 0

See also:
OnError, Verify, VerifyVar, BoxMessage, GetLastError

imc FAMOS Func on Reference - 990 -

(c) 2024 imc Test & Measurement GmbH

Time?

Queries a data set's trigger time.

Declaration:
Time? (Data) -> SvTime

Parameter:

Data Data set whose trigger time is to be determined

SvTime

SvTime Trigger time

Description:
The function returns the trigger time of a data set in a special imc FAMOS time format containing date and time.

The numerical value obtained can be analyzed, subjected to calculations, and assigned.

Examples:
A data set's trigger time is queried and displayed in a message box.

triggerTime = Time?(data)
Tx = TimeToText(triggerTime, 0)
BoxMessage("Data set time: ", Tx, "!1")

See also:
SetTime, TimeSplit, TimeJoin, TimeToText, TimeSystem?

imc FAMOS Func on Reference - 991 -

(c) 2024 imc Test & Measurement GmbH

TimeAdd

Adding seconds to time value

Declaration:
TimeAdd (SvTime, SvSeconds) -> SvTimeSum

Parameter:

SvTime Time expressed in the internal time format.

SvSeconds Number of seconds to add.

SvTimeSum

SvTimeSum Resulting time value.

Description:
A number of seconds is added to a time specification expressed in the imc FAMOS time format.

The result is expressed in the internal time format again.

Examples:
The trigger time of a data set is increase by one minute.

triggerTime = Time?(data)
triggerTime = TimeAdd(triggerTime, 60)
SetTime(data, triggerTime)

See also:
SetTime, TimeDiff, TimeJoin, TimeSplit, TimeToText

imc FAMOS Func on Reference - 992 -

(c) 2024 imc Test & Measurement GmbH

TIMECOPY

Copy trigger time
This command is obsolete, instead of it, the more powerful functions SetTime() and Time?() should be used.

Declaration:
TIMECOPY SourceVariable TargetVariable

Parameter:

SourceVariable Variable whose trigger time is to be copied

TargetVariable Variable which is to receive the new trigger time

Description
The trigger time of the target variable is set to equal that of the source variable.

Examples:

TIMECOPY qdat zdat

The variable "tDat" contains the trigger time of the variable "sDat".

See also:
Time?, SetTime

imc FAMOS Func on Reference - 993 -

(c) 2024 imc Test & Measurement GmbH

TimeDiff

Calculates difference between 2 time values.

Declaration:
TimeDiff (SvTime1, SvTime2) -> SvDiffInSeconds

Parameter:

SvTime1 First time value expressed in the internal time format

SvTime2 Second time value expressed in the internal time format

SvDiffInSeconds

SvDiffInSeconds Resulting difference in seconds

Description:
The difference in seconds between two times in the imc FAMOS time format is calculated.

Examples:
The x-offset of a data set is set to the difference between the trigger times of two other data sets:

time1 = Time?(dataA)
time2 = Time?(dataB)
sec = TimeDiff(time1, time2)
XOFFSET dataC sec

See also:
SetTime, TimeAdd, TimeJoin, TimeSplit, TimeToText

imc FAMOS Func on Reference - 994 -

(c) 2024 imc Test & Measurement GmbH

TimeJoin

A time value in imc FAMOS is created from the individual components.

Declaration:
TimeJoin (SvDay, SvMonth, SvYear, SvHour, SvMinute, SvSeconds) -> SvTime

Parameter:

SvDay Day (1..31)

SvMonth Month (1..12)

SvYear Year (1980..)

SvHour Hour (0..23)

SvMinute Minute (0..59)

SvSeconds Seconsd (0..<60)

SvTime

SvTime Resulting time value

Description:
A time value expressed in the imc FAMOS time format is assembled from its individual components.

Examples:
A data set's trigger time is set to 11/2/1995, 12:00 PM:

SetTime(data, TimeJoin(2, 11, 1995, 12, 0, 0))

See also:
SetTime, Time?, TimeSplit, TimeToText, TimeSystem?

imc FAMOS Func on Reference - 995 -

(c) 2024 imc Test & Measurement GmbH

TIMESET

Set trigger time
This command is obsolete, instead of it the more powerful function SetTime() should be used.

Declaration:
TIMESET TargetVariable SvDay SvMonth SwYear SvHour SwMinute SvSecond

Parameter:

TargetVariable Variable whose trigger time is to be set

SvDay Day

SvMonth Month

SwYear Year (4-digit)

SvHour Hour

SwMinute Minute

SvSecond Second

Description
The trigger time of the variable "TargetVar" is set according to the new time.

Examples:

 TIMESET DestinationVar 1 3 1992 12 0 1

The trigger time of the variable "TargetVar" is set to '01.03.1992 12:00:01'

See also:
Time?, SetTime

imc FAMOS Func on Reference - 996 -

(c) 2024 imc Test & Measurement GmbH

TimeSplit

Get a component of a time expressed in the imc FAMOS time format.

Declaration:
TimeSplit (SvTime, Selection) -> SvTimeComponent

Parameter:

SvTime Time expressed in the imc FAMOS time format

Selection Selection of component

0 : Day (1..31)

1 : Month (1..12)

2 : Year (1980..)

3 : Hour (0..23)

4 : Minute (0..59)

5 : Seconds (0.. <60)

SvTimeComponent

SvTimeComponent Desired component

Description:
A component of a time spefication expressed in the imc FAMOS time format is queried.

Examples:
The year in which the data set was created is determined:

year = TimeSplit(Time?(data), 2)

See also:
SetTime, Time?, TimeToText, TimeJoin

imc FAMOS Func on Reference - 997 -

(c) 2024 imc Test & Measurement GmbH

TimeSystem?

Inquiring current system time.

Declaration:
TimeSystem? () -> SvTime

Parameter:

SvTime

SvTime System time in the imc FAMOS time format

Description:
The function returns the current system time in the imc FAMOS time format. The time value obtained can be processed by other time functions.

Examples:
The current system time is converted to text and outputted:

tx = TimeToText(TimeSystem?(), 0)
BoxMessage("Current time", tx, "!1")

See also:
SetTime, Time?, TimeToText, TimeAdd, TimeJoin, TimeSplit

imc FAMOS Func on Reference - 998 -

(c) 2024 imc Test & Measurement GmbH

TimeToText

A time value is converted to a text.

Declaration:
TimeToText (SvTime, SvCode) -> TxTime

Parameter:

SvTime Time value in the internal time format

SvCode Formatting rule

0 : Date and time, separated by spaces, 2-digit year

1 : Date only, 2-digit year

2 : Time only

3 : Date and time, separated by spaces, 4-digit year

4 : Date only, 4-digit year

TxTime

TxTime Time value as text

Description:
The function converts an existing time statement in imc FAMOS format to a text. The time and date format in the Windows Control Panel are
applied.

Examples:
The current system time is converted to text and outputted:

tx = TimeToText(TimeSystem?(), 0)
tx = TimeToText(TimeSystem?(), 0)
BoxMessage("Current time", tx, "!1")

See also:
SetTime, Time?, TimeSystem?, TimeAdd, TimeJoin, TimeSplit

imc FAMOS Func on Reference - 999 -

(c) 2024 imc Test & Measurement GmbH

TLeng

Finds the length of a text, meaning how many characters it contains. With a text array, the length of each element is found.

Declaration:
TLeng (TxText) -> Length

Parameter:

TxText Text/Text array, whose length is to be found

Length

Length Single value (for Text), or data set (for Text array) with the texts' respective character counts. -1 for other data types

Description:
The number of characters in a text (including spaces) is determined and returned.

With a text array, the length of the individual elements is found and the data set is returned.

The length of an empty text is 0.

If the parameter's data type is neither Text nor Text Array, then -1 is returned.

Examples:

text = "18 characters long"
Leng_ = TLeng(text)

Length contains the value 18.

txa = ["current1", "RPM2", "", "rpm1", "Current2"]
Leng_ = TLeng(txa)

Leng_ contains the values [8, 4, 0, 4, 8].

See also:
TAdd, TForm, TPart, TComp, TConv

imc FAMOS Func on Reference - 1000 -

(c) 2024 imc Test & Measurement GmbH

TLike

A text or text array is compared for matching to a pattern. The pattern can contain wildcards.

Declaration:
TLike (TxText, TxPattern, SvOption) -> Result

Parameter:

TxText Text or text array to inspect

TxPattern The pattern according to which the comparison is drawn. The wildcard characters '?' and '*' are allowed.

SvOption Determines whether upper- and lower case spelling are distinguished.

0 : Upper- and lower case spelling are regarded as identical.

1 : Upper- and lowercase spelling distinguishes letters.

Result

Result Results of the comparison; single value or data set with the following values:

0 : The text does not match the pattern specified.

1 : The text matches the pattern specified.

Description:
In the pattern (2nd parameter), the wildcard characters "?" and "*" can be used. "?" stands for exactly one character, "*" for a string of any length.

If the first parameter is a text array, each element of the array is compared with the pattern. The result is a data set containing only the values [0,
1] and having the length of the text array.

Only the first 259 characters of both texts are considered.

For complex pattern comparisons, the function TxRegexMatch() can be used.

Examples:
Check whether TxVar begins with the letter 'a' or 'A':

ok = TLike(TxVar, "a*", 0)

Check whether TxVar contins the string "voltage" at any position. No distinction is made between upper- and lower-case spelling:

ok = TLike(TxVar, "*voltage*", 0)

Check whether TxVar begins with the string "A0" and contains exactly two more characters. Upper- and lower-case spelling is distinguished:

ok = TLike(TxVar, "A0??", 1)

Checks whether TxVar begins with the string "Channel" and ends with "_1". Upper- and lowercase spelling are not distinguished:

ok = TLike(TxVar, "Channel*_1", 1)
txa = ["current1", "RPM2", "rpm1", "Current2", "voltage", "rpm11"]
; test whether the array elements end with 1:
res = TLike(txa, 0, "*1")

res => [1, 0, 1, 0, 0, 1]

; tests whether the array elements begin with a lowercase 'r' and have exactly 4 characters:
res = TLike(txa, 1, "r???")

res => [0, 0, 1, 0, 0, 0]

See also:
TComp, TxRegExMatch

imc FAMOS Func on Reference - 1001 -

(c) 2024 imc Test & Measurement GmbH

ToInt

Conversion to the data format '8-Byte Integer (signed)'

Declaration:
ToInt (Parameter) -> Converted

Parameter:

Parameter Single value or data set to convert

Converted

Converted Converted single value or data set

Description:
The single value or data set passed as the parameter is converted to the data format "Integer (8-Byte signed)". In the process, every value is
rounded to the next closest integer.

Remarks:

The maximum value range of the resulting data format is [-2^63-1 ... 2^63]; if the range is violated in either direction, the value is set to the
respective range boundary value.
All of the parameter's other properties are applied.
The parameter may be segmented and event-based.

The call

 integer = ToInt(parameter)

is functionally equivalent to

 integer = parameter
 SetDataFormat(integer, 12)

Examples:
The Python-function "round" is used to round PI to 3 decimal places. Without the ToInt()-function having been called, the constant would be
passed to Python as a real number and would cause a runtime error, since the function expects an integer argument at this position.

PI_rounded = PyCallFunction("", "round", PI, ToInt(3))

See also:
SetDataFormat

Supported since:
Version 2022

imc FAMOS Func on Reference - 1002 -

(c) 2024 imc Test & Measurement GmbH

Top

Returns the x-positions of all data points where the y-value exceeds a threshold value.

Declaration:
Top (Data, SvfLimit) -> XTop

Parameter:

Data Data set examined. Allowed types: [ND],[XY].

SvfLimit Threshold

XTop

XTop X-coordinates of y-values from NDData which are greater than [SvThresh]

Description:
The x-coordinates of all data points of NwData greater than the threshold SvThresh form the result.

The Value() function can be used to determine the associated y-coordinates.
An empty data set is returned if no values fulfill the threshold conditions.
As an alternative, use the SearchLevel function, which is also suitable for XY-data sets.

Examples:

NDxPeak = Top(NDdata, "5V")

The result is all x-coordinates of all points in the data set NDData, whose values are greater than 5 volts.

NDyPeak = Value(NDdata, Top(NDdata, topValue))

The result is all y-coordinates of the data set NwData greater than SvTop.

meanValue = Mean(Value(NDimpulse, Top(NDimpulse, 0.1)))

The data set NDImpulse is passed, which contains a number of impulses whose noise is a maximum of 0.1. The result is the mean value of all
impulses.

See also:
SearchLevel, Value, All0, RangeSet, xMax

imc FAMOS Func on Reference - 1003 -

(c) 2024 imc Test & Measurement GmbH

TPart

A excerpt of a text is copied.

Declaration:
TPart (TxText, SvStart, SvLength) -> TxPart

Parameter:

TxText Text from which a excerpt is to be copied

SvStart Position as of which the copy excerpt begins

SvLength Number of characters to copy

TxPart

TxPart The excerpted text

Description:
A section is cut out of a specified text string. This section is defined by the position of the first character to be cut out and the number of
characters to be cut out.

The position of the first character in the text and thuse the smallest possible value for [Start] is 1.
If [Start] is greater than the text length, an empty text is returned.
If [Start] + [Length] is greater than the text length, the excerted portion of text ends at the text end.

Examples:

extension = TPart("wave.dat", 6, 3)

The variable extension contains "dat".

See also:
TReplace, TAdd, TForm, TLeng, TtoSv

imc FAMOS Func on Reference - 1004 -

(c) 2024 imc Test & Measurement GmbH

TransposeMatrix

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

A matrix (a segmented waveform) is transposed. In other words, the rows and columns exchange places. The matrix' rows correspond to the
waveform's segments. Input data and result are segmented. The input data have a single component.
This function is only included for the purpose of compatibility with imc FAMOS 6.0 and its predecessors. Please use instead MatrixTranspose().

Declaration:
TransposeMatrix (Matrix) -> Result

Parameter:

Matrix Input matrix to be transposed.

Result

Result Transposed matrix

Examples:

Spectra = AmpSpectrumRMS (Channel, 1000, 0, 50, 1, 0, 0)
tm = TransposeMatrix (Spectra)

The matrix consists of amplitude values, plotted over time and frequency. The function re-arranges the time axis and the frequency axis.

See also:
MatrixTranspose

imc FAMOS Func on Reference - 1005 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

TransRec

Data reduction according to the Transitional-Recording procedure

Declaration:
TransRec (Data, SvTolerance) -> Reduced

Parameter:

Data Data set whose data are to be reduced [ND]

SvTolerance Permitted tolerance (in phys. units)

Reduced

Reduced Reduces data set [XY]

Description:
An equidistantly sampled data set is interpolated to an XY-data set. The tolerance (in physical units) specifies the permissible discrepancy
between source data and interpolated results. The greater the tolerance, the shorter the resulting data set will be.

With analog source data, the results should be represented in "Lines" mode in the curve window, rather than in "Steps".

With digital source data, [SvTolerance] should be set to = 0. That way only changes in the signal will be recorded. For pseudo-analog data
reduction it is possible to use [SvTolerance] = 1e-20.

he function does not change the data format of the source data (float, double, integer..). For best data reduction results, therefore, first use a
function such as "SetDataFormat(..)" to set the y-component's data format to 1 or 2-byte integers.

Examples:

slope_2 = TransRec(slope, 2)

Data reduction for analog data. The gray bars show the original signal, the black lines and circles show the course of the reduced signal and its
points.

digi_red1= TransRec(digi, 0)

Data reduction for digital data. The gray bars show the original signal, the black lines and circles show the course of the reduced signal and its
points.

See also:
SetDataFormat, Red, XYdt

imc FAMOS Func on Reference - 1006 -

(c) 2024 imc Test & Measurement GmbH

TReplace

A selected string in a text is replaced with another string.

Declaration:
TReplace (TxWhole, TxPart, TxReplacement) -> TxResult

Parameter:

TxWhole The whole text in which a section is to be replaced by another

TxPart The text excerpt to be replaced

TxReplacement Text to replace [TxPart] in [TxWhole]

TxResult

TxResult Accordingly changed text

Description:
The function searches for a section of text; when it is found it is replaced by the specified text.

If [TxPart] is not found in [TxWhole], the latter is returned unchanged
Even if the text is present several times in the text, only the section found first is replaced.
The function does not differentiate between upper and lower case letters, e.g. "X" and "x" are treated the same when searching for the
section TxPart in TxWhole.

Examples:

TxFile = "measurement.txt"
BoxMessage("Hint", TReplace("File %s is saved!", "%s", TxFile), "!1")

The message "File Measurement.txt saved!" is displayed.

See also:
TxWhere, TAdd, TPart, TComp, TConv

imc FAMOS Func on Reference - 1007 -

(c) 2024 imc Test & Measurement GmbH

TsaAppend

Scope: TimestampASCII data

A new element is appended to the end of a time-stamp-ASCII channel.

Declaration:
TsaAppend (TsaChannel, Data, Time)

Parameter:

TsaChannel TsaChannel

Data Data

Time Time

Description:
The contents and time of the new element are to be specified. The contents are to be expressed as a waveform. The waveform is transfered byte
by byte, no matter in which data format it is expressed. It makes sense for the waveform to take the Byte numerical format. An element's
maximum size (see time-stamp-ASCII documentation) must not be exceeded. The time may not be less than that of its predecessor and not more
than that of its successor. Times must increase monotonously but not strictly monotonously; i.e., adjacient elements' times may be the same. The
time may be rounded, since the time is expressed internally as x0+i*dx, where i >= 0 is an integer. The time is entered in relative terms: as the
time after the trigger release, without the absolute trigger time, date or time of the measurement start. The parameter channel is changed in the
process. If the waveform contains events, the element is appended to the last event.

Examples:
An element containing ten values from 48 to 57 is appended.

Content = ramp (48, 1, 10)
SetDatFormat (Content, 5, 0, 255) ; Makes the numerical format Byte (0..255).
Time = 20 ;

TsaAppend (TsaChannel, Content, Time)

imc FAMOS Func on Reference - 1008 -

(c) 2024 imc Test & Measurement GmbH

TsaAppendText

Scope: TimestampASCII data

A new element is appended to the end of a time-stamp-ASCII channel.

Declaration:
TsaAppendText (TsaChannel, Text, Time)

Parameter:

TsaChannel TsaChannel

Text Text

Time Time

Description:
The contents and time of the new element are to be specified. The contents are to be expressed as text. The time may not be less than that of its
predecessor and not more than that of its successor. Times must increase monotonously but not strictly monotonously; i.e., adjacient elements'
times may be the same. The time may be rounded, since the time is expressed internally as x0+i*dx, where i >= 0 is an integer. The time is
entered in relative terms: as the time after the trigger release, without the absolute trigger time, date or time of the measurement start. The
parameter channel is changed in the process. If the waveform contains events, the element is appended to the last event.

Examples:
; An element with fixed text is appended.

Time = 20
Text = "hello"

TsaAppendText (TsaChannel, Text, Time)

imc FAMOS Func on Reference - 1009 -

(c) 2024 imc Test & Measurement GmbH

TsaCreateEmpty

Scope: TimestampASCII data

Creates an empty channel in time-stamp-ASCII format.

Declaration:
TsaCreateEmpty (x0, dx, xUnit) -> TsaChannel

Parameter:

x0 x0

dx dx

xUnit xUnit

TsaChannel

TsaChannel TsaChannel

Description:
x0: smallest possible time-stamp dx: time-stamp resolution All possible tmes which elements of this channel may take later follow the pattern x
= x0+i*dx, i>=0, where i is an integer. The absolute time (trigger time) will be set to 0.0 (which is the first of January, 1980).

Examples:
An empty channel is created. The times entered later are >= 0 and have a resolution of 1ms.

TsaChannel = TsaCreateEmpty (0.0, 1e-3, "s")

imc FAMOS Func on Reference - 1010 -

(c) 2024 imc Test & Measurement GmbH

TsaDataToText

Scope: TimestampASCII data

A waveform is converted byte by byte into a text.

Declaration:
TsaDataToText (Data, ZeroReplace) -> Text

Parameter:

Data Data

ZeroReplace ZeroReplace

Text

Text Text

Description:
The numerical format of the waveform does not matter. It makes sense for the waveform to take the Byte numerical format. All bytes with the
value zero are replaced by ZeroReplace. ZeroReplace: instead of a zero-byte: 0..255. If the value is 0, the text is ended at a 0-byte.

Examples:
A waveform is converted to text. All zero-bytes are replaced with a space (ASCII) so that the text is not truncated.

Text = TsaDataToText (Data, 32)

imc FAMOS Func on Reference - 1011 -

(c) 2024 imc Test & Measurement GmbH

TsaDecode

Available in: Professional Edition and above

A time-stamped-ASCII channel is interpreted as a series of time-stamped frames, from the CAN-Bus for example. From these frames, a channel is
generated by finding a value from each frame at a certain position.

Declaration:
TsaDecode (TsaChannel, Analysis [, Startbyte] [, Startbit] [, BitCount] [, Data format] [, ByteOrder] [,
Factor] [, Offset] [, Unit]) -> Channel

Parameter:

TsaChannel TsaChannel

Analysis What is to be analysed?

"" : General frame of any format and any origin. If the frames in question are CAN-messages, then the ID is located in the first 4
Bytes, followed by the data bytes.

"CAN.data" : CAN-message, data. The frames in this case are CAN-messages. The start byte is counted as of the beginning of the
CAN-message's data region.

"CAN.ID" : CAN-message, ID. The frames in this case are CAN-messages. Only the ID is desired. The MSB (Bit 31) which is = 1 to
indicate an extended identifier is not read. Thus it is no longer possible to distinguish between standard and extended
identifiers.

"CAN.ID.msb" : CAN-message, ID. The frames in this case are CAN-messages. Only the ID is desired. May include the MSB (Bit 31)
which is = 1 to indicate an extended identifier.

"CAN.len" : CAN-message, length. The frames in this case are CAN-messages. Only the length (data byte count) of the CAN-
message's data region is desired.

"len" : Length of the message. The total length of the message is found. In case of CAN-messages, the length including the 4 byte
identifier is determined.

Startbyte
The value is read from this Byte-position in the frame onwards. Startbyte = 0 for the first Byte. The Byte is counted as of the
beginning of the frame. Any existing ID must be taken into account. For "CAN.data", the Startbyte = 0 is the first data value of the
CAN frame. (optional , Default value: 0)

Startbit
Start Bit. The number to be read is located within the start byte from this bit position onwards. The LSB is Bit 0. The MSB is Bit 7. 0
<= Startbit <= 7. For numbers of more than 56 bits in length, the Startbit must be = 0 (Intel) or = 7 (Motorola). (optional , Default
value: 0)

BitCount Bit count. The number to be read is this many bits long. 1 <= Bit count <= 64 (optional , Default value: 0)

Data
format Data format of the number to be read (optional , Default value: "signed")

"signed" : Signed integer in the two's complement

"unsigned" : Unsigned integer

"real" : Real (float, double). Only 32 or 64 bits with Startbit = 0 (Intel) or = 7 (Motorola) are possible.

ByteOrder Byte order. Which (highest, lowest) is stated first. (optional , Default value: "intel")

"intel" : Intel, lowest value (least significant) Byte first , little-endian

"motorola" : Motorola, highest value (most significant) Byte first, big-endian

Factor The value read is multiplied by this scaling factor. Only for integer formats (optional , Default value: 1)

Offset The scaling offset is added to the value multiplied by the scaling factor. Only for integer formats (optional , Default value: 0)

Unit Unit. The scaled value receives this unit. (optional , Default value: "")

Channel

Channel Channel in the XY-format.

Description:
From each frame, one value is extracted in the format specified. If the frame is long enough, the extraction is successful, in which case the value
is written to the result.

If the frame is too short, the value cannot be read (completely). In this case the value is not written to the result.

The data set may not contain events.

The definition of the numerical format is compatible with imc DEVICES and imc STUDIO.

imc FAMOS Func on Reference - 1012 -

(c) 2024 imc Test & Measurement GmbH

In case of CAN-frames, the following consideration applies for the CAN-ID: Standard identifiers have a size of 11 bits, thus a range of 0 to 2047.
Extended identifers have a size of 29 bits. Addionally, the MSB of the 32-bit number is set. The CAN-ID is located in the first 4 Bytes and is
represented INTEL Byte order. That applies, if data were written by imc DEVICES or imc STUDIO.

The function is not actually used for filtering. The purpose is to write one value to the result for each frame. If however the value cannot be
determined successfully, then it cannot be written to the result. This situation can be avoided by proper filtering performed beforehand. On
filtering, please refer to TsaFilter().

Scaling
The scaling factor and scaling offset are governed by this formula:

[Physical value] = [integer number] * scaling factor + scaling offset

The scaling factor and scaling offset are only available with integer formats.

With the default values for the scaling factor and the scaling offset, the system preferentially generates a suitable data format in the result.

Example: Intel Byte order
Startbit = 3, BitCount = 15, MSB appears first in each Byte; LSB last. Bit=X belongs to the number, bit=0 does not:

XXXXX000 XXXXXXXX 000000XX

In the 1st Byte, the 5 highest bits are set. This is where the number's lowest value bits are located.

In the 3rd Byte, the lowest 2 bits are set. This is where the number's highest value bits are located.

Startbit = 3 signifies that the 3 lowest bits (Bits 0, 1, 2) do not yet belong to the number.

Example: Intel Byte order
Startbit = 0, BitCount = 16, MSB in each Byte displayed first, LSB last. Bit=X belongs to the number, bit=0 does not:

XXXXXXXX XXXXXXXX

In the 1st Byte, all bits are set. This is where the number's lowest value bits are located.

In the 2nd Byte, all 8 bits are set. This is where the number's highest value bits are located.

Example: Motorola Byte order
Startbit = 2, BitCount = 15, MSB in each Byte displayed first, LSB last. Bit=X belongs to the number, bit=0 does not:

00000XXX XXXXXXXX XXXX0000

In the 1st Byte, the lowest 3 bit are set. This is where the number's highest-value bits are located.

In the 3rd Byte, the highest 4 bits are set. This is where the number's lowest-value bits are located.

Startbit = 2 signifies that the 3 lowest bits (Bits 0, 1, 2) belong to the number.

Example: Motorola Byte order
Startbit = 7, BitCount = 16, MSB appears first in each Byte; LSB last. Bit=X belongs to the number, bit=0 does not:

XXXXXXXX XXXXXXXX

In the 1st Byte, all 8 bits are set. This is where the number's highest value bits are located.

In the 2nd Byte, all 8 bits are set. This is where the number's lowest-value bits are located.

Examples:
generate xy channel with all CAN-IDs

ids = TsaDecode(tsa, "CAN.ID")

Both standard and extended IDs can occur. The differentiating MSB is to be included in the chanel.

ids = TsaDecode(tsa, "CAN.ID.msb")

Starting at the 3rd Byte of a CAN-message, there is a 16-bit signed integer led by the least significant Byte. 1 LSB = 5 N.

N = TsaDecode(tsa, "CAN.data", 2, 0, 16, "signed", "intel", 5.0, 0.0, "N")

Generates a channel with the message's 1st Byte

c = TsaDecode(tsa, "", 0, 0, 8, "unsigned", "intel")

Starting at the 3rd Byte of a CAN-message having the standard ID 22 Hex, there is a 16-bit unsigned integer led by the most significant Byte. 1 LSB
= 5 N.

tsaFil = TsaFilter (tsa, "CAN.ID.std", 0x22, 0x22)
N = TsaDecode(tsaFil, "CAN.data", 2, 7, 16, "unsigned", "motorola", 5.0, 0.0, "N")

Numerical example

tsa = TsaCreateEmpty(1, 0.1, "s")
b01 = [0x31, 0x32, 0x33, 0x81, 0x77, 0x55] ; ext id
setdatFormat(b01, 5, 0, 255)
TsaAppend (tsa, b01, 1.7)
c = TsaDecode(tsa, "CAN.ID.msb") ; c.y = 0x81333231
c = TsaDecode(tsa, "CAN.ID") ; c.y = 0x01333231

imc FAMOS Func on Reference - 1013 -

(c) 2024 imc Test & Measurement GmbH

c = TsaDecode(tsa, "CAN.len") ; c.y = 2
c = TsaDecode(tsa, "len") ; c.y = 6
c = TsaDecode(tsa, "",0,0,8,"unsigned","intel") ; c.y = 0x31
c = TsaDecode(tsa, "",0,0,16,"unsigned","intel") ; c.y = 0x3231
c = TsaDecode(tsa, "",0,7,16,"unsigned","motorola") ; c.y = 0x3132
c = TsaDecode(tsa, "CAN.data",0,0,16,"unsigned","intel") ; c.y = 0x5577

See also:
TsaFilter, TsaGetFirst, SetDataFormat

imc FAMOS Func on Reference - 1014 -

(c) 2024 imc Test & Measurement GmbH

TsaDelete

Scope: TimestampASCII data

For a specified position in a time-stamp-ASCII channel, the corresponding element is deleted from the channel.

Declaration:
TsaDelete (TsaChannel, Position)

Parameter:

TsaChannel TsaChannel

Position Position

Description:
This changes the positions of the subsequent elements.

Examples:
The first element is deleted

Position = TsaFindFirst (TsaChannel)
TsaDelete (TsaChannel, Position)

imc FAMOS Func on Reference - 1015 -

(c) 2024 imc Test & Measurement GmbH

TsaFilter

Available in: Professional Edition and above

A time-stamp-ASCII channel is interpreted as a series of time-stamped frames, for example from the CAN-bus. By means of filtering, a subset of
these frames is generated. E.g. all frames having a particular CAN-ID.

Declaration:
TsaFilter (TsaChannel, Analysis, Min, Max [, Mask] [, Startbyte] [, Startbit] [, BitCount] [, Data format] [,
ByteOrder]) -> Filtered

Parameter:

TsaChannel TsaChannel

Analysis What is to be analysed?

"" : General frame of any format and any origin. If the frames in question are CAN-messages, then the ID is located in the first 4
Bytes, followed by the data bytes.

"CAN.data" : CAN-message, data. The frames in this case are CAN-messages. The start byte is counted as of the beginning of the
CAN-message's data region.

"CAN.ID" : CAN-message, ID. The frames in this case are CAN-messages. Only the ID is desired. The MSB (Bit 31) which is = 1 to
indicate an extended identifier is not read. Thus it is no longer possible to distinguish between standard and extended
identifiers.

"CAN.ID.msb" : CAN-message, ID. The frames in this case are CAN-messages. Only the ID is desired. May include the MSB (Bit 31)
which is = 1 to indicate an extended identifier.

"CAN.ID.std" : CAN-message, standard identifier. The frames in this case are CAN-messages. Only standard identifiers are
desired. Extended identifiers are ignored.

"CAN.ID.ext" : CAN-message, extended identifier. The frames in this case are CAN-messages. Only extended identifiers are
desired. The MSB (Bit 31) which is then = 1 is not read. Standard identifiers are ignored.

"CAN.len" : CAN-message, length. The frames in this case are CAN-messages. Only the length (data byte count) of the CAN-
message's data region is desired.

"len" : Length of the message. The total length of the message is found. In case of CAN-messages, the length including the 4 byte
identifier is determined.

Min Minimum value. The value read is checked against this value after application of the bitmask. The filter condition can only be met
if Value >= Min.

Max Maximum value. The value read is checked against this value after application of the bitmask. The filter condition can only be met
if Value <= Max.

Mask The value read is combined with this bitmask in an AND logical expression. Only if the bitmask <> 0. Only up to BitCount <= 32.
(optional , Default value: 0)

Startbyte
The value is read from this Byte-position in the frame onwards. Startbyte = 0 for the first Byte. The Byte is counted as of the
beginning of the frame. Any existing ID must be taken into account. For "CAN.data", the Startbyte = 0 is the first data value of the
CAN frame. (optional , Default value: 0)

Startbit
Start Bit. The number to be read is located within the start byte from this bit position onwards. The LSB is Bit 0. The MSB is Bit 7. 0
<= Startbit <= 7. For numbers of more than 56 bits in length, the Startbit must be = 0 (Intel) or = 7 (Motorola). (optional , Default
value: 0)

BitCount Bit count. The number to be read is this many bits long. 1 <= Bit count <= 64 (optional , Default value: 0)

Data
format Data format of the number to be read (optional , Default value: "signed")

"signed" : Signed integer in the two's complement

"unsigned" : Unsigned integer

"real" : Real (float, double). Only 32 or 64 bits with Startbit = 0 (Intel) or = 7 (Motorola) are possible.

ByteOrder Byte order. Which (highest, lowest) is stated first. (optional , Default value: "intel")

"intel" : Intel, lowest value (least significant) Byte first , little-endian

"motorola" : Motorola, highest value (most significant) Byte first, big-endian

Filtered

Filtered Filtered channel in the time-stamped ASCII format

imc FAMOS Func on Reference - 1016 -

(c) 2024 imc Test & Measurement GmbH

Description:
One value in the format specified is extracted from each frame. That value then is tested for the filter condition.

The filter condition consists of a check of the value range after combining with the bitmask.

If the filter condition is true, the frame will be written to the result.

This is the regular filter condition: Value >= Min AND Value <= Max. In that case Min <= Max holds true. If for example all values equal to 7 are
desired, then Min = 7 and Max = 7 with Value >= 7 AND Value <= 7.

If however Min > Max, then that will mean: Value >= Min OR Value <= Max. If for example all values <> 7 are desired, then Min = 8 and Max = 6,
with Value >= 8 OR Value <= 6.

If the frame is too short, the value cannot be read (completely). Then the frame is not written to the result.

The data set may not contain events.

The definition of the numerical format is compatible with imc DEVICES and imc STUDIO.

In case of CAN-frames, the following consideration applies for the CAN-ID: Standard identifiers have a size of 11 bits, thus a range of 0 to 2047.
Extended identifers have a size of 29 bits. Addionally, the MSB of the 32-bit number is set. The CAN-ID is located in the first 4 Bytes and is
represented INTEL Byte order. That applies, if data were written by imc DEVICES or imc STUDIO.

If a frame is written to the result, it is copied unchanged including its original time-stamp.

Frames are also called messages.

Example: Intel Byte order
Startbit = 3, BitCount = 15, MSB appears first in each Byte; LSB last. Bit=X belongs to the number, bit=0 does not:

XXXXX000 XXXXXXXX 000000XX

In the 1st Byte, the 5 highest bits are set. This is where the number's lowest value bits are located.

In the 3rd Byte, the lowest 2 bits are set. This is where the number's highest value bits are located.

Startbit = 3 signifies that the 3 lowest bits (Bits 0, 1, 2) do not yet belong to the number.

Example: Intel Byte order
Startbit = 0, BitCount = 16, MSB in each Byte displayed first, LSB last. Bit=X belongs to the number, bit=0 does not:

XXXXXXXX XXXXXXXX

In the 1st Byte, all bits are set. This is where the number's lowest value bits are located.

In the 2nd Byte, all 8 bits are set. This is where the number's highest value bits are located.

Example: Motorola Byte order
Startbit = 2, BitCount = 15, MSB in each Byte displayed first, LSB last. Bit=X belongs to the number, bit=0 does not:

00000XXX XXXXXXXX XXXX0000

In the 1st Byte, the lowest 3 bit are set. This is where the number's highest-value bits are located.

In the 3rd Byte, the highest 4 bits are set. This is where the number's lowest-value bits are located.

Startbit = 2 signifies that the 3 lowest bits (Bits 0, 1, 2) belong to the number.

Example: Motorola Byte order
Startbit = 7, BitCount = 16, MSB appears first in each Byte; LSB last. Bit=X belongs to the number, bit=0 does not:

XXXXXXXX XXXXXXXX

In the 1st Byte, all 8 bits are set. This is where the number's highest value bits are located.

In the 2nd Byte, all 8 bits are set. This is where the number's lowest-value bits are located.

Examples:
Starting at the 3rd Byte of a CAN-message having the standard ID 22 Hex, there is a 16-bit unsigned integer led by the most significant Byte. 1 LSB
= 5 N.

tsaFil = TsaFilter (tsa, "CAN.ID.std", 0x22, 0x22)
N = TsaDecode(tsaFil, "CAN.data", 2, 0, 16, "unsigned", "motorola", 5.0, 0.0, "N")

Get all CAN messages with standard ID 100

tsaFil = TsaFilter (tsa, "CAN.ID.std", 100, 100)

Extract all CAN frames with extended ID 0x374500 according to J1939, whith PF=0x37 and PS=0x45. The lowest 8 bits are the "source address" and
are to be ignored. The highest 3 bits of the 29-bit ID are the "priority" and are also to be ignored.

tsaFil = TsaFilter (tsa, "CAN.ID.ext", 0x374500, 0x374500, 0x3ffff00)

Get all CAN messages having standard ID 33 Hex as well as a 7 in the first data bytes (Intel, unsigned).

tsaFil2 = TsaFilter (tsa, "CAN.ID.std", 0x33, 0x33)
tsaFil = TsaFilter (tsaFil2, "CAN.data", 7, 7, 0, 0, 0, 16, "unsigned", "intel")

Extract all CAN messages whose standard ID does not lie in the range 100 to 110.

imc FAMOS Func on Reference - 1017 -

(c) 2024 imc Test & Measurement GmbH

tsaFil = TsaFilter (tsa, "CAN.ID.std", 111, 99)

Numerical example. These filters write the specified frame to the result.

tsa = TsaCreateEmpty(1, 0.1, "s")
b01 = [0x31, 0x32, 0x33, 0x81, 0x77, 0x55] ; ext id
setdatFormat(b01, 5, 0, 255)
TsaAppend (tsa, b01, 1.7)
tsaFil = TsaFilter (tsa, "CAN.ID.ext", 0x01333231, 0x01333231)
tsaFil = TsaFilter (tsa, "CAN.ID.msb", 0x81333231, 0x81333231)
tsaFil = TsaFilter (tsa, "CAN.ID", 0x01333231, 0x01333231)
tsaFil = TsaFilter (tsa, "CAN.ID.ext", 0, 0x1fffffff, 0)
tsaFil = TsaFilter (tsa, "CAN.ID.msb", 0, 0x9fffffff, 0)
tsaFil = TsaFilter (tsa, "CAN.ID", 0, 0x1fffffff, 0)
tsaFil = TsaFilter (tsa, "CAN.len", 2, 2)
tsaFil = TsaFilter (tsa, "CAN.len", 0, 8)
tsaFil = TsaFilter (tsa, "len", 6, 6)
tsaFil = TsaFilter (tsa, "CAN.data", 0x5577, 0x5577, 0, 0, 0, 16, "unsigned", "intel")
tsaFil = TsaFilter (tsa, "CAN.data", 0x5577, 0x5577, 0xffff, 0, 0, 16, "unsigned", "intel")
tsaFil = TsaFilter (tsa, "CAN.data", 0x0570, 0x0570, 0x0ff0, 0, 0, 16, "unsigned", "intel")
tsaFil = TsaFilter (tsa, "CAN.data", 0x7755, 0x7755, 0, 0, 7, 16, "unsigned", "motorola")
tsaFil = TsaFilter (tsa, "", 0x7755, 0x7755, 0, 4, 7, 16, "unsigned", "motorola")

tsa = TsaCreateEmpty(1, 0.1, "s")
b02 = [0x31, 0x01, 0x0, 0x0, 0x77, 0x55] ; std id
setdatFormat(b02, 5, 0, 255)
TsaAppend (tsa, b02, 1.7)
tsaFil = TsaFilter (tsa, "CAN.ID.std", 0x131, 0x131)
tsaFil = TsaFilter (tsa, "CAN.ID.msb", 0x131, 0x131)
tsaFil = TsaFilter (tsa, "CAN.ID", 0x131, 0x131)

See also:
TsaDecode, TsaGetFirst, SetDataFormat

imc FAMOS Func on Reference - 1018 -

(c) 2024 imc Test & Measurement GmbH

TsaFindBefore

Scope: TimestampASCII data

This function is called to continue the enumeration of time-stamp-ASCII channels.

Declaration:
TsaFindBefore (TsaChannel, Position) -> ResultPosition

Parameter:

TsaChannel TsaChannel

Position Position

ResultPosition

ResultPosition ResultPosition

Description:
The parameter to specify is the valid position of an element. The position of the preceeding element within the channel is determined. Return
value: Valid position, if >= 0. Otherwise, there is no other element.

Examples:

; Initialisation
Position = TsaFindLast (TsaChannel)
while Position >= 0
 ; read the element here, e.g.
 text = TsaGetText (TsaChannel, Position)

 ; here to the preceeding element
 Position = TsaFindBefore (TsaChannel, Position)
end

imc FAMOS Func on Reference - 1019 -

(c) 2024 imc Test & Measurement GmbH

TsaFindFirst

Scope: TimestampASCII data

The position of the 1st channel element is determined.

Declaration:
TsaFindFirst (TsaChannel) -> Position

Parameter:

TsaChannel TsaChannel

Position

Position Position

Description:
This function is called to begin an enumeration of the elements of a time-stamp ASCII channel. Return value: the valid position, if >= 0.
Otherwise, there are no elements.

Examples:

; Initialisation
Position = TsaFindFirst (TsaChannel)
while Position >= 0
 ; read the element here, e.g.
 text = TsaGetText (TsaChannel, Position)

 ; here to the next element
 Position = TsaFindNext (TsaChannel, Position)
end

imc FAMOS Func on Reference - 1020 -

(c) 2024 imc Test & Measurement GmbH

TsaFindLast

Scope: TimestampASCII data

The position of the last element within the channel is determined.

Declaration:
TsaFindLast (TsaChannel) -> Position

Parameter:

TsaChannel TsaChannel

Position

Position Position

Description:
This function is called to begin an enumeration of the elements of a time-stamp ASCII channel. Return value: the valid position, if >= 0.
Otherwise, there are no elements.

Examples:

; Initialisation
Position = TsaFindFirstLast (TsaChannel)
while Position >= 0
 ; read the element here, e.g.
 text = TsaGetText (TsaChannel, Position)

 ; here to the next element
 Position = TsaFindBefore (TsaChannel, Position)
end

imc FAMOS Func on Reference - 1021 -

(c) 2024 imc Test & Measurement GmbH

TsaFindNext

Scope: TimestampASCII data

This function is called to continue the enumeration of time-stamp-ASCII channels.

Declaration:
TsaFindNext (TsaChannel, Position) -> ResultPosition

Parameter:

TsaChannel TsaChannel

Position Position

ResultPosition

ResultPosition ResultPosition

Description:
The parameter to specify is the valid position of an element. The position of the next element in the channel is determined. Return value: Valid
position, if >= 0. Otherwise, there is no other element.

Examples:

; Initialisation
Position = TsaFindFirst (TsaChannel)
while Position >= 0
 ; read the element here, e.g.
 text = TsaGetText (TsaChannel, Position)

 ; here to the next element
 Position = TsaFindNext (TsaChannel, Position)
end

imc FAMOS Func on Reference - 1022 -

(c) 2024 imc Test & Measurement GmbH

TsaFindTime

Scope: TimestampASCII data

At a specified time, the position of the first time-stamp-ASCII element whose time is greater than or equal to the specified time, is returned.

Declaration:
TsaFindTime (TsaChannel, Time) -> Position

Parameter:

TsaChannel TsaChannel

Time Time

Position

Position Position

Description:
The time is entered in relative terms: as the time after the trigger release, without the absolute trigger time, date or time of the measurement
start. Adjacient elements can well have the same time. Return value: Valid position, if >= 0.

Examples:

Time = 45.0 ; searching for element at >= 45s.
Position = TsaFindTime (TsaChannel, Time)
; e.g. query the text
text = TsaGetText (TsaChannel, Position)
; query the actual time:
Time = TsaGetTime (TsaChannel, Position)

imc FAMOS Func on Reference - 1023 -

(c) 2024 imc Test & Measurement GmbH

TsaFindValidPos

Scope: TimestampASCII data

At a specified position in a time-stamp-ASCII channel, next equal or larger valid position of an element is determined.

Declaration:
TsaFindValidPos (TsaChannel, Position) -> ResultPosition

Parameter:

TsaChannel TsaChannel

Position Position

ResultPosition

ResultPosition ResultPosition

Description:
Return value: Valid position if >= 0. Otherwise no other element exists. Normally, the valid positions should be located using TsaFindFirst() and
TsaFindNext().

Examples:
The time for a sample at position >= 100000 is to be determined.

Position = TsaFindValidPos (TsaChannel, 100000)
if Position >= 0
 Time = TsaGetTime (TsaChannel, Position)
end

imc FAMOS Func on Reference - 1024 -

(c) 2024 imc Test & Measurement GmbH

TsaGetCount

Scope: TimestampASCII data

For a time-stamp-ASCII channel, the number of constituent elements is determined.

Declaration:
TsaGetCount (TsaChannel) -> Data

Parameter:

TsaChannel TsaChannel

Data

Data Data

Description:

Examples:

Count = TsaGetCount (TsaChannel)

imc FAMOS Func on Reference - 1025 -

(c) 2024 imc Test & Measurement GmbH

TsaGetData

Scope: TimestampASCII data

For a specified position in a time-stamp-ASCII channel, the corresponding element's contents are returned as a waveform.

Declaration:
TsaGetData (TsaChannel, Position) -> Data

Parameter:

TsaChannel TsaChannel

Position Position

Data

Data Data

Description:
The position must be valid e.g. must be determined using TsaFindTime(), TsaFindFirst(), TsaFindNext() or TsaFindValidPos(). The waveform
returned takes the Byte data format.

Examples:

Position = TsaFindFirst (TsaChannel)
Content = TsaGetData (TsaChannel, Position)

imc FAMOS Func on Reference - 1026 -

(c) 2024 imc Test & Measurement GmbH

TsaGetText

Scope: TimestampASCII data

For a specified position in a time-stamp-ASCII channel, the corresponding element's contents are returned as text.

Declaration:
TsaGetText (TsaChannel, Position) -> Text

Parameter:

TsaChannel TsaChannel

Position Position

Text

Text Text

Description:
The position must be valid e.g. must be determined using TsaFindTime(), TsaFindFirst(), TsaFindNext() or TsaFindValidPos(). TsaGetData() may be
preferable, if the element contains binary data.

Examples:

Position = TsaFindFirst (TsaChannel)
Text = TsaGetText (TsaChannel, Position)

imc FAMOS Func on Reference - 1027 -

(c) 2024 imc Test & Measurement GmbH

TsaGetTime

Scope: TimestampASCII data

For a specified position in a time-stamp-ASCII channel, the corresponding element's time is returned.

Declaration:
TsaGetTime (TsaChannel, Position) -> Time

Parameter:

TsaChannel TsaChannel

Position Position

Time

Time Time

Description:
The position must be valid e.g. must be determined using TsaFindTime(), TsaFindFirst(), TsaFindNext() or TsaFindValidPos(). The returned time is
the relative time from the measurement's start.

Examples:

Position = TsaFindFirst (TsaChannel)
Time = TsaGetTime (TsaChannel, Position)

imc FAMOS Func on Reference - 1028 -

(c) 2024 imc Test & Measurement GmbH

TsaInsert

Scope: TimestampASCII data

At a specified position in a time-stamp-ASCII channel, a new element is inserted.

Declaration:
TsaInsert (TsaChannel, Position, Data, Time)

Parameter:

TsaChannel TsaChannel

Position Position

Data Data

Time Time

Description:
The contents and time of the new element are to be specified. The contents are to be expressed as a waveform. The waveform is transfered byte
by byte, no matter in which data format it is expressed. It makes sense for the waveform to take the Byte numerical format. An element's
maximum size (see time-stamp-ASCII documentation) must not be exceeded. The time may not be less than that of its predecessor and not more
than that of its successor. Times must increase monotonously but not strictly monotonously; i.e., adjacient elements' times may be the same. The
time may be rounded, since the time is expressed internally as x0+i*dx, where i >= 0 is an integer. The time is entered in relative terms: as the
time after the trigger release, without the absolute trigger time, date or time of the measurement start. The parameter channel is changed in the
process. The position must be valid e.g. must be determined using TsaFindTime(), TsaFindFirst(), TsaFindNext() or TsaFindValidPos(). As a
consequence of this function, the subsequent elements' positions generally change also. Also as a result of this function, the element originally
at the specified position is moved to after the newly inserted element.

Examples:
An element containing ten values from 48 to 57 is inserted at the beginning.

Content = ramp (48, 1, 10)
SetDatFormat (Content, 5, 0, 255) ; Makes the numerical format Byte (0..255).
Time = 20 ;

Position = TsaFindFirst (TsaChannel)
TsaInsert (TsaChannel, Position, Content, Time)

imc FAMOS Func on Reference - 1029 -

(c) 2024 imc Test & Measurement GmbH

TsaInsertText

Scope: TimestampASCII data

At a specified position in a time-stamp-ASCII channel, a new element is inserted.

Declaration:
TsaInsertText (TsaChannel, Position, Text, Time)

Parameter:

TsaChannel TsaChannel

Position Position

Text Text

Time Time

Description:
The contents and time of the new element are to be specified. The contents are to be expressed as text. The time may not be less than that of its
predecessor and not more than that of its successor. Times must increase monotonously but not strictly monotonously; i.e., adjacient elements'
times may be the same. The time may be rounded, since the time is expressed internally as x0+i*dx, where i >= 0 is an integer. The time is
entered in relative terms: as the time after the trigger release, without the absolute trigger time, date or time of the measurement start. The
parameter channel is changed in the process. The position must be valid e.g. must be determined using TsaFindTime(), TsaFindFirst(),
TsaFindNext() or TsaFindValidPos(). As a consequence of this function, the subsequent elements' positions generally change also. Also as a result
of this function, the element originally at the specified position is moved to after the newly inserted element.

Examples:
An element with a fixed text is inserted at the beginning.

Text = "hello"
Time = 20 ;

Position = TsaFindFirst (TsaChannel)
TsaInsertText (TsaChannel, Position, Text, Time)

imc FAMOS Func on Reference - 1030 -

(c) 2024 imc Test & Measurement GmbH

TsaJoin

Scope: TimestampASCII data

A second time-stamp ASCII channel is appended to one time-stamp ASCII channel.

Declaration:
TsaJoin (TsaChannel, TsaChannelJoin, UseTriggerTime, DoMerge, AllowDuplicate)

Parameter:

TsaChannel TsaChannel

TsaChannelJoin The time-stamp ASCII channel to be appended. Or 0 in the special case described below.

UseTriggerTime Apply the trigger time

0 : The trigger time is ignored. Only the relative time-stamp (time from start/trigger) of the elements is taken into account.

1 : Trigger time taken into account. The absolute time-stamp (date and time) of the elements is taken into account.

DoMerge Should the values of the channel to be appended also be inserted?

0 : Append only. Only such elements are appended whose time-stamp is not less than the last one in TsaChannel. All other
elements are ignored.

1 : The elements of the channel to be appended are inserted and/or appended at the appropriate locations among the
elements of TsaChannel.

AllowDuplicate If any elements are identical in both TsaChannel and the channel to be appended, they can be inserted either only once or in
duplicate.

0 : Don't allow duplicates

1 : Allow duplicates

Description:
The function allows appending/merging of data sets in correct time/x-coordinates.

The result applies the time resolution (dx) of TsaChannel. If the value deviates in the appended channel, its times are rounded appropriately and
thus altered.

If TsaChannel is not to be altered, it is necessary to work with a copy.

Neither of the channels to be joined may have events.

In a special application, the function can work analogously to EventJoin(): In that case, TsaChannel is a channel with events and TsaChannelJoin is
set to the value 0. All event are joined together. Afterwards, TsaChannel has no more events.

Examples:
Two measurements in succession are joined:

TsaJoin (Tsa1, Tsa2, 1, 0, 0)

All events are joined:

TsaJoin (TsaEvents, 0, 1, 0, 0)

imc FAMOS Func on Reference - 1031 -

(c) 2024 imc Test & Measurement GmbH

TsaSaveAscii

Scope: TimestampASCII data

A time-stamp-ASCII channel is saved to a file in ASCII format.

Declaration:
TsaSaveAscii (TsaChannel, Filename, Separator, Header, AbsTime, DecimalComma, Columns)

Parameter:

TsaChannel TsaChannel

Filename Filename is the files complete and valid name of the newly created file.

Separator Separator: The Ascii-code for the separator between columns, e.g. 9 for a TAB, 44 for a comma, 32 for a space.

Header Header

0 : no header desired

1 : a comment, trigger time and unit are written to the file's beginning

AbsTime AbsTime

0 : Time specification in the Time column in relative time

1 : Time specification in the Time column in absolute time with date and time of day

DecimalComma DecimalComma

0 : Decimal point

1 : Decimal comma

Columns Columns

0 : Text without time column

1 : Text with time column (default)

3 : Hex display with time column

5 : CAN, LIN message with time column

7 : Flexray message with time column

Description:
The channel may also have events.

Examples:
The channel TsaChannel is written to the specified file 1.txt with a header and tabs as column separators. As is typical, it is expessed using
decimal points and relative time.

TsaSaveAscii (TsaChannel, "c:\imc\dat\1.txt", 9, 1, 0, 0, 1)

imc FAMOS Func on Reference - 1032 -

(c) 2024 imc Test & Measurement GmbH

TsaSetData

Scope: TimestampASCII data

For a specified position in a time-stamp-ASCII channel, the corresponding element's contents are reset. The contents are represented as a
waveform.

Declaration:
TsaSetData (TsaChannel, Position, Data)

Parameter:

TsaChannel TsaChannel

Position Position

Data Data

Description:
The waveform is transfered byte by byte, no matter in which data format it is expressed. It makes sense for the waveform to take the Byte
numerical format. An element's maximum size (see time-stamp-ASCII documentation) must not be exceeded. The parameter channel remains
unchanged. The position must be valid e.g. must be determined using TsaFindTime(), TsaFindFirst(), TsaFindNext() or TsaFindValidPos(). When
an element's position is changed, the subsequent elements' positions generally change also.

Examples:
The 1st element's contents are set to a ramp.

It will contain 100 bytes, increasing from 1 to 100.

Content = ramp (1, 1, 100)
SetDatFormat (Content, 5, 0, 255) ; Makes the numerical format Byte (0..255).

Position = TsaFindFirst (TsaChannel)
TsaSetData (TsaChannel, Position, Content)

imc FAMOS Func on Reference - 1033 -

(c) 2024 imc Test & Measurement GmbH

TsaSetText

Scope: TimestampASCII data

For a specified position in a time-stamp-ASCII channel, the corresponding element's contents are reset. The contents are represented as text.

Declaration:
TsaSetText (TsaChannel, Position, Text)

Parameter:

TsaChannel TsaChannel

Position Position

Text Text

Description:
The parameter channel is changed in the process. The position must be valid e.g. must be determined using TsaFindTime(), TsaFindFirst(),
TsaFindNext() or TsaFindValidPos(). When an element's position is changed, the subsequent elements' positions generally change also.

Examples:
The contents of the 1st element are set to a fixed text.

Text = "hello"
Position = TsaFindFirst (TsaChannel)
TsaSetText (TsaChannel, Position, Text)

imc FAMOS Func on Reference - 1034 -

(c) 2024 imc Test & Measurement GmbH

TsaSetTime

Scope: TimestampASCII data

For a specified position in a time-stamp-ASCII channel, the corresponding element's time is reset.

Declaration:
TsaSetTime (TsaChannel, Position, Time)

Parameter:

TsaChannel TsaChannel

Position Position

Time Time

Description:
The time may not be less than that of its predecessor and not more than that of its successor. Times must increase monotonously but not strictly
monotonously; i.e., adjacient elements' times may be the same. The time may be rounded, since the time is expressed internally as x0+i*dx,
where i >= 0 is an integer. The time is entered in relative terms: as the time after the trigger release, without the absolute trigger time, date or
time of the measurement start. The parameter channel remains unchanged. The position must be valid e.g. must be determined using
TsaFindTime(), TsaFindFirst(), TsaFindNext() or TsaFindValidPos().

Examples:
The time of the 1st element is set tto 3s.

Position = TsaFindFirst (TsaChannel)
Time = 3.0
TsaSetTime (TsaChannel, Position, Time)

imc FAMOS Func on Reference - 1035 -

(c) 2024 imc Test & Measurement GmbH

TsaTextToData

Scope: TimestampASCII data

A text is converted byte by byte into a waveform. This waveform will take the Byte numerical format.

Declaration:
TsaTextToData (Text) -> Data

Parameter:

Text Text

Data

Data Data

Description:

Examples:

Data = TsaTextToData (Text)

imc FAMOS Func on Reference - 1036 -

(c) 2024 imc Test & Measurement GmbH

TtoSv

A number is imported in various formats from a text.

Declaration:
TtoSv (TxText, TxFormat) -> SvNumber

Parameter:

TxText Text from which the number is to be exported.

TxFormat Format specification

"e" : A real or integer decimal number is read. As the decimal separator, a period is expected. Examples: "375" or "-1.3e-4" or
"3.124".

"f" : Identical with "e".

"a" : A decimal number is read. Decimal period or comma according to global presettings for preferred decimal separator for real
numbers ('Extra'/'Options'/'Display' or SetOption("Display.DecimalSeparator",...)

"b" : A number in binary notation is imported, e.g. "100100".

"x" : A number in hexadecimal notation is imported, e.g. "9B" or "a21E".

SvNumber

SvNumber The return value is the imported number.

Description:
If the text contains no permitted numerical notation and thus no number can be determined, an error message is posted.

The format text is case insensitive.

Examples:

x = TtoSv("22", "x")
b = TtoSv("001001", "b")

x contains the value 34 (= 22Hex). b contains the value 9.

See also:
TForm, TPart, TConv, SvToChar

imc FAMOS Func on Reference - 1037 -

(c) 2024 imc Test & Measurement GmbH

TxArrayClean

In a text array, all elements are deleted which meet a specified condition.

Declaration:
TxArrayClean (TxaTextArray, SvCondition [, SvUpperLowerCase] [, TxPattern]) -> SvCountDeleted

Parameter:

TxaTextArray Text array

SvCondition Specifies which elements are to be deleted.

0 : After running the function, the text array no longer contains any duplicates.

1 : All empty texts are deleted (length 0).

2 : All empty texts as well as all texts which contain only blank spaces are deleted. Blank spaces include the space
character (0x20) as well as the carriage return character, new-line character, vertical tabulator character, and linefeed
character (0x09 through 0x0D).

3 : All texts are deleted which conform to the pattern specified in the 4th parameter.

4 : All texts are deleted which do not conform to the pattern specified in the 4th parameter.

5 : All texts are deleted which conform to the regular expression specified in the 4th parameter.

6 : All texts are deleted which do not conform to the regular expression specified in the 4th parameter.

SvUpperLowerCase
Specifies whether when testing for duplicates or when comparing an element with the comparison pattern, a distinction
is made between the uppercase and lowercase versions of a letter. With [SVCondition] = 1 or 2, not used. (optional ,
Default value: 0)

0 : Uppercase and lowercase of the same letter are considered identical.

1 : Uppercase and lowercase of the same letter are considered different.

TxPattern For [SVCondition] = 3 or 4, a simple comparison pattern (wildcards "*","?"). For [SVCondition] = 5 or 6, a regular
expression. Else, not used. (optional)

SvCountDeleted

SvCountDeleted Count of elements deleted (optional)

Description:
In the simple comparison pattern ([SVCondition] = 3 or 4), it is possible to use the wildcard characters "*" and "?" in their respective customary
meanings. "?" stands for exactly one arbitrary character, "*" for arbitrary many arbitrary characters.

For ([SVCondition] = 5 or 6), a "regular expression" is used for the comparison pattern. In this way it is possible to formulate complex
comparisons. A summary of the syntax of regular expressions is presented in the online help on the function TxRegexMatch().

Examples:
Delete duplicates

txa = ["RPM", "Current", "rpm", "current", "voltage", "rpm"]
; delete all duplicates, case insensitive
count = TxArrayClean(txa, 0)
; txa contains ["RPM", "Current", "voltage"]; count has the value 3

txa = ["RPM", "Current", "rpm", "current", "voltage", "rpm"]
; delete all duplicates, case sensitive
TxArrayClean(txa, 0, 1)
; txa contains ["RPM", "Current", "rpm", "current", "voltage"]

txa = ["RPM", "rpm"]
; delete all duplicates, case sensitive
count = TxArrayClean(txa, 0, 1)
; txa contains ["RPM", "rpm"]; count has the value 0

Delete empty texts

txa = ["", " ", "rpm", "current", "", "rpm"]
; delete all texts of length 0
TxArrayClean(txa, 1)
; txa contains [" ", "rpm", "current", "rpm"]

txa = ["", " ", "rpm", "current", "", "rpm"]

imc FAMOS Func on Reference - 1038 -

(c) 2024 imc Test & Measurement GmbH

; delete all texts having the length 0 or consisting only of spaces
TxArrayClean(txa, 2)
; txa contains ["rpm", "current", "rpm"]

Simple pattern comparison

txa = ["current1", "RPM2", "rpm1", "Current2", "voltage"]
; delete all texts beginning with "1"
TxArrayClean(txa, 3, 0, "*1")
; txa enthält ["RPM2", "Current2", "voltage"]

txa = ["current1", "RPM2", "rpm1", "Current2", "voltage"]
; delete all texts which do not consist of 3 arbitrary characters followed by a 1.
TxArrayClean(txa, 4, 0, "???1")
; txa contains ["rpm1"]

txa = ["current1", "RPM2", "rpm1", "Current2", "voltage"]
; deletes all texts beginning with an uppercase or lowercase 'C'.
TxArrayClean(txa, 3, 0, "C*")
; txa contains ["RPM2", "rpm1", "voltage"]

txa = ["current1", "RPM2", "rpm1", "Current2", "voltage"]
; delete all texts which begin with an uppercase 'C'.
TxArrayClean(txa, 3, 1, "C*")
; txa enthält ["current1", "RPM2", "rpm1", "voltage"]

Regular expressions

txa = ["asin3.dat", "sin.dat", "SIN11.DAT", "SIN2.raw", "sin1.txt"]
; deletes all filenames whose name consists of "sin" + number and the extension "dat" or "raw".
TxArrayClean(txa, 5, 0, "sin\d+\.(dat|raw)")
; txa contains ["asin3.dat", sin.dat", "sin1.txt"]

txa = ["1", "s", "1e2", "+2e-3", "2,3", "2a", "-1.235"]
; only retain texts which represent a number
TxArrayClean(txa, 6, 0, "[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)([eE][-+]?[0-9]+)?")
; txa contains ["1", "1e2", "+2e-3", "-1.235"]

See also:
TxArrayDelete, TLike, TComp, TxRegexMatch

imc FAMOS Func on Reference - 1039 -

(c) 2024 imc Test & Measurement GmbH

TxArrayCombine

Two text arrays are combined according to a specified criterion.

Declaration:
TxArrayCombine (Txa1, Txa2, SvCondition [, SvUpperLowerCase]) -> TxaResult

Parameter:

Txa1 First text array

Txa2 Second text array

SvCondition Specifies the conditions according to which the text arrays are combined.

0 : OR: The result contains all elements which are contained in either [Txa1] or [Txa2]. The result starts with the elements
from [Txa1] and then the elements from [Txa2], each in their original order.

1 : AND: The result contains elements which are contained both in [Txa1] and in [Txa2]. The order of the result matches the
order in [Txa1].

2 : Exclusive-OR (XOR): The result contains all elements which are contained in [Txa1] or in [Txa2]. The result starts with
the elements from [Txa1] and next the elements from [Txa2], each in their original order.

SvUpperLowerCase Case sensitive (optional , Default value: 0)

0 : The upper and lower cases of the same letter are regarded as identical, e.g. 'A' = 'a'.

1 : The upper and lower cases of the same letter are regarded as different, e.g. 'A' <> 'a'.

TxaResult

TxaResult Results of the combination of the two text arrays

Description:
The text array of results contains no duplicates.

Examples:

Txa1 = ["current", "Voltage", "rpm"]
txa2 = ["RPM", "velocity", "current"]

; all entries which are contained in Txa1 OR txa2:
; --
txaResult = TxArrayCombine(Txa1, txa2, 0, 0)
; txaResult contains ["current", "Voltage","rpm", "velocity"]

;... case sensitive:
txaResult = TxArrayCombine(Txa1, txa2, 0, 1)
; txaResult contains ["current", "Voltage","rpm", "RPM", "velocity"]

; all entries which are contained in Txa1 AND txa2:
; ---
txaResult = TxArrayCombine(Txa1, txa2, 1, 0)
; txaResult contains ["current", "rpm"]

;... case sensitive:
txaResult = TxArrayCombine(Txa1, txa2, 1, 1)
; txaResult contains ["current"]

; all entries which are contained in EITHER Txa1 OR txa2:
; --
txaResult = TxArrayCombine(Txa1, txa2, 2, 0)
; txaResult contains ["Voltage", "velocity"]

;... case sensitive:
txaResult = TxArrayCombine(Txa1, txa2, 2, 1)
; txaResult contains ["Voltage", "rpm", "RPM", "velocity"]

See also:
TxArrayInsert, TxArrayClean, TxArraySort, TComp, AND

imc FAMOS Func on Reference - 1040 -

(c) 2024 imc Test & Measurement GmbH

TxArrayCreate

The function creates a text array having the specified initial amount of elements.

Declaration:
TxArrayCreate (SvDimension) -> TxaNewTextArray

Parameter:

SvDimension Amount of text elements included

TxaNewTextArray

TxaNewTextArray Text array having the specified amount of elements

Description:
The function creates a text array variable. The text array is created having the specified amount of elements, which are all initially empty.

A text array variable describes a list of texts which are grouped together under one name and which can be adressed by means of their index.

For setting and getting the individual texts, use the index notation with square brackets, for instance

FourTexts = TxArrayCreate(4)
FourTexts[2] = "Just another text"
SecondText = FourTexts[2]

You can subsequently change the amount of elements in a text array using the function TxArraySetSize().

If when assigning a text, the specified index is 1 greater than the current size, then internally the size is adjusted automatically. This makes it
convenient to use, if for instance the text array in a loop is to be filled up step-by-step and the ultimate size is not yet known.

TxArray = TxArrayCreate(0) ; Initial size = 0
Index = 1
WHILE ...
 ...
 TxArray[Index] = AnyText ; TxArray grows automatically
 Index = Index + 1
END

However, as soon as the final value is known, it is more efficient to state is explicitly in TxArrayCreate() or by means of TxArraySetSize().

For enumerating the elements of a text array, the loop FOREACH ELEMENT is well suited.

Alternatively, (short) text arrays can also be conveniently genreated with an initialization list:

TxArrayAllUsers = ["Joe", "John", "Jack"]

Examples:
In a text array, various information on a spectrum analysis is stored, along with the actual result data in one file.

Result1 = AmpSpectrumRMS(Channel1, 1024, 1, 50, 1, 0)
Result2 = AmpSpectrumRMS(Channel2, 1024, 1, 50, 1, 0)
CalculationParameters = TxArrayCreate(3)
CalculationParameters[1] = "Window length: 1024"
CalculationParameters[2] = "Overlapping: 50%"
CalculationParameters[3] = "Window function: Hamming"
FileSave("c:\tmp\result", "", 0, Result1, Result2, CalculationParameters)

In a specified folder, all files having the extension .dat are listed. The path name of all files whose creation time is newer than 1/1/2012 are saved
in a text array.

FileListID = FsFileListNew("c:\copy", "*.dat", 0, 0, 0)
n = FsFileListGetCount(FileListID)
time_fence = TimeJoin(1, 1, 2012, 0, 0, 0)
FileNames = TxArrayCreate(n)
j = 1
FOR i = 1 TO n
 IF FsFileListGetTime(FileListID, i) >= time_fence
 FileNames[j] = FsFileListGetName(FileListID, i)
 j = j + 1
 END
TxArraySetSize(FileNames, j-1) ; reduce size to actual element count
END

The content of a multi-channel file is read completely. The names of the channels loaded are recorded in a text array.

imc FAMOS Func on Reference - 1041 -

(c) 2024 imc Test & Measurement GmbH

fh = FileOpenDSF("Samplefile.dat", 0)
IF fh > 0
 count = FileObjNum?(fh)
 LoadedVarNames = TxArrayCreate(count)
 FOR i = 1 TO count
 name = FileObjName?(fh, i)
 <name> = FileObjRead(fh, i)
 LoadedVarNames[i] = name
 END
 FileClose(fh)
END

See also:
TxArraySetSize, TxArrayGetSize

imc FAMOS Func on Reference - 1042 -

(c) 2024 imc Test & Measurement GmbH

TxArrayDelete

Deletes an element of a text array.

Declaration:
TxArrayDelete (TxArray, Index) -> TxArrayResult

Parameter:

TxArray Text array

Index Index of the element to be deleted

TxArrayResult

TxArrayResult Result text array

Description:
By means of this function, elements of a text array can be deleted.

The index may only lie in a range between 1 and the text array size.
If the index is outside of the text array's range boundaries, the sequence will be cancelled.

Examples:
The text array's 3rd element is deleted

txArray=TxArrayCreate(5)
txArray[1]="One"
txArray[2]="Two"
txArray[3]="Three"
txArray[4]="Four"
txArray[5]="Five"
txArrayResult = TxArrayDelete(txArray,3)

See also:
TxArrayInsert

imc FAMOS Func on Reference - 1043 -

(c) 2024 imc Test & Measurement GmbH

TxArrayGetSize

The function returns the current size of a text array (meaning the amount of text-elements it contains).

Declaration:
TxArrayGetSize (TxaTextArray) -> SvDimension

Parameter:

TxaTextArray Variable of the type Text Array to query

SvDimension

SvDimension Size, amount of elements

Description:
The amount of elements a text array has is specified when it is created using the function TxArrayCreate() and can be changed subsequently
using the function TxArraySetSize().

Examples:
A text box having the name [Log] is loaded from a file and entered into a list in the Panel currently open.

FileLoad("c:\logfiles\Log.dat", "", 0)
n = TxArrayGetSize(Log)
FOR i = 1 TO n
 PnInsertItem("list", 0, Log[i], 0)
END

Remark: For an enumeration of this sort, it is also possible to use a FOREACH ELEMENT-loop.

A text array having the name [Log] is loaded from a file and expanded with the entries of an existing text array [CurrentLog]. Subsequently, the
updated text array is saved again.

FileLoad("c:\logfiles\Log.dat", "", 0)
size = TxArrayGetSize(Log)
current_size = TxArrayGetSize(CurrentLog)
TxArraySetSize(log, size + current_size)
FOR i = 1 TO current_size
 Log[size+i] = CurrentLog[i]
END
FileSave("c:\logfiles\Log.dat", "", 0, log)

imc FAMOS Func on Reference - 1044 -

(c) 2024 imc Test & Measurement GmbH

TxArrayInsert

Inserts a text or text array into a text array.

Declaration:
TxArrayInsert (TxArray1, TextOrTxArray2, Index) -> TxArrayResult

Parameter:

TxArray1 Either the text or Text Array 2 is inserted into this text array.

TextOrTxArray2 Text or text array which is inserted into Text Array 1.

Index Index in Text Array 1. The text or Text Array 2 is inserted ahead of this index.

TxArrayResult

TxArrayResult Result text array

Description:
By means of this funciton, text arrays can be joined.

The 2nd parameter may be either a text or a text array.
The text or Text Array 2 is inserted ahead of the index specified.
If the index is -1, then the text or Text Array 2 is appended to Text Array 1.
The index may only lie within the range from 1 to the text array size.
If the index is outside of Text Array 1's range boundaries, the sequence will be cancelled.

Examples:
TextArray2 will be appended to TextArray 1.

txArrayResult=TxArrayInsert(txArray1,txArray2,-1)

TextArray2 will be appended to Text Array 1 in front of the index=1.

txArrayResult=TxArrayInsert(txArray1,txArray2,1)

A text will be appended to Text Array 1 before the index=3.

txArrayResult=TxArrayInsert(txArray1,"Hello",3)

See also:
TxArrayDelete

imc FAMOS Func on Reference - 1045 -

(c) 2024 imc Test & Measurement GmbH

TxArrayPart

A section of a text array is copied to a new text array.

Declaration:
TxArrayPart (TxaSource, SvIndex, SvCount) -> TxaPartCopy

Parameter:

TxaSource Text array whose elements are to be copied.

SvIndex Index of the first element to be copied. The first element has the index 1.

SvCount Count of elements to be copied. -1, if all elements down to the last are to be copied.

TxaPartCopy

TxaPartCopy Newly generated text arry with copies of the specified elements

Description:
This function creates a new text array which represents the copy of a section of the parameter text array.

When a -1 is specified for [SvIndex], or when ([SvIndex]+[SvCount]) is greater than the count of elements in the source text array, all elements
are copied all the way to the end.

Examples:
The last 3 elements of a text array are copied to a new text array.

n = TxArrayGetSize(txaSource)
txaSourcePart = TxArrayPart(txaSource, n-2, 3)

Suppose a text array contains a large amount of filenames. We want to load and evaluate the associated files.

allFiles = FsGetFileNames("c:\data", "*.raw", 0, 1, 0)
FOREACH ELEMENT file in allFiles
 !WorkWithFile(file) ; loads the file and carries out the evaluation
END

This routine is to be accelerated by means of parallel execution. For this purpose, the text array is subdivided into 4 parts which are all executed
in parallel.

allFiles = FsGetFileNames("c:\data", "*.raw", 0, 1, 0)
count = TxArrayGetSize(allFiles)
chunksize = floor(count/4)
BEGIN_PARALLEL
 !WorkWithFiles(TxArrayPart(allFiles, 1, chunksize))
 !WorkWithFiles(TxArrayPart(allFiles, 1+ chunksize, chunksize))
 !WorkWithFiles(TxArrayPart(allFiles, 1+ chunksize*2, chunksize))
 !WorkWithFiles(TxArrayPart(allFiles, 1+ chunksize*3, count-3*chunksize))
END_PARALLEL

For this purpose, the sequence function !WorkWithFiles is defined as follows:

; Declaration: !WorkWithFiles(Par1 [Data type: Textarray])
FOREACH ELEMENT file in Par1
 !WorkWithFile(file)
END

See also:
TxArrayInsert, TxArrayGetCount

Supported since:
Version 2022

imc FAMOS Func on Reference - 1046 -

(c) 2024 imc Test & Measurement GmbH

TxArraySetSize

The function changes a text array's size (meaning the amount of text-elements it contains).

Declaration:
TxArraySetSize (TxaTextArray, SvDimension)

Parameter:

TxaTextArray Variable of type Text Array to be changed

SvDimension New size, amount of elements

Description:
The amount of elements a text array has is specified when it is created using the function TxArrayCreate() and can be changed subsequently
using the function TxArraySetSize().

When the size is reduced, the content of the remaining texts remains unchanged. When increasing the size, the new elements are initialized
with an empty text.

When a text is assigned, if the index specified is 1 higher than the momentary size, the size is automatically adapted internally. This is a
convenience for operation, for instance if the text array is to be filled step-by-step in a loop and the ultimate size is not yet known. However, as
soon as the final size is known, it is more efficient to state it explicitly using TxArrayCreate() or TxArraySetSize().

Examples:
A text array having the name [Log] is loaded from a file and expanded with the entries of an existing text array [CurrentLog]. Subsequently, the
updated text array is saved again.

FileLoad("c:\logfiles\Log.dat", "", 0)
size = TxArrayGetSize(Log)
current_size = TxArrayGetSize(CurrentLog)
TxArraySetSize(Log, size + current_size)
FOR i = 1 TO current_size
 Log[size+i] = CurrentLog[i]
END
FileSave("c:\logfiles\Log.dat", "", 0, log)

See also:
TxArrayCreate, TxArrayGetSize

imc FAMOS Func on Reference - 1047 -

(c) 2024 imc Test & Measurement GmbH

TxArraySort

The elements in a text array are sorted.

Declaration:
TxArraySort (TxaTextArray, SvMode, SvOrder)

Parameter:

TxaTextArray Text array

SvMode The mode according to which the elements are to be sorted.

0 : Alphabetic sorting. Upper and lower cases of the same letter are regarded as identical, e.g. 'A' = 'a'.

1 : Alphabetical sorting. Upper and lower cases of the same letter are regarded as different, e.g. 'A' < 'a'.

2 : Natural sorting in ascending order. With the natural sorting order, alphabetical sorting applies in principle, however digits
apearing in texts are sorted according to their value. Thus for example, 'Channel_2' appears before 'Channel_10'. Upper and
lower cases of the same letter are regarded as identical.

SvOrder Order in which the elements are to be sorted

0 : Increasing order, the "smallest" element first

1 : Descending order, the "largest" element first.

Examples:

txa = ["channel_10", "Channel_2", "channel_1"]

; alphabetic; case insensitive
TxArraySort(txa , 0, 0)
; txa = ["channel_1", "channel_10", "Channel_2"]

; alphabetic; case sensitive
TxArraySort(txa , 1, 0)
; txa = ["Channel_2", "channel_1", "channel_10"]

; natural
TxArraySort(txa , 2, 0)
; txa = ["channel_1", "Channel_2", "channel_10"]

See also:
TxArrayClean, TComp, Sort

imc FAMOS Func on Reference - 1048 -

(c) 2024 imc Test & Measurement GmbH

TxArrayToChannel

The elements of a text array are converted to numbers and a numerical data set is constructed from these.

Declaration:
TxArrayToChannel (TxaTextArray, SvFormat [, SvReplacementValue]) -> Data

Parameter:

TxaTextArray Text array from whose elements the numbers are to be read out.

SvFormat Format specification

0 : The numbers are expected to be expressed as either integers or real decimal numbers. Either a point or comma is
allowed as a decimal separator. Examples: "375" or "-1.3e-4" or "3,124" or "2E11".

1 : The numbers are expected to be expressed in binary representation, e.g. "100100".

2 : The numbers are expected to be expressed in hexadecimal representation, e.g. "9B" or "a21E". The prefix '0x' or '0X' is
allowed but not necessary.

SvReplacementValue Optional substitute value to be used when an element can not be converted. (optional)

Data

Data Data set with the values read.

Description:
How the function behaves when a text element contains no permitted numerical representation, and thus no number can be determined, depends
on the optional parameter [SVSubValue].

If this optional parameter is specified, it is applied in the result as a substitute value. The result always has the exact same number of values as
the text array has elements.
If omitted, the conversion is cancelled and the values previously read successfully are returned. The length of the result matches the array
index of the last succesfully converted text.

When converting from the decimal format, the result's data format is '8-Byte Real' (double). As the decimal separator, a point or a comma can be
used; a separator character for thousands is not allowed.

When converting from the binary or hexadecimal format, the result's data format is '4-Byte unsigned integer'; thus numbers in the range
0..4294967295 can be converted.

Initial and final spaces in the texts are allowed.

In order to convert a text containing a series of numbers, you can initially disassemble the text with TxSplit() to a text array and then use the
function TxArrrayToChannel().

Examples:

txa = ["-1", " 1.2e3", "1,23"]
data = TxArrayToChannel(txa, 0)
; data has the value [-1, 1200, 1.23]

tx = "-1, 1.2e3, 1.23"
data = TxArrayToChannel(TxSplit(tx, ","), 0)
; data has the value [-1, 1200, 1.23]

txa = ["11.2", "", "---", "1,23"]
data = TxArrayToChannel(txa, 0)
; data has the value [11.2]
data = TxArrayToChannel(txa, 0, -1)
; data has the values [11.2, -1, -1, 1.23]

txa = [" 1", "a ", "FFFFFFFF", "10"]
data = TxArrayToChannel(txa, 2)
; data has the values [1, 10, 4294967295, 16]

txa = [" 01", "-a", "", "FFFFFFFFF", "10"]
data = TxArrayToChannel(txa, 2)
; data has the value [1]
data = TxArrayToChannel(txa, 2, 0)
; data has the values [1, 0, 0, 0, 16]

imc FAMOS Func on Reference - 1049 -

(c) 2024 imc Test & Measurement GmbH

txa = [" 1", "010", "101"]
data = TxArrayToChannel(txa, 1)
; data has the values [1, 2, 5]

txa = ["-1", "12"]
data = TxArrayToChannel(txa, 1)
; data is empty
data = TxArrayToChannel(txa, 1, 0)
; data has the values [0,0]

The first column of a multi-column text file containing numerical values (columns separated by commas) is to be imported:

idFile = FileOpenASCII("z:\000.txt", 0)
TxaLines = TxArrayCreate(0)
ret = FileLineRead(idFile, TxaLines, 0) ; read all text lines from file
IF ret = 0
 TxaLines = TxRegexMatch(TxaLines, "^[^,]+", " ", 0, 0) ; split 1st column (comma separated) from line
 ; To get the 3rd column, you could use the following line (note the '{2}' for the the zero based column index):
 ; TxaLines = TxRegexMatch(TxaLines, "^(?:[^,]+,){2}([^,]+)", " ", 0, 1)
 channel = TxArrayToChannel(TxaLines, 0);
END
FileClose(idFile) ; close file processing

Remarks: Such import tasks can often be accomplished more conveniently using the ASCII-Import-Assistant.

See also:

imc FAMOS Func on Reference - 1050 -

(c) 2024 imc Test & Measurement GmbH

TxFind

The system searches for a text in the text array or text.

Declaration:
TxFind (TextOrTxArray, TxFindText, Occurrence, Options) -> Result

Parameter:

TextOrTxArray Text or text array in which to find the text

TxFindText Text to search for

Occurrence The n-th occurrence of the text for which the system searches

-1 : Finds the last occurrence of the search text.

1... : Finds the n-th occurrence of the search text.

0 : Finds all occurrences of the search text (not for Textarrays).

Options Search criteria options

0 : Case sensitive

1 : Case insensitive

Result

Result Data set with the result

Description:
The system searches for a text or text array for the occurence of a text.

This function's result is a normal data set.

The data set length corresponds to the text array's dimensions, i.e. there is onle value in the data set for each element in the text array.

This value denotes the first position of the n-th occurrence of the search text in the text array element.

If a value is = 0, then the search text is not found in this element of the text array.

The parameter Occurrence specifies at which occurrence of the search text to determine the position.

If the 1st parameter is a simple text (no array), then Occurence = 0 is also allowed. In this case, the positions of every occurrence of the search
text are returned as as data set (length of 0, when the search text can't be found).

Invalid options cause the sequence to be cancelled.
An empty search text causes the sequence to be cancelled.

Examples:
The system searches for the term "Form" in a text array.

txArray=TxArrayCreate(3)
txArray[1]="Decimal format and binary format"
txArray[2]="Conversion"
txArray[3]="The form is valid"
result=TxFind(txArray,"form",1,1)

The data set "result" contains the values 9,0,5

result=TxFind(txArray,"form",2,1)

The data set "result" contains the values 27,0,0

See also:
TxReplace, TxRegexMatch, TxRegexReplace

imc FAMOS Func on Reference - 1051 -

(c) 2024 imc Test & Measurement GmbH

TxFormatEx

Function for formatting texts

Declaration:
TxFormatEx (TxFormat, Parameter1 [, Parameter2] [, Parameter3] [, Parameter4] [, Parameter5] [, Parameter6] [,
Parameter7] [, Parameter8]) -> TxResult

Parameter:

TxFormat Formatting string

Parameter1 1st parameter for the formatting

Parameter2 2nd parameter for the formatting (optional)

Parameter3 3rd parameter for the formatting (optional)

Parameter4 4th parameter for the formatting (optional)

Parameter5 5th parameter for the formatting (optional)

Parameter6 6th parameter for the formatting (optional)

Parameter7 7th parameter for the formatting (optional)

Parameter8 8th parameter for the formatting (optional)

TxResult

TxResult Result text

Description:
The function receives the formatting string with text and formatting elements, as well as parameters. The text is returned with the parameters
inserted into the respective formatting.

The parameters may be texts or single values.

The formatting string consists of text, format elements and optionally a culture element. The formatting elements are replaced with the
parameters. A format element determines which parameter is used and how it is formatted.

The formatting string consists of text, format elements and optionally a culture element. The formatting elements are replaced with the
parameters. A format element determines which parameter is used and how it is formatted.:{[T]Index[Alignment][:FormatString]}
The matching curved brackets ("{" and "}") are required and interpreted as the start and finish of a format element. In order to output an opening
or closing curved bracket as actual characters, they must be entered in duplicate.

The optional statement T at the start of a format element denotes the associated parameter as a time object. It interpretes the affected
parameter as Date/Time-value in imc Time-format (Seconds since 1980/1/1). A format string representing the date and time must be entered. A
parameter can not simultaneously be formatted as a time object and as a numerical value.

The obligatory Index denotes the parameter to be used. It begins at 1 and ends with 8 (since only a maximum of 8 parameters can be passed).
Multiple format elements can access the same parameter, by using the same index in the format elements. For the indices in the format
elements, the corresponding parameters must be passed. If an index is specified in a format element, for which no parameter was passed, the
sequence is canceled.

The optional statement of the alignment is a signed integer. This indicates the total length of the field into which the argument is inserted. For a
positive number, the alignment is right-justified, otherwise left-justified. As fill characters, spaces are used. If the alignment is less than the
length of the formatted characters, then the alignment is ignored. The comma is required for specifying an alignment.

The optional Format-String governs the formatting. It must match the parameter. If the parameter is a numerical value, then a numerical format
string must be used. If the parameter is a time value (date/time), then a format string for date and time must be supplied. If the format The colon
is required when a format string is supplied.

If the format string is missing, then the format string "G" is used. The the most compact output with 7 significant places(input data 4 byte real, 1/2
byte integer) or 15 significant places (8 byte real, 4/8 byte integer) is choosen.

The tables below are a compilation of the valid format characters for numeric and date-/time values. These tables are not guaranteed to be
exhaustive. The examples provided are all based on the setting en-US for the culture.

Default format-strings for numerical values:

Format
character Description

E or e Output in exponential format. By appending a number it is possible to specify the amount of decimal places.
Example: 1052.0329112756 ("E") -> 1.052033E+003

F or f
Output of a number in decimal format. By appending a number it is possible to specify the amount of decimal places. By default, two
decimal places.
Example: -1234.56 ("F4") -> -1234.5600

imc FAMOS Func on Reference - 1052 -

(c) 2024 imc Test & Measurement GmbH

G or g
The most compact fixed-point or scientific notation. By appending a number, it is possible to define the amount of significant digits.
Example: 123.4546 ("G4") -> 123.5

N or n
Integers or decimal numbers with group separator characters, a decimal separator character, and with an optional minus sign. By
appending a number it is possible to specify the amount of decimal places. The output follows the format ddd.ddd.ddd,dd.
Example: -1234.56 ("N3") -> -1,234.560

P or p
The number is multiplied by 100 and associated with a percent character. By appending a number it is possible to specify the amount
of decimal places.
Example: 1 ("P") -> 100.00 %

C or c
Output in the currency format (including the currency symbol for the current country setting). By appending a number, the amount of
decimal places can be set.
Example: 123.456 ("C") -> $123.46

User-defined format-strings for numerical values

Format
character Description

0 The number 0 serves as a placeholder for a number. Non-significant zeros are represented by the number 0.
Example: 1234.5678 ("00000") -> 01235

Replaces the "#"-symbol with a corresponding digit if available, else no digit in the result.
Example: 0.45678 ("#.##") -> .46

. The first period character in the format-string determines the position of the decimal separator in the formatted value.
Example: 0.45678 ("0.00") -> 0.46

, Serves to separate the thousands digits.
Example: 2147483647 ("##,#") -> 2,147,483,647

% This character causes multiplication by 1000. The per-mill sign is included in the output.
Example: 0.3697 ("%#0.00") -> %36.97

E0, E+0, E-
0, e0, e+0,
e-0

These format characters cause a number to be expressed in exponential notation. With E+0 and e+0, the positive sign is always
displayed; with all others, always only the negative. The amount of zeroes determines the minimum number of digits in the
exponent.
Example: 987654 ("#0.0e0") -> 98.8e4

\ This character, following the Escape-character, is interpreted as an actual literal slash and not as a user-defined format character.
Example: 987654 ("\###00\#") -> #987654#

Default format strings for date-/time values

Format character Description

d Short date
Example: 2016-06-02T14:50:09 ("d")-> 6/2/2016

D Long date
Example: 2016-06-02T14:50:09 ("D")-> Thursday, June 02, 2016

f Long date with short time indication
Example:: 2016-06-02T14:50:09 ("f")-> Thursday, June 02, 2016 2:50 PM

F Long date with long time indication
Example: 2016-06-02T14:50:09 ("F") -> Thursday, June 02, 2016 2:50:09 PM

g Short date with short time indication
Example: 2016-06-02T14:50:09 ("g") -> 6/2/2016 2:50 PM

G Short date with long time indication
Example: 2016-06-02T14:50:09 ("G") -> 6/2/2016 2:50:09 PM

M or m Day and month
Example: 2016-06-02T14:50:09 ("M") -> June 02

R or r Date according to pattern of RFC 1123
Example: 2016-06-02T14:50:09 ("R")-> Thu, 02 Jun 2016 14:50:09 GMT

t Short time indication
Example: 2016-06-02T14:50:09 ("t") -> 2:50 PM

T Long time indication
Example: 2016-06-02T14:50:09 ("T") -> 2:50:09 PM

Y or y Month and year
Example:: 2016-06-02T14:50:09 ("Y") -> June, 2016

User-defined format strings for date-/time values

Format character Description

imc FAMOS Func on Reference - 1053 -

(c) 2024 imc Test & Measurement GmbH

dd / d Day of the month, with/without preceding zero
Example: 2016-06-02T14:50:09 ("dd") -> 02

ddd Abbreviation of weekday
Example: 2016-06-02T14:50:09 ("ddd") -> Thu

dddd Complete name of weekday
Example: 2016-06-02T14:50:09 ("dddd") -> Thursday

f / ff / .. / fffffff Indication of 1/10-second, 1/100 seconds ... 1/10-microseconds
Example: 2016-06-02T14:50:09.123456 ("fff ") -> 123

HH / H Hour indication in 24-hour notation, with/without preceding zero
Example: 2016-06-02T14:50:09 ("HH") -> 14

hh / h Hour indication in 12-hour notation, with/without preceding zero
Example: 2016-06-02T14:50:09 ("hh") -> 02

MM / M Month with/without preceding zero
Example: 2016-06-02T14:50:09 ("MM") -> 06

MMM Abbreviation of the month name
Example: 2016-06-02T14:50:09 ("MMM") -> Jun

MMMM Complete month name
Example: 2016-06-02T14:50:09 ("MMMM") -> June

mm / m Indication of minutes with/without preceding zero
Example: 2016-06-02T14:50:09 ("mm") -> 50

ss / s Indication of seconds with/without preceding zero
Example: 2016-06-02T14:50:09 ("ss") -> 09

tt The AM/PM indicator
Example: 2016-06-02T14:50:09 ("tt") -> PM

yy / y Two-digit year number with/without preceding zero
Example: 2016-06-02T14:50:09 ("yy") -> 16

yyyy Complete year number
Example: 2016-06-02T14:50:09 ("yyyy") -> 2016

zz / z Time zone indication (+ or -, followed by the hour indication; with/without preceding zero)
Example: 2016-06-02T14:50:09 ("zz") -> +02

zzz Four-digit time zone indication
Example: 2016-06-02T14:50:09 ("zz") -> +02:00

: Output of time separator
Example: 2016-06-02T14:50:09 (": ") -> :

/ Output of date separator
Example: 2016-06-02T14:50:09 ("/ ") -> /

A culture element may be positioned at the start of the formatting string

If no culture element is provided, then the current culture in Windows will be applied. This can be found in the imc FAMOS-settings (see
"Settings for Display/ Curve window").

If in those settings, the decimal period was the preferred decimal separator selected, then real numbers, currencies or statements of percentage
are always expressed with a period as the decimal separator.

If in those settings, the decimal comma was the preferred decimal separator selected, then real numbers, currencies or statements of percentage
are always expressed with a comma as the decimal separator. The grouping separator character (thousands separator of magnitude) is
suppressed in both cases.

If the formatting is to comply with a certain culture, it is possible to specify a culture element. The culture element has the following structure:
{xx-yy}. xx-yy stands for the culture name. It consists of 2 characters for the language-code according to ISO 639-1 and 2 characters for the
Country/Region-code according to ISO 3166.

Examples:

Cultur elements Meaning
{} Invariant culture - No culture is applied.

{en} Neutral culture English This culture is associated with English language, but no specific country.

{en-US} Culture: English and Country: USA

{en-GB} English - Great Britain

{de-DE} German - Germany

{ja-JP} Japanese - Japan

imc FAMOS Func on Reference - 1054 -

(c) 2024 imc Test & Measurement GmbH

{zh-CN} Chinese - PR China

{zh-TW} Chinese - Taiwan
If the resources for a particular culture are not available in the operating system, the resources for the associated neutral culture are used.

Examples:
Output of the same parameter in exponential- and decimal representation.

para2=2341052.0329112756
result=TxformatEx("Value, exponential= {1:e6}, Value, decimal={1:F6}",para2

result="Value exponential= 2.341052e+006, Value decimal=2341052.032911"

Create a channel name with fix prefix and appended number.

index = 12
ChannelName=TxformatEx("Chan{1:#}", index)

ChannelName has the content "Chan12".

Create a channel name with fixed prefix and appended number (4 digits, preceding zeroes.

index = 12
ChannelName=TxformatEx("Chan{1:0000}", index)

ChannelName has the content "Chan0012".

An error message is constructed:

TxChanname = "u1"
TxMsg = TxFormatEx("The frequency of {1} is too low, {1}_result is imprecise", TxChanname)

TxMsg has the content "The frequency of u1 is too low, u1_result is imprecise"

Output of time information with long date and time in US-format

time=TimeJoin(02,06,2016,14,50,09)
result=TxFormatEx("{en-US}{T1:F}",time)

result="Thursday, June 02, 2016 2:50:09 PM"

Output of time information with user-defined formatting in German format

time=TimeJoin(02,06,2016,14,50,09)
time=time+0.123456
result=TxFormatEx("{de}{T1:dd.MM.yyyy HH:mm:ss ffffff }",time)

result="02.06.2016 14:50:09 123456"

See also:

imc FAMOS Func on Reference - 1055 -

(c) 2024 imc Test & Measurement GmbH

TxGetValidVarName

The function forms a valid variable name from a text

Declaration:
TxGetValidVarName (TxText) -> TxVarName

Parameter:

TxText String

TxVarName

TxVarName Variable name

Description:
Converts an arbitrary text into a valid FAMOS variable name.

Toward this end, all invalid characters are replaced with an underline "_".
Invalid characters include:

All characers with an ASCII-code < 32
< > + - () * / ^ = { } [] | . @ ' : , Comma, Semicolon, Spaces and quotation marks

If the 1st character is a digit, it is prefixed by an underline.
If the text represents a FAMOS-constant, an underline is prefixed.
If the text has more than 255 characters, the text is truncated after 255 characters.
If an empty text is provided, the sequence is cancelled.

Examples:

TxGetValidVarName("ValidName") => "ValidName"
tab="~009"
TxGetValidVarName("Valid"+tab+"Name") => "Valid_Name"
TxGetValidVarName("1"+tab+"ValidName") => "_1_ValidName"
TxGetValidVarName("<Valid>.Name") => "_Valid__Name"
TxGetValidVarName("pi") => "_pi"

See also:
TForm

imc FAMOS Func on Reference - 1056 -

(c) 2024 imc Test & Measurement GmbH

TxRegexMatch

Finds texts in a text array or in a text by means of a regular expression.

Declaration:
TxRegexMatch (TextOrTxArray, TxPattern, TxResultSeparator, Options [, GroupIndex]) -> TextOrTxArrayResult

Parameter:

TextOrTxArray Text or text array in which to search for the pattern

TxPattern Search pattern

TxResultSeparator String for separating results

Options Options for the search. The individual values may be added.

0 : No option

1 : IgnoreCase

2 : Multiline

4 : ExplicitCapture

16 : Singleline

32 : IgnorePatternWhitespace

GroupIndex Group index, Parameter ist optional, Default value = 0 (optional)

TextOrTxArrayResult

TextOrTxArrayResult Contains the texts found

Description:
If the function's first parameter is a text, the return value is also a text.

If the first parameter is a text array, then a text array with the same dimension is returned.

The meanings of the options:

IgnoreCase: The matching is case insensitive
Multiline: Changes the interpretation of ^ and $ to match the beginning and end of any line and not the beginning and end of the entire
input string. Circumflex and Dollar-sign match line break.
ExplicitCapture: With this option, the familiar parentheses (...) which normally bracket text become non-capturing brackets. Thus, they have
the same effect as (?:...) and only serve the purpose of grouping. With named bracketed expressions (?<Name>...), it is still possible to
capture text fragments as before.
SingleLine: This option modifies the behavior of the period character (.) . In this case the period matches every character; normally the
Newline is exempted. With this option, line breaks are also recognized with the period character.
IgnorePatternWhitespace: When this option is selected, all white space in the expression pattern which is either unescaped or within
character classes is ignored. This allows expressions to be formed in a clearer manner. Furthermore, all characters (including the next line
break) from outside of a character class which are located between two unescaped #-characters are ignored. In this way, it is possible to
insert comments into the regular expression.
Invalid options cause the sequence to be cancelled.

If the regular expression finds multiple texts in the input text, then they are all returned in the result text, separated by the separator specified
in TxResultSeparator.

An empty search pattern causes the sequence to be cancelled.

The regular expression pattern can include subexpressions, which are defined by a part of the pattern in parentheses () is included. That
subexpression forms a group. The group with the index = 0 contains the string that matches the entire regular expression (default setting).

Should return the string that corresponds to a expression of of part of, as a result, the desired group index is so specify.

Example: The following pattern is used to identify a date in American format.

pattern="\b(\d{1,2})/(\d{1,2})/(\d{2,4})\b"

The pattern includes 3 subexpressions. The month is recognized with the first subexpression. If one only wants to receive this information, the
group index must be 1.

str=TxFormatEx("{en-US}The date in American format is {T1:d}",currentTime)
; -> The date in American format is 10/11/2016
result= TxRegexMatch(str,pattern,";",0); -> 10/11/2016
result= TxRegexMatch(str,pattern,";",1); -> 10 (result of the 1st subexpression)

imc FAMOS Func on Reference - 1057 -

(c) 2024 imc Test & Measurement GmbH

Short overview: Regular expressions
"Regular Expressions" are patterns with a standardized syntax used in describing the structure of a string. The function uses the package
implemented in the Microsoft .NET Framework for regular expressions. The composition and most important components of the pattern are
presented below. For a complete list, see the Microsoft .NET- Framework documentation.

When searching for the pattern, the string is scanned character by character from left to right. Each new position is compared with the pattern. If
the partial string matches the pattern from this position on, then this is counted as a success. But then the search continues onward from the next
character after the find position.

The patterns can consist of normal characters, Escape-sequences, character classes, quantifiers, groupings and additional special characters such
as alternatives.

The following characters are called metacharacters. They fulfill special functions in the search pattern. If a metacharacter is to be treated as a
normal character and not as a metacharacter, that character must be preceded by a backslash.

Metacharacters
. Stands for an arbitrary character except the Newline

^ The search pattern must be located at the start of the text to be searched, or negates the pattern at the start of a character class.

$ Search pattern must be located at the end of the text to be searched.

| Denotes an alternative in the search pattern

?
Denotes an amount of repetitions
or: introduces a modifier
or: denotes a look-ahead assertion

+ Denotes an amount of repetitions

* Denotes an amount of repetitions

() Serves the purpose of grouping

[] Denotes a character class

{} Denotes a quantifier

- Character range in character classes

\ Reverses the special meaning of the metacharacters in order to search for them as plain characters

A Character class represents one or more characters. It is bracketed by the metacharacters []. Within a character class, the following applies

\ for masking

^ for negating the character class, when it is the first character

- for denoting a range

Character classes
. matches any character except Newline. The option 'Singleline' sets whether newlines are also included.

\d arbitrary decimal digit; identical with [0-9]

\D all characters except digits; identical with [^0-9]

\s whitespace-characters (Space, Tabulator, Carriage Return, Line Feed)

\S stands for a character which is not a whitespace-character; identical with [^\s]

\w every alphanumerical character and the underline; identical with [a-zA-Z_0-9]

\W all characters except alphanumerical characters; identical with [^\w]

[abc] a,b or c

[a-z] a through z

[a-z&&[^bc]] a through z , without b and c

The quantifiers stand after simple characters or character classes and determine the number of characters. Quantifiers determine how often the
character appearing before them appear.

Quantifier
{n} Specifies that the character appearing to its left must occur exactly n times in succession.

{n,} Specifies that the character must appear at least n times.

{n,m} Specifies that the character must occur at least n times but no more than m times.

* Specifies that the character appearing to the left of it must occur any arbitrary amount of time, including zero, in succession.

*? Specifies that the character appearing to the left of it must occur any arbitrary amount of time, including zero, in succession.

imc FAMOS Func on Reference - 1058 -

(c) 2024 imc Test & Measurement GmbH

+
Specifies that the character appearing to the left of it must occur once, and may appear any arbitrary amount of times in succession.
Identical with {1,}. Example: The regular expression \w+ recognizes a word.

? Specifies that the character appearing to the left of it may occur either one time or zero times. Identical with {0,1}.
Ordinarily, quantifiers are greedy. They cause the regular expression engine to match as many occurrences of particular patterns as possible.
Appending the ? character to a quantifier (e.g. *?) makes it lazy. It causes the regular expression engine to match as few occurrences as possible.

Regular expressions can contain both the normal characters and Escape-sequences. Escape-sequences begin with a Backslash. Next comes a
character possessing special meaning and which is not be interpreted as a normal character.

Escape-sequences
\\ Backslash

\b Backspace

\e Escape

\t Horizontal tabulator

\r Carriage Return

\v Vertical tabulator

\f Form Feed

\ n New Line

\a Alarm (Bell)

\xhh specifies a character by means of the associated two-digit hexadecimal ASCII-character code

\uhhhh specifies a character by means of the associated two-digit hexadecimal Unicode-character code

\cz ASCII-control character, corresponding to z

With anchors, it is possible to limit the possible number of hits for a regular expression. An anchor determines at what location(s) in the search
text the hit must occur, while giving special significance to the start and end of the search text.

Anchor

^ Line start. The ^-anchor specifies that the subsequent pattern must begin at the first position of the string. Can be modified by the modifier
/m.

$ Line end. The $-anchor specifies that the preceding pattern must be located at the end of the input string, or before at the end of the input
string. Can be modified by the modifier /m.

\b Word boundary

\B Not at a word boundary

\A
Start of a string. The \A-anchor specifies that there must be a match at the start of the input string. This is identical to the ^-anchor, except
\A ignores the option Multiline. For this reason, in a multi-line input string, the system can only search for a match at the end of the first
line. Cannot be modified with any modifier

\Z
End of a string. The \Z-anchor specifies that a match must be located at the end of the input string or before \ n at the end of the input
string. This is identical to the $-anchor, except \Z ignores the option Multiline. For this reason, in a multi-line input string, the system can
only search for a match at the end of the last line or the last line before \ n. Cannot be modified with any modifier.

\z
The \z-anchor specifies that a match must be located at the end of the input string. In contrast to the $-language element, \z ignores the
option Multiline. In contrast to the \Z-language element, \z does not correspond to a \ n -character at the end of a string. For this reason, it
can only be used to search for a match with the last line of the input string. Cannot be modified with any modifier.

\G The \G-anchor specifies that a match must be located at the location where the preceding match ends.

The anchors ^ and \A on the one hand, and respectively $ and \Z ont he other hand, only differ when working in the multi-line mode, or when
·the search text contains more than one line.

To search for alternative strings, the character "|" is used. If the partial expression is not found before the | character, then the system search for
the partial expression behind the | character.

Alternatives

x|y
Alternative. x|y stands for x or y.
The alternative normally refers to the complete left-side/right-side partial expression . Thus, abc|xyz means -> abc or xyz. Parentheses
can be used to constrain alternatives. Thus, ab(x|y)cd means ab, followed by x or y , followed by cd.

Regular expressions enable grouping of partial expressions. They delimit partial expressions and record the partial strings of a input string. A
group is bracketed by the metacharacters ().

Grouping

imc FAMOS Func on Reference - 1059 -

(c) 2024 imc Test & Measurement GmbH

(x)

Matching partial expression x. This grouping has two meanings: On one hand, the partial pattern is grouped, which enables you to
apply quantifiers to the partial pattern or refine it by means of the alternative | character.
(\w\d){1,}, for instance, stands for a combination of a decimal digit and a word character, which may occur either once or any
arbitrary amount of times.
x(\d{3}|###) stands for "x followed by a three-digit number or followed by ###".
On the other hand, the find location is written to an internal array, so that you are able to refer back to it in backward references.

(?:x) Non-captured group, groups a partial pattern. However, the find location of the partial pattern x is not entered into the internal
array. The partial pattern can not be used with backward references.

(?
<name>x)

Captures a matching partial pattern x and enables access via a name or number. In this context, the name is a group name and the
partial pattern x is an arbitrary pattern of a regular expression. With \k<name>, it is possible to access the partial expression
captured. Alternatively, it is possible to access it using _number,_ where _"number_" is the ordinal number of the captured partial
expression x.

x (?=y)

Positive lookahead-assertion. The effect of this pattern is that the partial pattern x only achieves success when directly followed by
the partial pattern y. Thus, you can located partial strings, to which another string is directly appended. The pattern in the brackets
is not contained in the search results.
The pattern \d{3}(?=x), for instance, finds all three-digit numbers which are followed by an x. In the string "123a 456x 789x", for
example, the partial strings "456" and "789" would be found, but not "123".

x(?!y)
Negative lookahead-assertion. The effect of the pattern is that only such find locations are included in the results which match the
pattern x and which are not followed by a string matching the pattern y. The pattern in the brackets is not contained int he search
results.

(?<=x) y

Positive Lookbefore-assertion. The pattern y after the brackets is only recognized if the pattern x in the brackets preceding it is
found first. The pattern in the brackets is not contained in the search results.
With the pattern (?<=\b20)\d{2}\b, it is possible to find the last two digits of the year in the 21st century. With an input string "2010
1999 1861 2140 2009", the results would be 10 and 09.

(?<!x) y
Negative Lookbefore-assertion. The pattern y after the brackets is only recognized if the patten x in the preceding brackets was not
found. The pattern in the brackets is not contained in the search results. The pattern (?<!halt)bar finds the "bar" only if there is no
"halt" preceding it.

(?>x)

The language construct (?>x) deactivates the backtracking. The module for regular expressions matches as many characters in the
input string as possible. If no further matching is possible, there is no backtracking, in order to attempt alternative pattern
matching. (I.e., the partial expression only finds matches for strings which would match the partial expression alone. The system
does not try to find any match for a string on the basis of the partial expression and arbitrary subsequent partial expressions.)

(?(x)y|z) Conditional expression
If the expression x is found, the expression y is used. If the expression x was not found, the expression z is used.

Patterns found grouped by means of () can be used either in the search itself or again later in the replacement action, as a backward reference.
Up to a maximum of 9 backward references can be used.

Backward reference

number
With _number_, it is possible to access the captured partial expression, where _number_ denotes the partial expression's
ordinal number.
(\w)(\w) The system searches for 2 alphanumeric characters. For instance, with \2 the second partial expression can be re-used.

\k<_name_> If the partial expression has a name (?<_name_>partial pattern), then by using \k<_name_> it is possible to access the captured
partial expression

With (?:x), it is possible to prevent the formation of a backward reference, which conserves backward references and memory
and increases the system's speed.

The behavior of a regular expression can be governed by modifiers. Some modifiers can also be replaced with options (e.g. the option IgnoreCase
corresponds to the modifier i, except that the option affects the entire expression, while the modifier can be applied to partial expressions. A
modifier is stated in the form (?i). Instead of the modifier i, the modifiers m, s, and x are also allowed.

Modifier
(?i) The modifier i is activated, which means that matching is case-insensitive.

(?-i) Modifier i is deactivated

(?i-
msx) Modifier i is deactivated

(?m)
If m is active, the string is considered to be a multi-line string.
"^" and "$" find the start and end of each internal line. If m is deactivated, then "^" and "$" find the beginning and end of the entire
string.

(?n) If n is active, the normal parentheses(...), which normally bracket text, become non-capturing brackets. They thus function like (?:...)
and only serve to group elements together.

(?s) If s is active, the string is considered to have only one line. The period (.) finds all characters, including line breaks.

?(x) If x is active, comments and whitespaces (e.g. space characters) within the pattern are ignored.

imc FAMOS Func on Reference - 1060 -

(c) 2024 imc Test & Measurement GmbH

Examples:
In a text array containing channel names, the system is to find all channel names beginning with "sintest", followed by an arbitrary number and
ending with the extension "dat" or "raw".

The search pattern (?i)^sintest\d*\.(dat|raw)$ signifies:

(?i) Modifier: Case insensitive matching. Instead of using this modifier, it is also possible to work with the option IgnoreCase.

^sintest The entered text must start with "sintest".

\d* Next, any arbitrary amount of digits, or none, can follow.

\. The period character must be found.

(dat|raw)$ The extension may be either "dat" or "raw".

txArray= TxArrayCreate(5)
txArray[1]="sin3.dat"
txArray[2]="SINTEST1.DAT"
txArray[3]="SINTEST2.DAT"
txArray[4]="SINTEST3.RAW"
txArray[5]="SPANNUNG.DAT"
separator=";"
pattern = "(?i)^sintest\d*\.(dat|raw)$"
erg= TxRegexMatch(txArray,pattern,separator,0)

The text array "res" contains the following strings:

[1]
[2] SINTEST1.DAT
[3] SINTEST2.DAT
[4] SINTEST3.RAW
[5]

From a text array containing arbitrary texts, the floating point numbers are to be extracted from each element.

The search pattern [-+]?([0-9]+\.?[0-9]*|\.[0-9]+)([eE][-+]?[0-9]+)? signifies:

[+-]? A plus/minus sign may or may not appear one time.

(Start of Group 1
Start of the 1st part of the alternative in Group 1

[0-9]+ A decimal digit must occur at least once and then arbitrarily often in succession.

\.? The decimal period may or may not appear one time.

[0-9]* A decimal digit may appear any number of times including zero.

End of the 1st part of the alternative

| Or

Beginning of the alternative's 2nd part

\. The decimal period must appear.

[0-9]+ A decimal digit must occur at least once and then arbitrarily often in succession.

End of the alternative's 2nd part

) End of Group 1

(Beginning of Group 2

[eE] The exponential character must appear

[-+]? A plus/minus sign may or may not appear one time.

[0-9]+ A decimal digit must occur at least once and then arbitrarily often in succession.

) End of Group 2

? Group 2 may or may not appear one time.

txArray= TxArrayCreate(3)
txArray[1]="The minimum is at -123.8 and the maximum at +1234."
txArray[2]=At 1.9e3°C, the temperature has exceeded the cutoff limit.
txArray[3]="This line contains no number."
pattern ="[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)([eE][-+]?[0-9]+)?"
erg= TxRegexMatch(txArray,pattern,";",0)

The text array "res" contains the following strings:

imc FAMOS Func on Reference - 1061 -

(c) 2024 imc Test & Measurement GmbH

[1] -123.8;+1234.
[2] 1.9e3
[3]

By means of the call below, the specified longitude and latitude values are used to return the associated address (reverse geocoding).

For this purpose, the search machine of OpenStreetMap is used. The parameter 'format' specifies the desired format for the answer (here XML;
an alternative would be JSON); the parameters 'lat' (latitude) and 'lon' (longitude) specify the latitude and longitude.

answer = HttpGetText("http://nominatim.openstreetmap.org/reverse?format=xml&lat=52.541861&lon=13.3869693")

The text returned includes the following section:

<road>Voltastraße</road>
<suburb>Gesundbrunnen</suburb>
<city_district>Mitte</city_district>
<state>Berlin</state>
<postcode>13355</postcode>

In order to extract individual fields from such answers, the function TxRegexMatch() can be recommended:

NameOfTheRoad = TxRegexMatch(answer, "<road>(.*?)</road>", ",", 0, 1)
; NameOfTheRoad now has the content 'Voltastraße'.

If the response is returned in JSON-format instead:

answer = HttpGetText("http://nominatim.openstreetmap.org/reverse?format=json&lat=52.541861&lon=13.3869693")
;answer contains (besides other items): ...{... "road":"Voltastraße","suburb":"Gesundbrunnen", ...}
NameOfTheRoad = TxRegexMatch(answer, "~034road~034:~034(.*?)~034", ",", 0, 1)

See also:
TxFind, TxReplace, TxRegexReplace

imc FAMOS Func on Reference - 1062 -

(c) 2024 imc Test & Measurement GmbH

TxRegexReplace

Replaces texts in a text array or in a text by means of a regular expression.

Declaration:
TxRegexReplace (TextOrTxArray, TxPattern, TxReplace, Options) -> TextOrTxArrayResult

Parameter:

TextOrTxArray Text or textarray in which the pattern is replaced

TxPattern Pattern

TxReplace Text to be replaced

Options Options for replacing. The individual values may be added.

0 : No option

1 : IgnoreCase

2 : Multiline

4 : ExplicitCapture

16 : Singleline

32 : IgnorePatternWhitespace

TextOrTxArrayResult

TextOrTxArrayResult Contains the replaced texts

Description:
The meanings of the options:

IgnoreCase: The matching is case insensitive
Multiline: Changes the interpretation of ^ and $ to match the beginning and end of any line and not the beginning and end of the entire
input string. Circumflex and Dollar-sign match line break.
ExplicitCapture: With this option, the familiar parentheses (...) which normally bracket text become non-capturing brackets. Thus, they have
the same effect as (?:...) and only serve the purpose of grouping. With named bracketed expressions (?<Name>...), it is still possible to
capture text fragments as before.
SingleLine: This option modifies the behavior of the period character (.) . In this case the period matches every character; normally the
Newline is exempted. With this option, line breaks are also recognized with the period character.
IgnorePatternWhitespace: When this option is selected, all white space in the expression pattern which is either unescaped or within
character classes is ignored. This allows expressions to be formed in a clearer manner. Furthermore, all characters (including the next line
break) from outside of a character class which are located between two unescaped #-characters are ignored. In this way, it is possible to
insert comments into the regular expression.
Invalid options cause the sequence to be cancelled.
An empty search pattern causes the sequence to be cancelled.

A short overview of syntax of regulare expressions is presentedd in the online help for the function TxRegexMatch()

The parameter TxReplacespecifies the string that is to replace each match in input. It can consist of any combination of literal text and
substitutions.

Substitution Description

$number Includes the last substring matched by the capturing group that is identified by number, where number is a decimal value, in the
replacement string.

${name} Includes the last substring matched by the named group that is designated by (?<name>) in the replacement string.

$$ Includes a single '$' literal in the replacement string

$& ncludes a copy of the entire match in the replacement string.

$` Includes all the text of the input string before the match in the replacement string.

$' Includes all the text of the input string after the match in the replacement string.

$+ Includes the last group captured in the replacement string.

$_ Includes the entire input string in the replacement string.

Examples:

imc FAMOS Func on Reference - 1063 -

(c) 2024 imc Test & Measurement GmbH

Replaces all whitespace characters in a text with an underscore:

TxPatched = TxRegexReplace("Text with spaces", "\s", "_", 0)

TxPatched has the content "Text_with_spaces"

Removes all round brackets and whitespace characters from a text:

TxPatched = TxRegexReplace("(0190) 1234567", "[\s()]", "", 0)

TxPatched has the content "01901234567"

Removes all leading zeroes from a text.

TxPatched = TxRegexReplace("0001023", "^0*", "", 0)

TxPatched has the content "1023"

Conversion of the current date from American format to German format. To do this, in the first code line, the system gets the current system
time. In the second line, the time is formatted as date in the American format.

The search pattern \b(?<month>\d{1,2})/(?<day>\d{1,2})/(?<year>\d{2,4})\b means:

\b Pattern comparison begins at a word boundary

(?<month>\d{1,2}) One or two decimal places are cached in the group named 'month'.

/ A slash is obligatory.

(?<day>\d{1,2}) One or two decimal places are cached in the group named 'day'.

/ A slash is obligatory.

(?<year>\d{2,4}) One or two decimal places are cached in the group named 'year'.

\b Pattern comparison ends at a word boundary
In the text to be replaced, the specified groups are accessed by means of the $ character. A period is inserted between the groups.

currentTime=TimeSystem?()
strDate=TxFormatEx("{en-US}{T1:d}",currentTime); -> 6/30/2016
pattern="\b(?<month>\d{1,2})/(?<day>\d{1,2})/(?<year>\d{2,4})\b"
replace="${day}.${month}.${year}"
germanDate=TxRegexReplace(strDate,pattern,replace,0); -> 30.06.2016

With the following expression, a text is to be converted to a valid imc FAMOS variable name. All invalid characters are to be replaced with an
underline "_". Invalid characters include all characters with an ASCII-code < 32. Also < >+ - () * / ^ = { } [] | . @ , ; ? ? as well as spaces. If the 1st
character is a digit, then an underline is prefixed to it.

The search pattern (^\d)|[^\w!$%&?~#] means:

(^\d) If the first character is a digit, it is cached in a group.

[^w!$%&?~#] The content of the character class finds all characters which do not match 0?9, a-z,_, A-Z nor the characters !$%&?~#.

In the replacement text, _$1 is entered, i.e. each character found by the search pattern is replaced with an underline plus the content of the first
group $1. The first group is only chosen if the first character is a digit.

pattern ="(^\d)|[^\w!$%&?~#]"
varname=TxRegexReplace("Valid Name?",pattern,"_$1",0);-> Valid_Name?
varname=TxRegexReplace("1Valid Name+",pattern,"_$1",0);-> _1Valid_Name_

Remark: The function TxGetValidVarName() is more suitable for the present task.

See also:
TxFind, TxReplace, TxRegexMatch

imc FAMOS Func on Reference - 1064 -

(c) 2024 imc Test & Measurement GmbH

TxReplace

The function searches for a text excerpt in a text or text array, and replaces it with different text.

Declaration:
TxReplace (TextOrTxArray, TxFindText, TxReplaceText, Occurrence, Options) -> TextOrTxArrayResult

Parameter:

TextOrTxArray Text or text array in which to find and replace the text excerpt

TxFindText Text to search for

TxReplaceText Text to be replaced

Occurrence The n-th occurrence of the text for which the system searches

-1 : The last occurrence of the search text is replaced.

0 : All occurrences of the search text are replaced.

1... : The n-th occurrence of the search text is replaced.

Options Options for Find & Replace

0 : Case sensitive

1 : Case insensitive

TextOrTxArrayResult

TextOrTxArrayResult Contains the replaced texts

Description:
The system searches for a text in a text or text array and replaces it with a different one.

If the first parameter is a text array, then the function's result is a text array. Its dimensions are the same as the one submitted.

If the first parameter is a text, then the function's result is a text.

In the resulting text or text array, the texts found are replaced with the substitute text.

The parameter Occurrence specifies at which occurrence of the search text to replace the text.

Invalid options cause the sequence to be cancelled.
An empty search text causes the sequence to be cancelled.

Examples:
Replaces all whitespace characters in a text with an underscore:

TxPatched = TxReplace("Text with spaces", " ", "_", 0, 0)

TxPatched has the content "Text_with_spaces"

Remove all hyphens from a text:

TxPatched = TxReplace("FF-1A-13-2E", "-", "", 0, 0)

TxPatched has the content "FF1A132E""

From one filename, a new filename for the calculated result is derived:

TxInputFileName = "c:\Measurements.raw\Test1.raw"
TxOutputFileName = TxReplace(TxInputFileName, ".raw", "_processed.dat", -1, 1)

TxOutputFileName has the content 'c:\Measurements.raw\Test1_processed.dat'

In a text box with prepared error messages, the placeholder "%1" is replaced with a variable name.

txArray=TxArrayCreate(4)
txArray[1]="%1 has the wrong data type"
txArray[2]="Not enough memory"
txArray[3]="Acceptable range of %1 is exceeded"
txArray[4]="Sample rate of to %1 ist too low, %1_result is imprecise"
txArrayResult=TxReplace(txArray,"%1","Channel1",0,0)

The text array "txArrayResult" contains the following strings:

txArray[1]="Channel1 has the wrong data type"

imc FAMOS Func on Reference - 1065 -

(c) 2024 imc Test & Measurement GmbH

txArray[2]="Not enough memory"
txArray[3]="Acceptable range of Channel1 is exceeded"
txArray[4]="Sample rate of to Channel1 ist too low, Channel1_result is imprecise"

See also:
TxFind, TxRegexMatch, TxRegexReplace

imc FAMOS Func on Reference - 1066 -

(c) 2024 imc Test & Measurement GmbH

TxSplit

Function for splitting a text

Declaration:
TxSplit (TxText, TxSeparator) -> TxArrayResult

Parameter:

TxText String to be split

TxSeparator String with the separator character

TxArrayResult

TxArrayResult Result text array

Description:
The text TxText is subdivided according to the separator strings in TxSeparator.

The split strings are returned in a text array.

The text TxSeparator can contain multiple separator strings.
The individual separator strings are to be separated by a semicolon ;.
If the semicolon is to be used as a separator, then \; to specify.
The elements of the resulting text arra to not contain separator characters.
If the TxSeparator is empty, then the text is split at the white spaces (spaces, tabs, carriage return).
This function is case sensitive.

Examples:
The text is separated at the semicolon, comma or period.

txArray1=TxSplit("This is a text. It is to be subdivided; in other words split." ,"\;;,;.;")

Results in txArray1:

[1] This is a text
[2] It is to be subdivided
3] in other words split.

.

The text is separated at the white spaces.

tab="~009"
cr="~010"
txArray2=TxSplit("This"+tab+"is the text"+cr+";It will be split." ,"")

Results in txArray2:

[1] This
[2] is
[3] the
[4] text
[5] ;It
[6] will
[7] be
[8] split.

See also:
TxFind, TxRegexMatch

imc FAMOS Func on Reference - 1067 -

(c) 2024 imc Test & Measurement GmbH

TxToClipboard

This function stores the contents of a Text or TextArray on the Windows Clipboard.

Declaration:
TxToClipboard (TxOrTxArray) -> SvSucess

Parameter:

TxOrTxArray Text/Textarray to store on the Clipboard.

SvSucess

SvSucess Success of the function: 1, if the function could be performed successfully; 0 on error. In case of error, the cause can be
determined using the function GetLastError().

Description:
The content of the parameter is copied to the Windows Clipboard (ANSI-Text-Format).

With TextArrrays, each element constructs a new line.

Examples:
The complete content of a table in a panel is copied to the Windows Clipboard.

Columns are separated by a tabulator.

cols = PnTableColumns?("Table1")
rows = PnTableRows?("Table1")
tx = ""
FOR r = 1 TO rows
 FOR c = 1 TO cols
 tx = tx + PnTableGetCellText("Table1", c, r)
 IF c < cols
 tx = tx + "~009" ; Tabulator
 END
 END
 tx= tx + "~013~010" ; Carriage return/Line feed
END
TxToClipboard(tx)

See also:

imc FAMOS Func on Reference - 1068 -

(c) 2024 imc Test & Measurement GmbH

TxWhere

The position of a string in a text is determined.

Declaration:
TxWhere (TxText, TxSearch) -> SvPosition

Parameter:

TxText Text to be examined

TxSearch String to be searched for. The search is case insensitive.

SvPosition

SvPosition Position of the string searched for in the text. The first possible position is 1. If the string is not found, 0 is returned.

Description:
This function searches for a specified string in a text. If the string is found, its position is returned.

The function searches for the string from the beginning to the end of the text.
If the string occurs more than once in this text, only the first occurrence is returned.
The return value should always be checked for 0 to make sure that the string was actually found.

Examples:

Position = TxWhere("Das ist ein Text", "ist")

This code example searches for the word "text" and finds it at position 11.

See also:
TLike, TReplace, TComp, TPart

imc FAMOS Func on Reference - 1069 -

(c) 2024 imc Test & Measurement GmbH

UNCERTAINTY_LOOP

Available in: Professional Edition and above

Loop for determining the measurement uncertainty results from an algorithm using the Monte-Carlo method (MCM).

Declaration:
UNCERTAINTY_LOOP SvTrialCount SwInit

Parameter:

SvTrialCount Number of Monte-Carlo trials to be performed. The parameter is frequently in the range 100..10000.

SwInit The random number generator for the function UncertaintyModify() is (re)initialized with this value. If the parameter is omitted,
a fixed internal value is used.

0 : This is selected when you wish to work with different random values in a new run of the entire loop.

>0 : Integer value for the reinitialization of the random number generator. Ensures reproducible behavior of the entire loop.

Description
The UNCERTAINTY_LOOP is a loop which serves the purpose of determining the measurement uncertainty of the results of an algorithm by means
of the Monte-Carlo method. It forms the framework for calls to the functions UncertaintyModify() and UncertaintyCalc(). Once the loop has been
run through, the measurement uncertainty is set as the result as a user-defined property.

The loop is run (M+2) times.

In the first run, the algorithm is performed with uninfluenced input data. Subsequently, the algorithm is run M times in M Monte-Carlo trials on
input data superimposed with noise (typically generated by the function UncertaintyModify). In this case, a noise-based result is calculated. From
this result, the measurement uncertainty is determined by means of the function UncertaintyCalc. Finally, another run is performed with the
uninfluenced input data for restoration purposes.

The loop defined with the command UNCERTAINTY_MODIFY is concluded by the command END.

Within an UNCERTAINTY_LOOP, no additional UNCERTAINTY_LOOPs can be started.

For further information on determining the measurement uncertainty in FAMOS, see the user's manual/online help in the section "Determining
the measurement uncertainty". Here, the foundational standards and methods (GUM, Monte-Carlo method) are also explained in detail.

This command is not available in the FAMOS Standard Edition.

Examples:
From a voltage channel Input1 with a measurement range of 10V and measurement uncertainty of 0.1V, a result named "Result" is to be obtained
by means of an algorithm (low-pass filter, maximum value). The algorithm without determining the measurement uncertainty:

_In1 = Input1
Result = Max(FiltLp(_In1, 0, 0, 1, 0.02))

To determine the measurement uncertainty for the result, the algorithm must be expanded as follows:

; stating the measurment uncertainty of the input data:
UncertaintySet(Input1, "Uncertainty", 0.1)
; run all Monte-Carlo trials, here the trial count M = 1000
UNCERTAINTY_LOOP 1000
 ; adding noise to the input data
 _In1 = UncertaintyModify(Input1)
 ; caling the actual algorithm and calculating the result
 Result = Max(FiltLp(_In1, 0, 0, 1, 0.02))
 ; calculating the measurement uncertainty of the result
 UncertaintyCalc(Result)
END
; querying the measurement uncertainty of the result
uc = UncertaintyGet(Result, "Uncertainty")

See also:
UncertaintyModify, UncertaintyCalc, UncertaintySet, UncertaintySnapshot

imc FAMOS Func on Reference - 1070 -

(c) 2024 imc Test & Measurement GmbH

UncertaintyCalc

Available in: Professional Edition and above

Determining the measurement uncertainty by means of the Monte-Carlo method

Declaration:
UncertaintyCalc (Variable [, SvCoverageProbability] [, Null] [, TxExtended1] [, TxExtended2] [, TxExtended3] [,
TxExtended4])

Parameter:

Variable The variable with the result of an algorithm. The measurement uncertainty of this variable is to be determined. The
variable must be specified directly; temporary or indexed data are not permitted.

SvCoverageProbability

Confidence Level in percent. If 0, or not specified, the expanded measurement uncertainty is not determined. If non-
zero, the coverage interval is determined, and from it the expanded measurement uncertainty. Typical values are 95 or
99. At the specified probability, the true value lies somewhere in the range given by the expanded measurement
uncertainty around the uninfluenced result. (optional)

Null Reserved; set to 0. (optional)

TxExtended1 1st expanded analysis result (optional)

"uc" : The measurement uncertainty is determined for each measurement point of the result.

"mean" : For each measurement point, the mean value of all Monte-Carlo trials is determined.

"min/max" : For each measurement point of the result, the minimum and maximum of all Monte-Carlo trials is
determined.

"pdf0" : Distribution density of the deviations from the uninfluenced result, centered around an ostensible result of
0.0.

"pdf" : Distribition density of the deviations from the uninfluenced result

TxExtended2 2nd expanded analyis result (optional)

"uc" : The measurement uncertainty is determined for each measurement point of the result.

"mean" : For each measurement point, the mean value of all Monte-Carlo trials is determined.

"min/max" : Envelope: for each measurement point of the result, the minimum and maximum of all Monte-Carlo trials
is determined.

"pdf0" : Distribution density of the deviations from the uninfluenced result, centered around an ostensible result of
0.0.

"pdf" : Distribution density (only for single values) of the deviations from the uninfluenced result

TxExtended3 3rd expanded analysis result (optional)

"uc" : The measurement uncertainty is determined for each measurement point of the result.

"mean" : For each measurement point, the mean value of all Monte-Carlo trials is determined.

"min/max" : For each measurement point of the result, the minimum and maximum of all Monte-Carlo trials is
determined.

"pdf0" : Distribution density of the deviations from the uninfluenced result, centered around an ostensible result of
0.0.

"pdf" : Distribition density of the deviations from the uninfluenced result

TxExtended4 4th expanded analysis result (optional)

"uc" : The measurement uncertainty is determined for each measurement point of the result.

"mean" : For each measurement point, the mean value of all Monte-Carlo trials is determined.

"min/max" : For each measurement point of the result, the minimum and maximum of all Monte-Carlo trials is
determined.

"pdf0" : Distribution density of the deviations from the uninfluenced result, centered around an ostensible result of
0.0.

"pdf" : Distribition density of the deviations from the uninfluenced result

Description:
This procedure is typically called for the result variable of an algorithm toward the end of an UNCERTAINTY_LOOP. The result of a Monte-Carlo

imc FAMOS Func on Reference - 1071 -

(c) 2024 imc Test & Measurement GmbH

trial is provided to it, in order to improve the estimate of the measurement uncertainty.

Measurement uncertainty and expanded measurement uncertainty (if determined) are appended to the result variable passed as user-defined
properties. They can be queried using the function UncertaintyGet().

With the optional parameters 4 through 7, it is possible to request additional expanded analysis results. With the expanded analysis, all
previously performed Monte-Carlo trials are taken into account. The order of the additionally specified analyses does not matter; "pdf" and
"pdf0" can not be used at the same time. The results of the expanded analysis are written in a group, which is only created if at least one
expanded analysis is desired. The group variable is created, initialized and updated as a side effect of this procedure.

The name of the group variables created is formed from the name of the result variable by appending "_uc_result", and if the associated option is
selected, contains the following channels:

original: The uninfluenced result of the first run of the UNCERTAINTY_LOOP (always included)

uc: Measurement uncertainty in accordance with the option "uc"

min: Lower envelope curve in accordance with the option "min/max"

max: Upper envelope curve in accordance with the option "min/max"

mean: Mean value in accordance with the option "mean"

pdf0: Zero-based distribution density of the deviations in accordance with the option "pdf0"

pdf: Distribution density for single values in accordance with the option "pdf"
Example: The call

UncertaintyCalc(x, 99, 0, "uc", "pdf0", "min/max")

creates the group "x_uc_result" with the following structure:

x_uc_result
 |_ original
 |_ uc
 |_ min
 |_ max
 |_ pdf0

If the result variable itself is a channel belonging to a group, the name of the group with the expanded results is formed according to the pattern
"[GroupName]_[ChannelName]_uc_result". Any existing measurement association is applied.

The procedure can only be used within the UNCERTAINTY_LOOP. Upon the first call, it initializes the group and user-defined properties. In the
last run, the results are finalized if appropriate.

The procedure may be called exactly one time per run of the loop for each result. The exception is the very first run, in which the procedure call,
along with its parameters, is activated.

Calculation of the measurement uncertainty is supported for the following data types:

Equidistant data
y-component of xy-data
Magnitude in complex data

If there are other data types, it is necessary to first insert an assignment to an auxiliary variable for naming, for example, A_P = A.P and next
UncertaintyCalc(A_P).

After elapse of the UNCERTAINTY_LOOP, the user deletes the group of expanded analysis, if needed.

Information on determining the measurement uncertainty in FAMOS is available in the user's manual/online-help, in the section "Determining
the measurement uncertainty". Here, the foundational standards and methods (GUM, Monte-Carlo method) are explained in more detail.

This function is not available in the FAMOS Standard Edition.

Examples:
From a voltage channel Input1 having a 10V measurement range and measurement uncertainty of 0.1V, a result named "Result" is to be
determined by means of an algorithmus (low-pass filter, maximum value). Additionally, the distribution density is to be determined.

; stating the measurment uncertainty of the input data:
UncertaintySet(Input1, "Uncertainty", 0.1)
; run all Monte-Carlo trials, here the trial count M = 1000
UNCERTAINTY_LOOP 1000
 ; adding noise to the input data
 _In1 = UncertaintyModify(Input1)
 ; caling the actual algorithm and calculating the result
 Result = Max(FiltLp(_In1, 0, 0, 1, 0.02))
 ; calculating the result's measusrement uncertainty and the expanded measurement uncertainty
 UncertaintyCalc(Result, 95 , 0 , "pdf")
 ; also creates the group "Result_uc_result" with the channels "original" and "pdf"!
END
; querying the result's measurement uncertainties
uc = UncertaintyGet(Result, "Uncertainty")
U = UncertaintyGet(Result, "Expanded uncertainty")

imc FAMOS Func on Reference - 1072 -

(c) 2024 imc Test & Measurement GmbH

See also:
UNCERTAINTY_LOOP, UncertaintyModify, UncertaintySet, UncertaintyGet, UncertaintySnapshot

imc FAMOS Func on Reference - 1073 -

(c) 2024 imc Test & Measurement GmbH

UncertaintyGet

Available in: Professional Edition and above

Queries a user-defined property on the topic measurement uncertainty.

Declaration:
UncertaintyGet (Variable, TxPropName) -> SvValue

Parameter:

Variable Variable to be queried

TxPropName Name of the property

"Uncertainty" : Standard measurement uncertainty. Expressed in the y-unit of the data set. It is calculated by the function
UncertaintyCalc(). The function UncertaintyModify() adds an influencing variable of normal distribution.

"Expanded uncertainty" : Expanded measurement uncertainty. Stated in the data set's y-unit. Calculated by the function
UncertaintyCalc(). The function UncertaintyModify() adds a normalmally distributed influence variable, if the coverage
probability or expansion factor is provided.

"Coverage probability" : The coverage probability, stated in percent. E.g. 95 or 99.7. This is the probability that the true value lies
within the coverage (confidence) interval. Is set by UncertaintyCalc(). The function UncertaintyModify() takes the value into
account in conjunction with the expanded measurement uncertainty.

"Coverage factor" : Ratio of expanded measurement uncertainty to standard measurement uncertainty, typically in the range 2
to 3. The function UncertaintyModify() takes the value into account in conjunction with the expanded measurement uncertainty.

"Uncertainty Source.Rectangular" : UncertaintyModify() adds a symmetrical uniform distribution. Half of the distributions width
is specified.

"Uncertainty Source.LSBs" : Number of LSBs determining the bit noise. Only for integers. UncertaintyModify() add bit noise of
the standard deviation specified in terms of LSBs.

"Uncertainty Source.Amplitude" : Gain deviation around the value 1.0. UncertaintyModify() adds a random gain deviation which
is however fixed for the measurement. E.g. 0.1, if the gain is to vary by 10%; to be interpreted as standard deviation.

"Uncertainty Source.Offset" : Constant offset deviation in physical units of the channel. UncertaintyModify() adds a random
offset deviation which however is fixed for the measurement. The standard deviation is given.

"Uncertainty Source.Drift Offset" : Drift fluctuating over time. The height of the drift-offset error is stated in terms of standard
deviation (in physical units of the channel). UncertaintyModify() adds an offset drift.

"Uncertainty Source.Drift Time" : Drift fluctuating over time. If UncertaintyModify() adds an offset drift, this sets a time
dimension for the change.

"Uncertainty Source.Gain Drift" : Gain deviation drifting over time stated as a factor around the value 1.0. E.g. 0.01, if the gain is
to vary by 1%, to be interpreted as the standard deviation. UncertaintyModify() adds this drift.

"Uncertainty Source.Gain Drift Time" : If UncertaintyModify() adds a gain deviation drifting over time, this specifies a time
dimension for the change.

"Uncertainty Source.Hum Amplitude" : UncertaintyModify() adds a mains hum signal. The amplitude is selected at random and is
fixed for a measurement. The stated value is the standard deviation of the selected amplitudes.

"Uncertainty Source.Hum Frequency" : If UncertaintyModify() adds a mains hum signal, this sets the fixed frequency.

"Uncertainty Source.Hum Harmonics" : If UncertaintyModify() adds a mains hum signal, this specifies the ration of the upper
harmonics' power to the fundamental oscillation, e.g. 0.01, if the ratio is 1%.

"Uncertainty Source.Spikes Max" : Spikes; UncertaintyModify() adds interference signal pulses with the specified maximum
value (in y-units of the data set).

"Uncertainty Source.Spikes Min" : Spikes; UncertaintyModify() adds interference signal pulses with the specified minimum
value.

"Uncertainty Source.Spikes Width" : If UncertaintyModify() adds interference signal pulses, then this sets the maximum width
of the pulses.

"Uncertainty Source.Spikes Time" : If UncertaintyModify() adds interference signal pulses, then this specifies after what amount
of time at the latest a new pulse appears.

"Uncertainty Source.Noise RMS" : UncertaintyModify() adds a noise signal, which primarily contains high frequency
components. The standard deviation is given.

"Uncertainty Source.Noise Frequency" : If UncertaintyModify() adds a noise signal, then this specifies the lower cutoff
frequency.

imc FAMOS Func on Reference - 1074 -

(c) 2024 imc Test & Measurement GmbH

"Uncertainty Source.Temp Off" : Offset increasing in proportion to the temperature, stated as standard deviation per Kelvin
(unit of the temperature channel influenced). UncertaintyModify() adds such an offset deviation with a random proprtionality
factor which is however fixed for the particular measurement, if a temperature channel is specified. E.g. 0.01, if the gain
deviation is 1% per Kelvin; to be interpreted as the standard deviation. The added deviation is proportional to the measurement
value and to the temperature channel's deviation from the reference temperature. The reference temperature must be
specified.

"Uncertainty Source.Temp Gain" : Gain deviation increasing in proportion to the temperature, per Kelvin (unit of the
temperature channel influenced) from the value 1.0. UncertaintyModify() adds such a gain deviation with a random
proprtionality factor which is however fixed for the particular measurement. E.g. 0.01, if the gain deviation is 1% per Kelvin; to
be interpreted as the standard deviation. The added deviation is proportional to the measurement value and to the temperature
channel's deviation from the reference temperature. The reference temperature must be specified.

"Uncertainty Source.Temp Ref" : The reference temperature used in UncertaintyModify() for the temperature-dependent
influences, in the unit of the temperature channel influenced. If not specified, 20 is assumed. If the temperature channel is
stated in °C and the specified value is 23, then this is interpreted as 23°C.

SvValue

SvValue Value of the property (single value)

Description:
The properties defined here directly reflect characteristic parameters regarding the topic measurement uncertainty, which are defined either by
the user of by the measurement system, and are calculated for output quantities by the function UncertaintyCalc - or they describe influencing
quantities which cause measurement uncertainty ("Uncertainty Source.*") and are taken into account by the function UncertaintyModify().

There is an additional characteristic parameter concerning the topic measurement uncertainty, which is not listed here: "Uncertainty evaluation".
This contains the method by which the measurement uncertainty is determined, is set by the function UncertaintyCalc() and is of the data type
[Text], e.g. "MCM, M=100". To query this property, use the function UserPropText?(.., "Uncertainty evaluation").

Further information on determining the measurement uncertainty in FAMOS is presented in the user's manual/online help, in the section
"Determining the measurement uncertainty". There, the characteristic parameters and fundamental standards and methods (GUM, Monte-Carlo
method) are described in greater detail.

This function is not available in the FAMOS Standard Edition.

Examples:
From a voltage channel Input1 with a 10V measurement range and measurement uncertainty of 0.1V, a result named "Result" is to be determined
by means of an algorithm (low-pass filter, maximum value).

; stating the measurment uncertainty of the input data:
UncertaintySet(Input1, "Uncertainty", 0.1)
; run all Monte-Carlo trials, here the trial count M = 1000
UNCERTAINTY_LOOP 1000
 ; adding noise to the input data
 _In1 = UncertaintyModify(Input1)
 ; caling the actual algorithm and calculating the result
 Result = Max(FiltLp(_In1, 0, 0, 1, 0.02))
 ; calculating the result's measusrement uncertainty and the expanded measurement uncertainty
 UncertaintyCalc(Result, 95)
END
; querying the result's measurement uncertainties
uc = UncertaintyGet(Result, "Uncertainty")
U = UncertaintyGet(Result, "Expanded uncertainty")

Definition of an offset drift:

UncertaintySet(Input1, "Uncertainty Source.Drift Offset", 0.01) ; [mV]
UncertaintySet(Input1, "Uncertainty Source.Drift Time", 1000) ; [s]
UNCERTAINTY_LOOP 1000
...

See also:
UNCERTAINTY_LOOP, UncertaintySet, UncertaintyModify, UncertaintyCalc, UncertaintySnapshot

imc FAMOS Func on Reference - 1075 -

(c) 2024 imc Test & Measurement GmbH

UncertaintyModify

Available in: Professional Edition and above

Adds noise to a signal in the framework of determining the measurement uncertainty according to the Monte-Carlo method.

Declaration:
UncertaintyModify (Variable [, Temperature]) -> Result

Parameter:

Variable Signal to which to add noise. The variable must be specified directly; temporary or indexed data are not permitted.

Temperature Optional temperature channel, if temperature-dependent deviations are to be taken into account. (optional)

Result

Result Modified signal

Description:
A signal is distorted with noise. If the input channel has user-defined properties from which a signal interference can be calculated, this
calculation is performed. Such properties include "Uncertainty" or "Uncertainty Source.Offset" and are defined using the function
UncertaintySet().

If the input signal possesses the property "Uncertainty", then a normally distributed distorting influence is added.

The signal dsitorted with the corersponding interference is returned. The function adds noise and other interference.

This function can only be used within the UNCERTAINTY_LOOP. On the first and last runs, the function returns the unchanged input signal without
inspection. In the loop runs in the interim, the input signal is distorted with a random interference signal, in accordance with the Monte-Carlo
method.

The random number generator is initialized by the loop frame UNCERTAINTY_LOOP and runs independently of the generator which the random()
function uses.

The function may also be called for signals which (currently) have no appropriate user-defined properties. The function then only returns a copy.

The function only affects the y-coordinate of equidistant and XY-data, as well as the magnitude of complex data. If there are other data types,
then splitting into individual partial variable is necessary. If for instance the phase of a complex data set is to be distorted with noise, a separate
variable with the phase must be introduced before the beginning of the UNCERTAINTY_LOOP, e.g. A_P = A.P. With UncertaintySet(), it is provided
with appropriate specifications.

The optional temperature channel must have either the same sampling interval, or one which is an integer multiple of, the sampling interval of
the signal to be distorted with noise. If the temperature channel extends further in time, it is truncated accordingly. If its time range is smaller, it
is lengthened by repeating its last value the corresponding number of times.

Information on determining the measurement uncertainty in FAMOS is available in the user's manual/online-help, in the section "Determining
the measurement uncertainty". Here, the foundational standards and methods (GUM, Monte-Carlo method) are explained in more detail.

This function is not available in the FAMOS Standard Edition.

Examples:
From a voltage channel Input1 having a 10V measurement range and measurement uncertainty of 0.1V, a result named "Result" is to be
determined by means of an algorithmus (low-pass filter, maximum value). Additionally, the distribution density is to be determined.

; stating the measurment uncertainty of the input data:
UncertaintySet(Input1, "Uncertainty", 0.1)
; run all Monte-Carlo trials, here the trial count M = 1000
UNCERTAINTY_LOOP 1000
 ; adding noise to the input data
 _In1 = UncertaintyModify(Input1)
 ; caling the actual algorithm and calculating the result
 Result = Max(FiltLp(_In1, 0, 0, 1, 0.02))
 ; calculating the result's measusrement uncertainty and the expanded measurement uncertainty
 UncertaintyCalc(Result, 95 , 0 , "pdf")
 ; also creates the group "Result_uc_result" with the channels "original" and "pdf"!
END
; querying the result's measurement uncertainties
uc = UncertaintyGet(Result, "Uncertainty")
U = UncertaintyGet(Result, "Expanded uncertainty")

From a voltage channel U1 having a measurement range of 10V and measurement uncertainty of 0.1V, and a current chanel I1 (2A, 0.01A), the
power is to be determined. The voltage channel is additionally affected by mains hum.

UncertaintySet(U1, "Uncertainty", 0.1)
UncertaintySet(U1, "Uncertainty Source.Hum Amplitude", 0.01)
UncertaintySet(I1, "Uncertainty", 0.01)
UNCERTAINTY_LOOP 1000

imc FAMOS Func on Reference - 1076 -

(c) 2024 imc Test & Measurement GmbH

 U1_mod = UncertaintyModify(U1)
 I1_mod = UncertaintyModify(I1)
 P = Mean(U1_mod * I1_mod)
 UncertaintyCalc(P)
END
uc = UncertaintyGet(W, "Uncertainty")

Given: A voltage channel 'Channel' scaled in V and a temperature channel 'Temperature' in °C. The sensor's spec sheet states a temperature-
dependent zero point offset of 0.001V/K and a temperature-dependent gain offset of 50ppm/K, based on a reference value of 23°C.

UncertaintySet(Channel, "Uncertainty Source.Temp Off", 0.001)
UncertaintySet(Channel, "Uncertainty Source.Temp Gain", 0.000050)
UncertaintySet(Channel, "Uncertainty Source.Temp Ref", 23)
UNCERTAINTY_LOOP 100
 _Channel = UncertaintyModify(Channel, Temperature)
 ...

See also:
UNCERTAINTY_LOOP, UncertaintyCalc, UncertaintySet, UncertaintyGet, UncertaintySnapshot

imc FAMOS Func on Reference - 1077 -

(c) 2024 imc Test & Measurement GmbH

UncertaintySet

Available in: Professional Edition and above

Sets a user-defined property regarding the topic of measurement uncertainty.

Declaration:
UncertaintySet (Variable, TxPropName, SvValue)

Parameter:

Variable Variable to be changed

TxPropName Name of the property to be changed

"Uncertainty" : Standard measurement uncertainty. Stated in the data set's y-unit. Calculated by the function UncertaintyCalc().
The function UncertaintyModify() adds a normally distributed influencing variable, meaning a white noise with standard
deviation/RMS-value equal to the measurement uncertainty.

"Expanded uncertainty" : Expanded measurement uncertainty. Stated in the data set's y-units. Calculated by the function
UncertaintyCalc(). The function UncertaintyModify() adds a normally distributed influencing variable (noise), if the coverage
probability or expansion factor is additionally specified.

"Uncertainty evaluation" : The method according to which the measurement uncertainty/expanded measurement uncertainty is
determined. E.g. "MCM, M=100". It is set by UncertaintyCalc(). (Data type: Text)

"Coverage probability" : The coverage probability, stated in percent. E.g. 95 or 99.7. This is the probability that the true value lies
within the coverage (confidence) interval. Is set by UncertaintyCalc(). The function UncertaintyModify() takes the value into
account in conjunction with the expanded measurement uncertainty.

"Coverage factor" : Ratio of expanded measurement uncertainty to standard measurement uncertainty, typically in the range 2
to 3. The function UncertaintyModify() takes the value into account in conjunction with the expanded measurement uncertainty.

"Uncertainty Source.Rectangular" : UncertaintyModify() adds a symmetrical uniform distribution. Half of the distributions width
is specified.

"Uncertainty Source.LSBs" : Number of LSBs determining the bit noise. Only for integers. UncertaintyModify() add bit noise of
the standard deviation specified in terms of LSBs.

"Uncertainty Source.Amplitude" : Gain deviation around the value 1.0. UncertaintyModify() adds a random gain deviation which
is however fixed for the measurement. E.g. 0.1, if the gain is to vary by 10%; to be interpreted as standard deviation.

"Uncertainty Source.Offset" : Constant offset deviation in physical units of the channel. UncertaintyModify() adds a random
offset deviation which however is fixed for the measurement. The standard deviation is given.

"Uncertainty Source.Drift Offset" : Drift fluctuating over time. Hight of the drift-offset deviation, states as the standard
deviation (in the channel's physical units). UncertaintyModify() adds an offset drift.

"Uncertainty Source.Drift Time" : Drift fluctuating over time. If UncertaintyModify() adds an offset drift, this sets a time
dimension for the change.

"Uncertainty Source.Gain Drift" : Gain deviation drifting over time stated as a factor around the value 1.0. E.g. 0.01, if the gain is
to vary by 1%, to be interpreted as the standard deviation. UncertaintyModify() adds this drift.

"Uncertainty Source.Gain Drift Time" : If UncertaintyModify() adds a gain deviation drifting over time, this specifies a time
dimension for the change.

"Uncertainty Source.Hum Amplitude" : UncertaintyModify() adds a mains hum signal. The amplitude is selected at random and is
fixed for a measurement. The stated value is the standard deviation of the selected amplitudes.

"Uncertainty Source.Hum Frequency" : If UncertaintyModify() adds a mains hum signal, this sets the fixed frequency.

"Uncertainty Source.Hum Harmonics" : If UncertaintyModify() adds a mains hum signal, this specifies the ration of the upper
harmonics' power to the fundamental oscillation, e.g. 0.01, if the ratio is 1%.

"Uncertainty Source.Spikes Max" : Spikes; UncertaintyModify() adds interference signal pulses with the specified maximum
value (in y-units of the data set).

"Uncertainty Source.Spikes Min" : Spikes; UncertaintyModify() adds interference signal pulses with the specified minimum
value.

"Uncertainty Source.Spikes Width" : If UncertaintyModify() adds interference signal pulses, then this sets the maximum width
of the pulses.

"Uncertainty Source.Spikes Time" : If UncertaintyModify() adds interference signal pulses, then this specifies after what amount
of time at the latest a new pulse appears.

"Uncertainty Source.Noise RMS" : UncertaintyModify() adds noise primarily containing higher frequency components. The
standard deviation is specified. If regular (white) noise is desired, the property "Uncertainty" must be used.

imc FAMOS Func on Reference - 1078 -

(c) 2024 imc Test & Measurement GmbH

"Uncertainty Source.Noise Frequency" : If UncertaintyModify() adds a noise signal, this states the lower cutoff frequency
(greater than 0). If this property is not specified, a value of 20% of the sampling frequency is assumed.

"Uncertainty Source.Temp Off" : Offset increasing in proportion to the temperature, stated as standard deviation per Kelvin
(unit of the temperature channel influenced). UncertaintyModify() adds such an offset deviation with a random proprtionality
factor which is however fixed for the particular measurement, if a temperature channel is specified. E.g. 0.01, if the gain
deviation is 1% per Kelvin; to be interpreted as the standard deviation. The added deviation is proportional to the measurement
value and to the temperature channel's deviation from the reference temperature. The reference temperature must be
specified.

"Uncertainty Source.Temp Gain" : Gain deviation increasing in proportion to the temperature, per Kelvin (unit of the
temperature channel influenced) from the value 1.0. UncertaintyModify() adds such a gain deviation with a random
proprtionality factor which is however fixed for the particular measurement. E.g. 0.01, if the gain deviation is 1% per Kelvin; to
be interpreted as the standard deviation. The added deviation is proportional to the measurement value and to the temperature
channel's deviation from the reference temperature. The reference temperature must be specified.

"Uncertainty Source.Temp Ref" : The reference temperature used in UncertaintyModify() for the temperature-dependent
influences, in the unit of the temperature channel influenced. If not specified, 20 is assumed. If the temperature channel is
stated in °C and the specified value is 23, then this is interpreted as 23°C.

"*" : Deletes all properties pertaining to the topic measurement uncertainty. For the 2nd parameter, an empty text must be
specified.

SvValue New value to which the property is to be set. For "Uncertainty evaluation" and "*" data type Text, else a number. If an empty
text is entered, the property will be deleted.

Description:
The properties defined here directly reflect characteristic parameters regarding the topic measurement uncertainty, which are defined either by
the user of by the measurement system, and are calculated for output quantities by the function UncertaintyCalc - or they describe influencing
quantities which cause measurement uncertainty ("Uncertainty Source.*") and are taken into account by the function UncertaintyModify().

Further information on determining the measurement uncertainty in FAMOS is presented in the user's manual/online help, in the section
"Determining the measurement uncertainty". There, the characteristic parameters and fundamental standards and methods (GUM, Monte-Carlo
method) are described in greater detail.

The call UncertaintySet("*", "") deletes all properties associated with the topic of measurement uncertainty.

This function is not available in the FAMOS Standard Edition.

Examples:
From a voltage channel Input1 with a 10V measurement range and measurement uncertainty of 0.1V, a result named "Result" is to be determined
by means of an algorithm (low-pass filter, maximum value).

; stating the measurment uncertainty of the input data:
UncertaintySet(Input1, "Uncertainty", 0.1)
; run all Monte-Carlo trials, here the trial count M = 1000
UNCERTAINTY_LOOP 1000
 ; adding noise to the input data
 _In1 = UncertaintyModify(Input1)
 ; caling the actual algorithm and calculating the result
 Result = Max(FiltLp(_In1, 0, 0, 1, 0.02))
 ; calculating the measurement uncertainty of the result
 UncertaintyCalc(Result)
END
; querying the measurement uncertainty of the result
uc = UncertaintyGet(Result, "Uncertainty")

Definition of an offset drift:

UncertaintySet(Input1, "Uncertainty Source.Drift Offset", 0.01) ; [mV]
UncertaintySet(Input1, "Uncertainty Source.Drift Time", 1000) ; [s]
UNCERTAINTY_LOOP 1000
...

See also:
UNCERTAINTY_LOOP, UncertaintyGet, UncertaintyModify, UncertaintyCalc, UncertaintySnapshot

imc FAMOS Func on Reference - 1079 -

(c) 2024 imc Test & Measurement GmbH

UncertaintySnapshot

Available in: Professional Edition and above

Collection of a variable's trial-variations produced by the Monte-Carlo method within an UNCERTAINTY_LOOP.

Declaration:
UncertaintySnapshot (Variable [, Option])

Parameter:

Variable
Variable whose variations are to be collected. For example, a noise-affected input channel returned by UncertaintyModify(), or an
intermediate result in the algorithm, or even a final result which is ultimately passed to UncertaintyCalc(). The variable must be
specified directly; temporary or indixed data are not allowed.

Option Type of result (optional)

0 : For each Monte-Carlo trial, a copy of the data set generated is appended to a group. The group name is assigned automatically, the
data sets are consecutively numbered. Often used when subsequent comparison of all variations across all trials is desired.

1 : Each Monte-Carlo trial is interpreted as a measurement. In accordance with the FAMOS measurement concept, copies of the data
sets which are passed are assigned to an automatically numbered measurement name. Often used when there are multiple calls of
UncertaintySnapshot() (e.g. for input parameters, intermediate results and the final result) and a comparison is to be made upon
every Monte-Carlo trial (e.g. to assess the propagation of the input error). This method then allows convenient visual display and
comparison by means of the Variables list's Measurement view.

Description:
This procedure can only be called within an UNCERTAINTY_LOOP and serves the purpose of advanced assessment of how the measurement
uncertainty was determined. For example, all results of the function UncertaintyModify() can be collected and thus the influence of the
measurement uncertainty property on the generation of the 'noisy signal' can be checked.

As a side effect, this procedure generates variables and initializes, updates, and even deletes them. An "UNCERTAINTY_LOOP M" loop is run
(M+2) times - (Initialization, M Monte-Carlo trials, Finalization). In Initialization and Finalization, the function does not do anything; when calling
within the first Monte-Carlo trial, all existing variables matching the specified target name are deleted and the first copy (according to the event
type selected) is created.

Note that the function generally creates a very large number of data sets (corresponding to the trial count specified for UNCERTAINTY_LOOP) and
thus has a very great influence on the sequence's execution time and memory requirements. After setting and commissioning of a sequence, any
no longer needed calls should therefore be deleted before applying the sequence productively.

Information on determining the measurement uncertainty in FAMOS is available in the user's manual/online-help, in the section "Determining
the measurement uncertainty". Here, the foundational standards and methods (GUM, Monte-Carlo method) are explained in more detail.

This function is not available in the FAMOS Standard Edition.

Principle of name formation with the option = 0 (Generate group)

The name of the group generated is formed from the original name by appending "_uc_shots". The channels generated in the group contain the
name "L[loop iteration number]", where the loop iteration number is filled with enough preceding zeroes to match the width of the last loop
number.

Example: The following code generates a group "x_uc_shots" having the channels "L001", "L002" ... "L100":

UNCERTAINTY_LOOP 100
 x = UncertaintyModify(input)
 UncertaintySnapshot(x, 0)
 ...
END

If the parameter is a channel belonging to a group, the nomenclature follows the pattern "[Group name]_[Channel name]_uc_shots". Any
measurement association is retained.

Principle of name formation with option = 1 (Generate measurements)

The variable's name is retained, the respective measurement is assigned the name "uc_loop[loop iteration number]", where the loop iteration
number is filled with enough zeroes to match the width of the last loop number.

Example: The following code generates the variables "x@uc_loop001", "x@uc_loop002" ... "x@uc_loop100":

UNCERTAINTY_LOOP 100
 x = UncertaintyModify(input)
 UncertaintySnapshot(x, 1)
 ...
END

If the parameter is a channel or a group, the name formation follows the pattern "[GroupName]_[ChannelName]@uc_loop###"

If the parameter itself is already assigned to a measurement, the name formation follows the pattern "
[VariableName]@[MeasurementName]_uc_loop###" or "[GroupName]_[ChannelName]@[MeasurementName]_uc_loop###"

imc FAMOS Func on Reference - 1080 -

(c) 2024 imc Test & Measurement GmbH

Examples:
From a voltage channel Input1 having a measurement range of 10V and measurement uncertainty of 0.1V, a result named "Result" is to be
determined by means of an algorithm (low-pass filter, maximum value). The following code saves all 1000 variations of the input channel (the
results of the function UncertaintyModify) in the group "x_uc_snapshots".

UncertaintySet(Input1, "Uncertainty", 0.1)
UNCERTAINTY_LOOP 1000
 x = UncertaintyModify(Input1)
 UncertaintySnapshot(x, 0)
 Result = Max(FiltLp(x, 0, 0, 1, 0.02))
 UncertaintyCalc(Result)
END

Like previously, but additionally the 1000 variations of the algorithms result are collected. The variables "x@uc_loop0001",
"Result@uc_loop0001" through "x@uc_loop1000", "Result@uc_loop1000" are generated.

UncertaintySet(Input1, "Uncertainty", 0.1)
UNCERTAINTY_LOOP 1000
 x = UncertaintyModify(Input1)
 UncertaintySnapshot(x, 1)
 Result = Max(FiltLp(x, 0, 0, 1, 0.02))
 UncertaintySnapshot(Result, 1)
 UncertaintyCalc(Result)
END

See also:
UNCERTAINTY_LOOP, UncertaintyModify, UncertaintyCalc, UncertaintySet, UncertaintyGet

imc FAMOS Func on Reference - 1081 -

(c) 2024 imc Test & Measurement GmbH

Unit?

Queries a data set's unit.

Declaration:
Unit? (Data, SvCode) -> TxUnit

Parameter:

Data Data set whose unit is to be determined

SvCode Specification of which unit to query

0 : X-unit for single-component data. For XY-data, the unit of the X-component. For complex data, unit of the phase/imaginary part.

1 : Y-unit for single-component data. For XY-data, the unit of the Y-component. For complex data, unit of the magnitude/real part.

2 : Z-unit

3 : Unit of the parameter for 2-component data

TxUnit

TxUnit The unit determined

Description:

Examples:
A data set's Y-unit is queried. If the unit is "W", it is converted to "VA":

unitY = Unit?(data, 1)
cmp = TComp(unitY, "W")
IF cmp = 0
 SetUnit(data, "VA", 1)
END

See also:
SetUnit, ConvertUnit, XUNIT, YUNIT

imc FAMOS Func on Reference - 1082 -

(c) 2024 imc Test & Measurement GmbH

UpperValue

Returns the greater value of the two parameters.

Declaration:
UpperValue (Parameter1, Parameter2) -> Result

Parameter:

Parameter1 First single value or data set to be compared.

Parameter2 Second single value or data set to be compared.

Result

Result The respective greater value of the two parameters.

Description:
The function has two practical applications. When the parameters are a data set/ single value combination, the effect is to set an upper limit on
the data set values at the second parameter's value. If both parameters are data sets, the result is the upper envelope curve.

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/segments); but the respective counterpart parameter must then either have exactly the same
structure (same segment length, event-count and -length) or it must be a single value.

Examples:
The input channel is converted to decibels and limited to an upper limit of -100 dB.

Channel_01_dB = UpperValue(db(Channel_01), -100)

The lower and upper envelope curves of two data sets are determined.

Env_L = LowerValue(Channel_01, Channel_02)
Env_H = UpperValue(Channel_01, Channel_02)

See also:
LowerValue, >, RangeSet

imc FAMOS Func on Reference - 1083 -

(c) 2024 imc Test & Measurement GmbH

UserPropCopy

Copying of user-defined properties

Declaration:
UserPropCopy (Destination, Source, TxPropName)

Parameter:

Destination The target variable to which the properties are to be copied

Source Variable with the properties to copy

TxPropName

Description:
The property's name may also be specified containing the wildcard characters '*' (representing a string of any length) and '?' (representing exactly
one character). In that case, all properties are copied whose name matches the pattern specified.

With the names of user-defined properties, there is no distinction between upper- and lowercase spelling.

With the permanent properties already predefined by imc, either the internal name ("imc??") or the display name can be specified (e.g. "imc33"
or "Uncertainty").

Examples:
A variable is high-pass filtered. All user-defined properties of the source, whose names begin with 'Env.', are copied into the result.

Channel1_Filtered = FiltHP(Channel1, 0, 0, 4, 100)
UserPropCopy(Channel1_Filtered, Channel1, "Env.*")

See also:
UserPropSet, UserPropText?, UserPropValue?

imc FAMOS Func on Reference - 1084 -

(c) 2024 imc Test & Measurement GmbH

UserPropCount?

Gets the amount of a variable's user-defined properties.

Declaration:
UserPropCount? (Variable) -> SvCount

Parameter:

Variable The variable queried

SvCount

SvCount Amount of user-defined properties

Description:
The function is used together with the function UserPropName?() in order to count all of a variable's user-defined properties.

Examples:
For the variable 'Channel', all user-defined properties are enumerated and displayed together with their current contents in the output box.

n = UserPropCount?(Channel)
FOR i = 1 TO n
 TxName = UserPropName?(Channel, i)
 TxValue = UserPropText?(Channel, TxName)
 BoxOutput(TxName + " : " + TxValue, EMPTY, "", 1)
END

See also:
UserPropName?

imc FAMOS Func on Reference - 1085 -

(c) 2024 imc Test & Measurement GmbH

UserPropDel

Deletion of user-defined properties

Declaration:
UserPropDel (Variable, TxPropName)

Parameter:

Variable Variable from which the property is to be deleted

TxPropName Specifies the property(-ies) to be deleted. Empty string or "*" to delete all properties.

Description:

The properties' name may also be specified containing wildcard characters '*' (representing a string of any length) and '?' (representing
exactly one character). Then all properties are deleted whose name matches the specified pattern.
Pre-defined properties with the attribute 'Write-protected' can not be deleted.
With the names of user-defined properties, there is no distinction between upper- and lowercase spelling.
With the permanent properties already predefined by imc, either the internal name ("imc??") or the display name can be specified (e.g.
"imc33" or "Uncertainty").

Examples:
All properties are deleted from the variable 'Channel1', whose names begin with 'Env.':

UserPropDel(Channel1, "Env.*")

See also:
UserPropSet, UserPropText?

imc FAMOS Func on Reference - 1086 -

(c) 2024 imc Test & Measurement GmbH

UserPropInfo?

Get information on a user-defined property

Declaration:
UserPropInfo? (Variable, TxPropName, TxChoice) -> SvResult

Parameter:

Variable

TxPropName The name of the property queried

TxChoice Selection of information to obtain

0 : Present? - Returns 1, if the property for this variable is defined. Else 0.

1 : Valid? - Returns 1, if the property is defined for this variable and, for numerical types, is also initialized (meaning not empty).
Else 0.

2 : Data type - Returns the den property's data type (1: Text, 2: Integer, 3: Real, 4: Boole, 5: Enumeration type, 6: Time) or -1, if the
property is not defined.

3 : Temporary? - Returns 1, if the property has the attribute 'temporary' for this variable, meaning it is ignred when the variable
is saved. Else 0, if the attribute is not set, -1 if the property is not defined.

4 : Write-protected? - Returns 1, if the property has the attribute 'write-protected' for this variable, meaning it is ignred when
the variable is saved. Else 0, if the attribute is not set, -1 if the property is not defined.

SvResult

SvResult Result according to [Selection].

Description:
With the names of user-defined properties, there is no distinction between upper- and lowercase spelling.

With the permanent properties already predefined by imc, either the internal name ("imc??") or the display name can be specified (e.g. "imc33"
or "Uncertainty").

Examples:
All variables currently present in FAMOS, for which the property 'UserComment' is defined, are displayed in the output box together with this
property's content.

Count = VarGetInit2("*", 2)
n = 1
WHILE n <= Count
 TxVarName = VarGetName?(n)
 IF UserPropInfo?(<TxVarName>, "UserComment", 0)
 TxValue = UserPropText?(<TxVarName>, "UserComment")
 BoxOutput(TxVarName + " : " + TxValue, EMPTY, "", 1)
 END
 n = n+1
END

See also:
UserPropSet, UserPropText?

imc FAMOS Func on Reference - 1087 -

(c) 2024 imc Test & Measurement GmbH

UserPropName?

Gets the name of a user-defined property of a variable.

Declaration:
UserPropName? (Variable, SvIndex) -> TxName

Parameter:

Variable The variable queried

SvIndex Index (beginnng at 1) of the property queried

TxName

TxName Name of the property

Description:
The function is used together with the function UserPropName?() in order to count all of a variable's user-defined properties.

Examples:
For the variable 'Channel', all user-defined properties are enumerated and displayed together with their current contents in the output box.

n = UserPropCount?(Channel)
i = 1
WHILE i <= n
 TxName = UserPropName?(Channel, i)
 TxValue = UserPropText?(Channel, TxName)
 BoxOutput(TxName + " : " + TxValue, EMPTY, "", 1)
 i = i+1
END

See also:
UserPropCount?

imc FAMOS Func on Reference - 1088 -

(c) 2024 imc Test & Measurement GmbH

UserPropSet

Creates/sets a user-defined property

Declaration:
UserPropSet (Variable, TxPropName, Content, SvType, SvAttribute)

Parameter:

Variable

TxPropName Name of the property to alter

Content New content or value to which the property is to be set

SvType The property's data type

0 : Automatic/Retain: When a new property is created, the type is automatically determined based on the parameter supplied.
For Text, the type 'Text' is selected; for a number the type 'Real'. When an existing property is changed, the existing type is
retained.

1 : Arbitrary text

2 : A whole number

3 : A real number

4 : A property whose value can only be either 0 or 1

SvAttribute Additional attribute for the property to be set

0 : Automatic/retain: When a new property is created, it is assumed to be 'permanent', meaning the property is saved when the
variable is saved with the file.

1 : Temporary: The property is regarded as temporary and ignred when the variable is saved.

2 : Permanent: The property is included when the variable is saved (imc file format).

Description:
The type for the property's new content (text/number), which the user supplys as the 3rd parameter, must match the property's specified data
type.

Properties having names beginning with 'imc' are reserved for internal purposes. It is not possible to create new properties with such a name,
and when exporting existing properties, only the content but not the data type or attribute may be changed. Thus, [SvAttribute] and [SvType] are
ignored. Furthermore, internal properties may also be supplied with the attribute 'write-protected'. With properties already predefined by imc,
either the internal name ("imc??") or the display name can be specified (e.g. "imc33" or "Uncertainty").

If the name for a property contains a period, then the part before the period is regarded as a category designation. Thus, it is possible to group
properties having similar significance. The category is used, for example, for hierarcical listing of properties in the dialog 'Variable'/'Properties'.

The following constraints apply to names for new properties:

The first character may not be a period.
Neither the first or last character may be a space.
The following characters are not allowed: <>{}[]()&%$§|
Special characters with an ASCII-code < 32 (e.g. Tabulator) may not be included.

With the names of user-defined properties, there is no distinction between upper- and lowercase spelling.

Examples:
A data set is amended with various information specific to the measurement, which is written to the file when the data set is saved in imc file
format:

UserPropSet(data, "TestNumber", 212, 2, 0) ; integer
UserPropSet(data, "Env.UserName", "Smith", 1, 0) ; Text
UserPropSet(data, "Env.Temperature", 21.5 , 3, 0) ; real
UserPropSet(data, "Env.CalibrationOK", 1, 4, 0) ; bool

See also:
UserPropText?, UserPropValue?, UserPropCopy

imc FAMOS Func on Reference - 1089 -

(c) 2024 imc Test & Measurement GmbH

UserPropText?

Gets a user-defined property

Declaration:
UserPropText? (Variable, TxPropName) -> TxContent

Parameter:

Variable The variable queried

TxPropName Name of the property to query

TxContent

TxContent Content of the property queried

Description:
If the property does not exist, an empty text is returned. You can use the function UserPropInfo?() with the option 0 beforehand, in order to
verufy the property's existence.

With the names of user-defined properties, there is no distinction between upper- and lowercase spelling.

With the permanent properties already predefined by imc, either the internal name ("imc??") or the display name can be specified (e.g. "imc33"
or "Uncertainty").

Examples:
For the variable 'Channel', all user-defined properties are enumerated and displayed together with their current contents in the output box.

n = UserPropCount?(Channel)
i = 1
WHILE i <= n
 TxName = UserPropName?(Channel, i)
 TxValue = UserPropText?(Channel, TxName)
 BoxOutput(TxName + " : " + TxValue, EMPTY, "", 1)
 i = i+1
END

The second column of a table in the active Panel is filled with a data set's values. The first row contains the name, the 2nd and 3rd rows the
content of two user-defined properties. The numerical values start at the 4th row.

PnTableSetCell("Tab1", 2, 1, "channel1")
PnTableSetCell("Tab1", 2, 2, UserPropText?(Kanal1, "Env.UserName"))
PnTableSetCell("Tab1", 2, 3, UserPropValue?(Kanal1, "Env.Temperature"))
PnTableSetColumn("Tab1", 2, 4, channel1)

See also:
UserPropSet, UserPropValue?

imc FAMOS Func on Reference - 1090 -

(c) 2024 imc Test & Measurement GmbH

UserPropValue?

Gets a numeric user-defined property

Declaration:
UserPropValue? (Variable, TxPropName) -> SvValue

Parameter:

Variable

TxPropName Name of the property to query

SvValue

SvValue Value of the property queried

Description:
If the property does not exist or is not initialized, 0 is returned. You can use the function UserPropInfo?() with the option 1 beforehand in order to
verify the property's validity.

The function can only be called for property with a numeric type (real, integer, boole).

With the names of user-defined properties, there is no distinction between upper- and lowercase spelling.

With the permanent properties already predefined by imc, either the internal name ("imc??") or the display name can be specified (e.g. "imc33"
or "Uncertainty").

Examples:
A multi-channel file in imc-format is opened. All channels contain the ambient temperature during measurement in the property
'Env.Temperature'. All channels are displayed whose ambient temperature exceeded 30 degrees.

idFile = FileOpenDSF("c:\imc\dat\xxx.dat", 0)
IF idFile >= 1
 count = FileObjNum?(idFile)
 index = 1
 WHILE index <= count
 TxName = FileObjName?(idFile, index)
 <TxName>= FileObjRead(idFile, index)
 envTemp = UserPropValue?(<TxName>, "Env.Temperature")
 IF envTemp > 30
 SHOW <TxName>
 END
 index = index + 1
 END
 FileClose(idFile)
END

See also:
UserPropSet, UserPropText?

imc FAMOS Func on Reference - 1091 -

(c) 2024 imc Test & Measurement GmbH

Value

Returns a data set's y-values at specified x-position.

Declaration:
Value (Data, XPositions) -> Values

Parameter:

Data Data set queried; allowed types: [ND],[XY].

XPositions X-coordinates whose associated Y-values are to be determined.

Values

Values Y-values determined [ND]

Description:
This function returns the value of the specified data set at a predefined x-coordinate, i.e. the ycoordinate corresponding to an x-coordinate is
determined.

Data type NW: If the x-coordinate does not exactly coincide with any of the data set's sample values, the x-coordinate is rounded to the
preceding sample value.

Data type XY: The function can only be applied to data sets with a strictly monotonic X-track. If the x-coordinate does not exactly coincide with a
sample value in the data set, the y-coordinate is interpolated linearly.

This function is obsolete; the more powerful funciton Value2() is generally preferable.

The result has the same y-unit as the input data set.
The x-position of the value to be determined should be specified as an x-coordinate, not as the index of a point in the data set.
If the specified x-position lies outside the range of the data set, the corresponding beginning or end value of the data set is returned.
The rounding of normal data type data sets to the preceding sample value is subject to some slight imprecision, so that a specified x-value is
considered to exactly coincide with a sample value if it is located less than 1/100 of a sampling step before it. Thus if the value for which the
function is searching is only slightly less than a sample value, the value is returned at this position anyway. This behavior is intended to
compensate for numerical discrepancies where X-coordinates are previously calculated.
The specified second parameter should indicate the unit of the x-coordinate.
When several x-coordinates are specified, the corresponding number of y-values are created and returned as a data set.
If the numerical values of a data set are desired, but no further calculations are to be performed with them, use the crosshairs in the
measurement value window in the corresponding Curve Window. Use the stairstep display for more convenient operation. The Data Editor
can also be used to view the values in a table.
Alternatively, you can use the function ValueIndex, or indexing by means of square brackets [..] if you wish to specify the desired positions
via the indices of the data set's points.

Examples:
The y-coordinate of a data set with an expansion in the x-direction from 2 s to 10 s is determined for the x-coordinate 5 s:

yValue = Value(NDdata, 5 's')

The last value of the data set is determined. The expansion of the data set is less than 1E20.

yLast = Value(NDdata, 1E20)

The value of a data set is doubled at the x-coordinate 6:

NDdata = Set(NDdata, 6, 2 * Value(NDdata, 6))

See also:
Value2, ValueIndex, PosiEx2, Set

imc FAMOS Func on Reference - 1092 -

(c) 2024 imc Test & Measurement GmbH

Value2

Returns a data set's respective y-values for specified x-positions.

Declaration:
Value2 (Data, XPositions, SvInterpolation) -> YValues

Parameter:

Data Data set examined. Allowed types: [ND],[XY]. The time axis/x-axis must be monitonic.

XPositions X-coordinates for which the associated Y-values are to be determined

SvInterpolation If the x-coordinate does not exactly coincide with a data set's sample value, the result is interpolated as follows:

0 : Linear. The input data set is interpolated linearly.

1 : Constant, preceding value. The input data set is subject to level interpolation, i.e. each value is kept constant until a new
sample value becomes effective. Thus, the result value is the input data set's value whose x-coordinate is immediately
BEFORE the x-coordinate examined.

2 : Constant, closest value. The result value is the input data set's value whose x-coordinate is CLOSEST to the x-coordinate
examined.

YValues

YValues The Y-values found

Description:
This function returns the values of the data set supplied by the user at specified x-coordinates, i.e., the y-corrdinates associated with the
specified x-coordinaten are found.

If the x-position specified is outside of the data set's domain, the data set's first/last value is returned.
Linear interpolation is generally used for continuous input signals.
The constant interpolation styles are most sensible to use when the input signal is comprised of pre-defined discrete values. This applies to
digital data , or measured data which by nature can only take integer values (e.g. the current gear in a transmission system). The resulting
data set consists only of values which also exist in the input data set, and has the same data format.
Linear interpolation for digital input data is not possible, in which case the interpolation parameter may automatically be corrected to the
value 1 (constant interpolation).
Alternatively, you can work with the function ValueIndex() if you wish to specify the desired positions by the points' indeces rather than by
their x-coordinates in the data set.

Special case of SvInterpolation = 1 (constant, preceding):
In this case there is some slight imprecision, so that a specified x-value is considered to exactly coincide with a sample value if it is located less
than 1/100 of a sampling step before it. Thus if the value for which the function is searching is only slightly less than a sample value, the value is
returned at this position anyway. This behavior is intended to compensate for numerical discrepancies where X-coordinates are previously
calculated

Examples:
A data set's Y-value at the position X=5 is determined. If needed, linear interpolation is applied.

SignalAt5 = Value2(Signal, 5 's', 0)

A vehicle's speed <velocity> and transmission stage (<gear> comprising only the values 1 - 5) are measured. All times are determined at which the
vehicle was accelerated beyond 50 km/h and in each such case the gear engaged is recorded.

t = PosiEx2(velocity, 50, 1, 0)
GearAt50 = Value2(Gear, t, 1)
GearAt50XY = XYof(t, GearAt50)

See also:
ValueIndex, PosiEx2, MatrixGet, RSampEx

imc FAMOS Func on Reference - 1093 -

(c) 2024 imc Test & Measurement GmbH

ValueIndex

Determines the y-values of a data set at positions specified by indices.

Declaration:
ValueIndex (Data, Indices) -> Values

Parameter:

Data Data set queried; allowed types: [ND],[XY].

Indices Indices of points, whose associated y-values are to be determined

Values

Values Y-values determined [NW]

Description:
For the data set [Data], at all specified positions (indices), the associated y-values are returned.

The indices specified in [Indices] must have values between 1 and the length of [NDData].

For indices < 1, the first y-value , for indices > (data set length) the last value is returned.

To query a single value in imc FAMOS by means of its index in the data set ,you can also address its index within the data set in a formula:

singleValue = Data[Index]

There first point in a data set has the index 1; the index of the last point matches the data set length.
Alternatively, you can use the function Value2(), in which the positions of data pointsare specified in terms of their x-coordinates.
If you specify multiple indices, the function returns a corresponding amount of y-values as a data set.
To determine numerical values in a data set without intending to process them any further, you can use the measurement cursors in the
measurement value window of the data set concerned. Note that using the "Steps" display option offers special convenience for this
purpose. Another possibility is to use the imc FAMOS Data Editor to view the values in a table.

Examples:
The last value of a data set is determined:

LastValue = ValueIndex(Data, Leng?(Data))
; also:
LastValue = Data[Leng?(Data)]

Every second y-value of the data set is doubled:

Indizes = Ramp(1, 2, Leng?(Data)/2) ;Indizes = 1,3,5..
NewY= ValueIndex(Data, Indizes) * 2
DataNew = SetIndex(Data, Indizes, NewY)

See also:
Value2, CutIndex, SamplesGate, ReplIndex, SetIndex, MatrixGet

imc FAMOS Func on Reference - 1094 -

(c) 2024 imc Test & Measurement GmbH

VarExist?

Queries whether a variable of a certain name exists in imc FAMOS.

Declaration:
VarExist? (TxVariableName) -> SvExist

Parameter:

TxVariableName Name of the variable to be found

SvExist

SvExist 0: Not present / 1: Present

Description:
Checks whether a variable having the specified name exists in imc FAMOS at the time the function is called.

Data sets belonging to groups can be specified in the customary form 'GroupName:ChannelName'.

Local variables are not found.

Examples:

FileLoad("c:\imc\dat\multi.dat", "", 0) ; Multichannel-File
IF VarExist?("channel012")
 SHOW channel012
END

A multi-channel file is loaded. It is checked for the presence of a channel bearing a specified name. The particular channel is displayed, if it
exists. If so, it is displayed.

See also:
VarGetInit2, VarGetInit, VarGetName?, Name?

imc FAMOS Func on Reference - 1095 -

(c) 2024 imc Test & Measurement GmbH

VarGetInit

Gets the FAMOS variables which are present when the sequence execution starts. Initialization for subsequent calls of VarGetName?().

Declaration:
VarGetInit (SvOption) -> SvCount

Parameter:

SvOption Options parameter

0 : All entries

1 : Only selected entries

2 : All entries; extended syntax

3 : Only selected entries; extended syntax

4 : Number of sequence parameters passed. This call is deprecated, newly created sequences should use the ParametersPassed?()
function (available since version 2024) instead.

SvCount

SvCount Amount of variables found.

Description:
This function (VarGetInit) returns the contents of the Standard Variables List at the start of the sequence execution. The function VarGetInit2, by
contrast, returns the variables which are present when the function is called.

During execution of a sequence, the status of the variables list is actually undefined. The exception is the case where the sequence is being
executed in single-step mode; in this case, the status of the Variables list at the moment the function is called is used.

VarGetInit is used to prepare for subsequent inquiry of the variables list with the function VarGetName?().

Local variables are ignored.

In order that a variable name can be entered in formulas, it must comply with certain rules (e.g. no spaces, the first character may not be a digit
etc.). If this is not the case, the name must additionally appear inside curly brackets {...}. In options 2 and 3, the name returned by VarGetName?
may be automatically amended with the curly brackets, for which reason these options are preferable for this type of application.

Using these two functions in concert, sequences can be written which, for instance, manipulate all selected variables.

The function with the options 0-3 returns the actually visible status of the variable list, so it also takes into account a set display filter, for
example, and can only be used if the FAMOS main window with variable list is visible at all (e.g. not guaranteed when called by Runtime or when
remotely controlled by imc STUDIO). If all existing variables are required, the VarGetInit2() function should be used.

The option '4' does not apply to the Variables list, but has a special meaning:If the currently executed sequence has been called with the
command SEQUENCE, this call returns the number of sequence parameters passed to it; else -1.

Reference: The BoxVarSelector() function shows a list of the variables available at the time of the call, from which you can then make an
interactive selection.

Examples:
For all entries selected in the Variables list, the mean value is taken:

count = VarGetInit(1)
FOR index = 1 TO count
 TxName = VarGetName?(index)
 TxNameMean = TxName + "_M"
 <TxNameMean> = Mean(<TxName>)
END

A sub-sequence expects 2 parameter. If only 1 parameter is given, a default value is used for the 2nd parameter.

ParCount = VarGetInit(4)
; or, since FAMOS 2024: ParCount = ParametersPassed?()
SWITCH ParCount
 CASE 2
 ; ok, PA1 and PA2 are specified
 CASE 1
 ; PA2 is missing, use default value
 PA2 = 2
 DEFAULT
 BoxMessage("Error", "Calling error", "!1")
 EXITSEQUENCE
END

imc FAMOS Func on Reference - 1096 -

(c) 2024 imc Test & Measurement GmbH

See also:
VarGetInit2, VarGetName?, ParametersPassed?, BoxVarSelector, VarExist?

imc FAMOS Func on Reference - 1097 -

(c) 2024 imc Test & Measurement GmbH

VarGetInit2

Gets all FAMOS variables existing at the moment when called. Initialization for subsequent calls of VarGetName?().

Declaration:
VarGetInit2 (TxNamePattern, SvOption) -> SvCount

Parameter:

TxNamePattern Name pattern for the listing of variables. The interpretation depends on the parameter's value [option]. The wildcards "*" and
"?" can be used in their customary meanings.

SvOption Options parameter

0 : All variables are accepted whose names have a match with the specified name pattern. To list all exisitng variable, enter an
empty text or "*".

1 : All variables are accepted whose names DO NOT have a match with the specified name pattern..

2 : All variables are accepted whose names match the specified name pattern. Variable names with extended syntax are
prepared for direct use in formulas (see Remarks).

3 : All variables are accepted whose names DO NOT match the specified name pattern. Variable names with extended syntax
are prepared for direct use in formulas (see Remarks).

SvCount

SvCount Amount of variables found.

Description:
This function is used to initialize a subsequent count of available imc FAMOS variables using the function VarGetName?().

The function VarGetInit2() lists the variables existing at the moment of the function call. The function VarGetInit(), by contrast, returns the
existing variables at the beginning of the (sequence-)run.

To get the variable names, use the function VarGetName?() next.

Local variables are ignored.

In order that a variable name can be entered in formulas, it must comply with certain rules (e.g. no spaces, the first character may not be a digit
etc.). If this is not the case, the name must additionally appear inside curly brackets {...}. In Options 2 and 3, the name returned by
VarGetName?() may be automatically amended with the curly brackets, for which reason these options are preferable for this type of
application.

Reference: The BoxVarSelector() function shows a list of the variables available at the time of the call, from which you can then make an
interactive selection.

Examples:
All variables whose names are prefaced with the string "channel" are displayed in a curve window.

Count = VarGetInit2("channel*", 2)
FOR n = 1 TO Count
 TxVarName = VarGetName?(n)
 SHOW <TxVarName>
END

All variables whose names DON'T begin with the character "$" are saved together in a file.

$fh = FileOpenDSF("z:\allvars.dat",1)
$Count = VarGetInit2("$*", 3)
FOR $i = 1 TO $Count
 $TxVarName = VarGetName?($i)
 FileObjWrite($fh, <$TxVarName>)
END
FileClose($fh)

See also:
VarGetInit, VarGetName?, BoxVarSelector, VarExist?

imc FAMOS Func on Reference - 1098 -

(c) 2024 imc Test & Measurement GmbH

VarGetName?

Gets an entry from the FAMOS Variables list

Declaration:
VarGetName? (SvIndex) -> TxName

Parameter:

SvIndex Index of the entry (1..)

TxName

TxName Name of the desired Variables entry

Description:
Before using this function, either of the functions VarGetInit or VarGetInit2 must be called in order to initialize it.

The function VarGetInit2 lists the variables available at the moment it is called. By contrast, the function VarGetInit returns the content of the imc
FAMOS variables list at the beginning of the (sequence-) run.

Examples:
For all entries selected in the Variables list, the mean value is taken:

count = VarGetInit(1)
FOR index = 1 TO count
 TxName = VarGetName?(index)
 TxNameMean = TxName + "_M"
 <TxNameMean> = Mean(<TxName>)
END

All variables whose names DON'T begin with the character "$" are saved together in a file.

$fh = FileOpenDSF("z:\allvars.dat",1)
$Count = VarGetInit2("$*", 3)
FOR $i = 1 TO $Count
 $TxVarName = VarGetName?($i)
 FileObjWrite($fh, <$TxVarName>)
END
FileClose($fh)

See also:
VarGetInit, VarGetInit2, VarExist?, Name?

imc FAMOS Func on Reference - 1099 -

(c) 2024 imc Test & Measurement GmbH

Verify

Available in: Professional Edition and above

Checks whether a value is true, i.e. not equal to zero. Returns an error message otherwise. In that case, the running of the sequence is also
cancelled.

Declaration:
Verify (Value [, Error text])

Parameter:

Value This value is checked against 0.0.

Error text Text outputted when an error occurs (optional)

Description:
Verify() is used as a compact way to incorporate verifications of inputs or self-verification into sequences.

Examples:
Displays an error because A and B are not equal and Equal() returns 0.

A=2
B=sqrt(2)^2 ; A <> B !
verify(equal(A, B))

See also:
Equal

imc FAMOS Func on Reference - 1100 -

(c) 2024 imc Test & Measurement GmbH

VerifyVar

Checks whether a variable meets specified conditions.

Declaration:
VerifyVar (Variable, TxCondition1 [, TxCondition2] [, C3] [, C4] [, C5] [, C6] [, C7] [, C8] [, C9] [, C10] [, C11] [, C12] [, C13] [, C14]
) -> OK

Parameter:

Variable Variable to be checked

TxCondition1 1st condition

"SV" : Single value (normale data set of length 1)

"ND" : Normal data set

"ND(->)" : Normal data set; no events, no segments

"ND(..)" : Normal data set, Length > 1

"ND(..,->)" : Normal data set; no events, no segments, Length > 1

"CX" : Complex data set

"!CX" : Data set, not complex

"CX(->)" : Complex data set; no events, no segments

"RI" : Complex data set in Real-/Imaginary-part representation

"MP" : Complex data set in Magnitude/Phase-representation

"DP" : Complex data set in Decibel/Phase-representation

"XY" : XY-data set

"!XY" : Data set; not XY

"XY(->)" : XY-data set; no events, no segments

"XY(/)" : XY-data set with monotonically increasing x-track

"XY(->,/)" : XY-data set with monotonically increasing x-track; no events, no segments

"TSA" : Data set, TimeStamp-ASCII

"!TSA" : Data set; not TimeStamp-ASCII

"TSA(->)" : TimeStamp-ASCII; no events, no segments

"DS" : Data set (any type), therefore no text, text array or data group

"Evn" : Data set (any type) with events

"Seg" : Data set (any type) with segments

"SegEvn" : Data set (any type) with segments and events

"!Evn" : Data set (any type) without events

"!Seg" : Data set (any type) without segments

"!SegEvn" : Data set (any type); no events, no segments

"->" : Abbreviation for "!SegEvn"; data set (any type), no events, no segments

"Monotone" : Single value, normal data set or XY-data set with monotonically increasing x-track

"/" : Abbreviation for "Monotonic". Single value, normal data set or XY-data set with monotonically increasing x-track

"Digital" : Digital data set

"!Digital" : Data set; not digital

"TXT" : Text

"!TXT" : No text; therefore data set, text array or data group

"TXA" : Text array

"!TXA" : No text array; therefore data set, text or data group

"TX*" : Text or text array

"!TX*" : No text or text array; therefore data set or data group

"Group" : Data group

"!Group" : No data group

"GrMember" : Element of a data group

"!GrMember" : No element of a data group

"Empty" : Variable is empty. Length 0 for data sets; text length 0 for texts; element count 0 for text arrays and TSA.

"!Empty" : Variable is not empty

"@M" : The variable is assigned to a measurement.

"!@M" : The variable is not assigned to any measurement.

"ReadOnly" : Write protection

imc FAMOS Func on Reference - 1101 -

(c) 2024 imc Test & Measurement GmbH

"!ReadOnly" : No write protection

"V74Compat" : Variable has no properties which are introduced in future versions of FAMOS and which might possibly impair compatibility with existing sequences.

TxCondition2 2nd condition (optional)

C3 3rd condition (optional)

C4 4th condition (optional)

C5 5th condition (optional)

C6 6th condition (optional)

C7 7th condition (optional)

C8 8th condition (optional)

C9 9th condition (optional)

C10 10th condition (optional)

C11 11th condition (optional)

C12 12th condition (optional)

C13 13th condition (optional)

C14 14th condition (optional)

OK

OK The value 1 if the variable meets all specified conditions; else 0.

Description:
The function checks whether a variable meets the specified conditions. It is helpful for the purpose of verifying already at the beginning of an analysis whether input variables meet
requirements. This can prevent certain errors from occurring in the subsequent execution of the sequence, e.g if a variable takes an unexpected data type and it can not be processed
by the functions which call it.

The specified conditions are in an AND conjunction, so the result is exactly 1 whenever all conditions without exception are met.

Special case: When "Group" is specified as the first condition, the following special feature applies:

If the variable is of the type "Data Group", all subseqent conditions are applied to all the channels included (AND-conjunction). This provides a convenient way to check whether all
of a data group's elements meet a given requirement.

Test of whether the parameter is a data group and all elements are single values:

ok = VerifyVar(MyGroup, "Group", "SV")

Test of whether the parameter is a data group and all elements are empty:

ok = VerifyVar(MyGroup, "Group", "Empty")

Test of whether the parameter is a data group without elements:

ok = VerifyVar(MyGroup, "Empty" "Group")

Examples:
A sequence determines the moving maximum of the 1st parameter.

At the beginning of the sequence, the system checks whether the parameter passed is an unstructured data set (no events, no segments). There is also a test of whether it is an
equidistantly sampled data set or an XY-data set with a monotonically increasing x-axis. If not, an error message is displayed and the sequence exited.

If the data set is an XY-data set, it is sampled equidistantly before processing resumes. This ensures that the subsequent algorithm is performed without errors.

par1 = PA1
IF NOT(VerifyVar(par1, "!SegEvn", "Monotone"))
 ThrowError("Invalid data type of the 1st parameter.")
END

IF VerifyVar(par1, "XY")
 par1 = XYdt(Cmp1(par1), Cmp2(par1), 0.1)
END

par1 = Smo5(par1)
result = MvMax(par1, 1, 1)

The following sequence function checks whether the entire course of a data set's signal is above a specified reference data set's signal course. If the function can not be executed due
to inappropriate parameters, this is indicated by a special return value. The caller ca query the error cause by using GetLastError().

; Declaration: !CheckAbove(TestData, Lower) => Result
; Result = 1: OK
; Result = 0: At least 1 value of [TestData] is lower than the corresponding value in [Lower]
; Result = -1: Error: Input data do not match (in terms of x-axis) or have events/segments

OnError("Return", "Unknown error", "Result", -1)
IF NOT(VerifyVar(TestData, "!SegEvn")) OR NOT(VerifyVar(Lower, "!SegEvn"))
 ThrowError("The paramater may not have segments or events!")
END
Verify(Leng?(TestData)=Leng?(Lower) AND xdel?(TestData)=xdel?(Lower) AND xoff?(TestData)=xoff?(Lower), "Parameter: x-scaling incompatible!")
Result = Max(Lower - TestData) < 0

The following routine checks whether the variable [test] is either a normal data set or an XY-data set having at least 10 samples:

ok = VerifyVar(test, "ND")) OR VerifyVar(test, "XY"))
ok = ok AND (Leng?(test) >= 10)

The following routine checks whether the variable [gr] represents a data group which exclusively contains normal data sets or complex data sets in Magnitude/Phase-representation:

ok = VerifyVar(gr, "Group", "ND")) OR VerifyVar(gr, "GROUP", "BP"))

imc FAMOS Func on Reference - 1102 -

(c) 2024 imc Test & Measurement GmbH

See also:
Verify, OnError, ThrowError, DataFormat?

imc FAMOS Func on Reference - 1103 -

(c) 2024 imc Test & Measurement GmbH

VFAppendCwSnapshot

The content of the currently selected curve window is exported to a bitmap, and this is appended to a video file previously opened using
VFOpen().

Declaration:
VFAppendCwSnapshot (File-ID) -> Success

Parameter:

File-ID ID of the opened video file. Matches the return value of the function VFOpen()

Success

Success Success of the function: 1, if the function was executed successfully; 0 at fault condition. At fault condition, the cause can be queried
by means of the function GetLastError().

Description:
The curve window must be generated and selected prior to calling this function. To do this, the functions of the curve window kit
(CwSelectWindow() etc.) can be used.

The image is generated on the screen at the current size of the curve window content.

If the size of the resulting bitmap does not match the video's image size, the bitmap is positioned centered in the video image.

Examples:
A folder contains various files of measured data resulting from an experiment. In the order in which they were generated, all files matching a
specific name pattern are loaded, displayed in a fixed configuration, and their curve plots are appended to a video. The video image size matches
the curve imgae size on screen; the video format is MP4 in default quality with 2 frames per second.

CwSelectMode("variable")
id = VFOpen("c:\video\test_2019_04_18.mp4", 0, 0, 0, 0, 2)
IF id > 0
 CwLoadCCV(id, "data.ccv") ;curve configuration with fixed channel name "data"
 CwSelectWindow(id)
 fileNames = FsGetFileNames("c:\test\2019_04_18","ch*.raw", 0, 0, 2)
 FOREACH ELEMENT fileName in fileNames
 fh = FileOpenDSF(fileName, 0)
 IF fh > 0
 data = FileObjRead(fh, 1)
 FileClose(fh)
 VFAppendCwSnapshot(id)
 END
 END
 VFClose(id)
END

See also:
VFOpen, VFAppendFrame, VFAppendPanelSnapshot, VFAppendRGBData, VFClose

imc FAMOS Func on Reference - 1104 -

(c) 2024 imc Test & Measurement GmbH

VFAppendFrame

A bitmap is loaded from an image file and appended to a video file previously opened with VFOpen().

Declaration:
VFAppendFrame (File-ID, ImageFile) -> Success

Parameter:

File-ID ID of the opened video file. Matches the return value of the function VFOpen()

ImageFile Complete path to a bitmap image file

Success

Success Success of the function: 1, if the function was executed successfully; 0 at fault condition. At fault condition, the cause can be
queried by means of the function GetLastError().

Description:
The following file types are supported: BMP, GIF, JPEG, PNG, TIFF with color depths of 24 or 32 bits per pixel, and 8-bit bitmaps with color table.

If the size of the resulting bitmap does not match the video's image size, the bitmap is positioned centered in the video image.

Examples:
A folder contains various PNG-files which are jpined together to make a video (MP4; with resolution: 1280x720, 1fps).

 id = VFOpen("d:\data.mp4", 0, 0, 1280, 720, 1)
IF id > 0
 fileNames = FsGetFileNames("d:\report_exports","*.png", 0, 0, 2)
 FOREACH ELEMENT fileName in fileNames
 VFAppendFrame(id, fileName)
 END
 VFClose(id)
END

See also:
VFOpen, VFAppendPanelSnapshot, VFAppendCwSnapshot, VFAppendRGBData, VFClose

imc FAMOS Func on Reference - 1105 -

(c) 2024 imc Test & Measurement GmbH

VFAppendPanelSnapshot

A page of the active Panel is exported as a bitmap and this is appended to a video file previously opened with VFOpen().

Declaration:
VFAppendPanelSnapshot (File-ID, PageSelection, Size) -> Success

Parameter:

File-ID ID of the opened video file. Matches the return value of the function VFOpen()

PageSelection Selection of the page to be exported.

-1 : The active page is exported.

>=1 : Page number of the page to be exported

Size Size specification for the exported bitmap. Only used for Report-pages; for dialog-pages, this value is ignored and the current size is
always used on the screen.

0 : The dimensions corresponding to the current display are used. The resulting size is thus dependent on the current zoom level.

>=72 : The value states the resolution to select in 'dpi' (dots per inch). Typical values include 150dpi or 300dpi. The value must lie within
the range 72 - 600dpi. Example: For a Report-page in A4 landscape format (297x210mm) with a 10mm margin (resulting size thus
277x190mm) and 150dpi, the resulting bitmap size is thus (277*150/25.4, 190*150/25.4) = (1636x1124) pixels.

Success

Success Success of the function: 1, if the function was executed successfully; 0 at fault condition. At fault condition, the cause can be queried by
means of the function GetLastError().

Description:
If the size of the resulting bitmap does not match the video's image size, the bitmap is positioned centered in the video image.

For dialog-pages, as exact a replica of the screen output as possible is generated. All visible widgets are outputted; the widget-property 'Print/Export' is
ignored.

For Report-pages, as exact a replica of the printout (without margins) as possible is generated. The widget-property 'Print/Export' is implemented.

Examples:
A Panel has a "Take Snapshot" button. When this button is pressed, a snapshot is taken of the current Panel page and is appended to a video file which is
opened upon loading the Panel. When the Panel is closed, the Video-file is also closed.

Event-sequence 'Init':

; Opening the video-file in the WMV-format with 2 fps. The video image size matches the size of the first image added.
videoID = VFOpen("d:\evaluation.wmv", 0, 0, 0, 0, 2)

Event-sequence 'Button pressed' for the 'Take Snapshot'-button:

; appending the current Panel-image (Page 1) in the original size
VFAppendPanelSnapshot(videoID, 1, 0)

Event-sequence 'End':

VFClose(videoID)

See also:
VFOpen, VFAppendFrame, VFAppendCwSnapshot, VFAppendRGBData, VFClose

imc FAMOS Func on Reference - 1106 -

(c) 2024 imc Test & Measurement GmbH

VFAppendRGBData

An RGB-data set is converted to a bitmap or a sequence of bitmaps, and these are appended to a video file previously opened using VFOpen().

Declaration:
VFAppendRGBData (File-ID, RGBDataSet) -> Success

Parameter:

File-ID ID of the video file opened. Matches the return value of the function VFOpen().

RGBDataSet Data set with RGB-attribute. The individal values contain the color information for one pixel.

Success

Success Success of the function: 1, if the function was executed successfully; 0 at fault condition. At fault condition, the cause can be
queried by means of the function GetLastError().

Description:
The data set passed must be interpreted as an image frame, where each sample contains the color information for 1 pixel in RGB- or grayscale
format. Such data sets are denoted by a special Image attribute. By default, the Image attribute is only set by import filters for image files, special
functions such as VpGetImages(), or explicitly by the function SetFlag().

The data set may have events, where each event is interpreted as one frame.

If the size of the resulting bitmap does not match the video's image size, the bitmap is positioned centered in the video image.

Examples:
A Panel with a Video Player widget is loaded and a video file is displayed. Starting at the 400th frame, 200 frames are extracted to a new MP4-file.

PnLoad("videoplayer.panel")
VpVideoLoad("c:\videos\sample.avi",1)
VpSetPosFrames(400,1)
images = VpGetImages(200)
id = VFOpen("c:videos\clipped.mp4", 0, 0, 0, 0, 25, 2)
IF id > 0
 VFAppendRGBData(id, images)
 VFClose(Id)
END

See also:
VFOpen, VFAppendPanelSnapshot, VFAppendCwSnapshot, RGB, VpGetImages, Flag?

imc FAMOS Func on Reference - 1107 -

(c) 2024 imc Test & Measurement GmbH

VFClose

A video file is closed and its contents written to the data carrier.

Declaration:
VFClose (File-ID) -> Success

Parameter:

File-ID ID of the opened video file. Matches the return value of the function VFOpen(). By specifying 0, all video file currently open are
closed.

Success

Success Success of the function: 1, if the function was executed successfully; 0 at fault condition. At fault condition, the cause can be queried
by means of the function GetLastError().

Description:

Examples:
A Panel with a Video Player widget is loaded and a video file is displayed. Starting at the 400th frame, 200 frames are extracted to a new MP4-file.

PnLoad("videoplayer.panel")
VpVideoLoad("c:\videos\sample.avi",1)
VpSetPosFrames(400,1)
images = VpGetImages(200)
id = VFOpen("c:\videos\clipped.mp4", 0, 0, 0, 0, 25, 2)
IF id > 0
 VFAppendRGBData(id, images)
 VFClose(Id)
END

See also:
VFOpen, VFAppendPanelSnapshot, VFAppendCwSnapshot, VFAppendFrame, VFAppendRGBData

imc FAMOS Func on Reference - 1108 -

(c) 2024 imc Test & Measurement GmbH

VFOpen

A videofile is opened and prepared for subsequent appending of individual frames.

Declaration:
VFOpen (Filename, Mode, Format, Width, Height, FrameRate [, Quality]) -> File-ID

Parameter:

Filename Complete path name of the video file

Mode

0 : The file is created from scratch. Any already existing file of the same name is overwritten.

1 : If the file already exists, it is opened for appending. In this case, all video parameters of the existing file are retained and the function's
other parameters are ignored. However, these must still have values which are permitted.

Format Video-format

0 : Automatic determining of the format based on the file extension. Supprted formats: ".mp4", ".wmv" and ".avi".

Width Width of the video image in pixels. Must be a multiple of 2 and lie in the range 100..4096.

Height
Height of the video image in pixels. Must be a multiple of 2 and lie in the range 100..4096. The width and height may also both be 0; in this
case the width and height of the video are determined automatically by the dimensions of the first image added (see the functions
VFAppend*).

FrameRate Frame rate in fps (frames per second).

Quality Determines the quality (compression) of the encoded video. Smaller values mean higher quality, but also a larger file size. (optional ,
Default value: 3)

1 :

2 :

3 :

4 :

5 :

File-ID

File-ID ID of the opened video file (>=1) or 0 at fault condition. At fault condition, the cause can be queried using the function GetLastError().

Description:
The following video formats are supported:

File extension Format
.mp4 Container: MP4 (MPEG-4 Base Media). Videocodec: MPEG-4 Visual (Advanced Simple@L1).

.avi Container: AVI (Audio Video Interleaved). Videocodec: MPEG-4 Visual (Simple@L1).

.wmv Container: WMV (Windows Media). Videocodec: WMV2 (Windows Media Video 8).
When appending an existing file ([Mode]=1, note that the existing file must first be decoded and split up into individual images before new images can
be appended. This demands lots of computation resources and memory. Wherever possible, therefore, video files should be generated in one run and
any closing of files in the meantime should be avoided.

Every file opened with VFOpen() must be closed again with a call of VFClose().

The ID of the opened file must be specified each subsequent time the file is accessed by a video-file function (VF*). It is valid until VFClose() is called.

A maximum of 10 video file can be open simultaneously.

If calling VFClose() is omitted, this number can be reached quickly. You are then provided with an appropriate error message.

Calling VFClose(0) closes all files open at the present time. This can be useful, for example, if some files remained open while testing sequences in
single-step-mode, whose ID's you no longer know.

All open video files are also automatically closed in consequence of the menu command 'File'/'Restart' and upon restarting a sequence in the Editor
window (e.g. by the keyboard combination F7).

Multithreading:The File-ID returned by the function is only valid for the current execution thread. Files are automatically closed at the end of the thread
(e.g. at the end of a sequence function executed using BEGIN_PARALLEL).

Examples:
A folder contains various files of measured data resulting from an experiment. In the order in which they were generated, all files matching a specific
name pattern are loaded, displayed in a fixed configuration, and their curve plots are appended to a video. The video image size matches the curve
imgae size on screen; the video format is MP4 in default quality with 2 frames per second.

CwSelectMode("variable")
id = VFOpen("c:\video\test_2019_04_18.mp4", 0, 0, 0, 0, 2)

imc FAMOS Func on Reference - 1109 -

(c) 2024 imc Test & Measurement GmbH

IF id > 0
 CwLoadCCV(id, "data.ccv") ;curve configuration with fixed channel name "data"
 CwSelectWindow(id)
 fileNames = FsGetFileNames("c:\test\2019_04_18","ch*.raw", 0, 0, 2)
 FOREACH ELEMENT fileName in fileNames
 fh = FileOpenDSF(fileName, 0)
 IF fh > 0
 data = FileObjRead(fh, 1)
 FileClose(fh)
 VFAppendCwSnapshot(id)
 END
 END
 VFClose(id)
END

A Panel has a "Take Snapshot" button. When this button is pressed, a snapshot is taken of the current Panel page and is appended to a video file which is
opened upon loading the Panel. When the Panel is closed, the Video-file is also closed.

Event-sequence 'Init':

; Opening the video-file in the WMV-format with 2 fps. The video image size matches the size of the first image added.
videoID = VFOpen("d:\evaluation.wmv", 0, 0, 0, 0, 2)

Event-sequence 'Button pressed' for the 'Take Snapshot'-button:

; appending the current Panel-image (Page 1) in the original size
VFAppendPanelSnapshot(videoID, 1, 0)

Event-sequence 'End':

VFClose(videoID)

See also:
VFClose, VFAppendPanelSnapshot, VFAppendCwSnapshot, VFAppendRGBData, VFAppendFrame

imc FAMOS Func on Reference - 1110 -

(c) 2024 imc Test & Measurement GmbH

VibrationFilter

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

Filtering for the evaluation of vibration. The filtering is performed in accordance with a specified frequency-weighting. Subsequently, calculation
of the moving exponential RMS value (time weighting) is performed on the results. Finally, resampling is performed, reducing the data volume
by a certain factor.

Declaration:
VibrationFilter (InputChannel, FrequencyWeighting, TimeConstant, Reduction) -> Result

Parameter:

InputChannel The waveform to be filtered, time scaled in seconds.

FrequencyWeighting Frequency weighting

10 : Wk, z direction and for vertical recumbent direction, except head. As per ISO 2631-1:1997

11 : Wd, x and y directions and for horizontal recumbent direction. As per ISO 2631-1:1997

12 : Wf, motion sickness. As per ISO 2631-1:1997

13 : Wc, seat-back measurement. As per ISO 2631-1:1997

14 : We, measurement of rotational vibration. As per ISO 2631-1:1997

15 : Wj, vibration under the head of a recumbent person. As per ISO 2631-1:1997

16 : Hx, whole body vibration, standing, sitting position: x- and y-directions. Recumbent position: y- and z-directions. As
per DIN 45671-1:1990-09

17 : Hz, whole body vibration, standing, sitting position: z-direction. As per DIN 45671-1:1990-09

18 : Hxl, whole body vibration, recumbent position: x-direction. As per DIN 45671-1:1990-09

19 : Hb, whole body vibration, body posture not specified. As per DIN 45671-1:1990-09

20 : Hh, hand-arm-vibration, for all directions. As per DIN 45671-1:1990-09

20 : hand transmitted vibration, weighting filter. As per ISO 7505:1986-05

21 : Weighting factors for transverse (x, y) vibrations, see table 3. As per withdrawn ISO 2631-1:1985

22 : Weighting factors for longitudinal (z) vibrations, see table 3. As per withdrawn ISO 2631-1:1985

23 : Wb (passenger and crew comfort in fixed-guideway transport systems). As per ISO 2631-4:2001

24 : Wm (human exposure to vibration in buildings). As per ISO 2631-2:2003

25 : Acceleration input. As per ISO 6954:2000

26 : Velocity input. As per ISO 6954:2000

27 : Wh (hand transmitted vibration, weighting filter). As per ISO 5349-1:2001

28 : Wb (passenger and crew comfort in fixed-guideway transport systems). As per ISO 8041:2005

29 : Wc (seat-back measurement). As per ISO 8041:2005

30 : Wd (x and y directions and for horizontal recumbent direction). As per ISO 8041:2005

31 : We (measurement of rotational vibration). As per ISO 8041:2005

32 : Wf (Whole body low frequency, motion sickness). As per ISO 8041:2005

33 : Wh (hand transmitted vibration). As per ISO 8041:2005

34 : Wj (vibration under the head of a recumbent person). As per ISO 8041:2005

35 : Wk (z direction and for vertical recumbent direction, except head). As per ISO 8041:2005

36 : Wm (human exposure to vibration in buildings). As per ISO 8041:2005

37 : Wb (railway applications, passenger traveling comfort, Z ground, Z seat shell). As per EN 12299:2009

38 : Wc (railway applications, passenger traveling comfort, X seat backrest). As per EN 12299:2009

39 : Wd (railway applications, passenger traveling comfort, X ground, Y ground, Y seat shell). As per EN 12299:2009

40 : Wp (railway applications, passenger traveling comfort, Y ground, phi ground). As per EN 12299:2009

imc FAMOS Func on Reference - 1111 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

TimeConstant
The time constant for finding the exponentially weighted RMS. Specified in seconds, >= 0.0. E.g. 1.0s for SLOW weighting,
0.125s for FAST weighting. If = 0, no RMS value calculated. In this case, only the filtered signal is returned.

Reduction Only every n-th spectrum is returned. Use of a large TimeConstant can provide useful reduction of the data volume.

Result

Result Filtered waveform

Description:
The sampling time must be small enough so that the relevant bends or resonances of the frequency responce will be reflected.

Examples:

wc = VibrationFilter (Vibration, 10, 0.125, 20)

Wk weighting as per ISO 2631. Moving RMS with TimeConstant 0.125 (FAST). The input signal Vibration is an acceleration and is sampled at 1 ms.
Only every 20th value is reflected in the results.

a = diff (v)
hx = VibrationFilter (a, 16, 0, 1)

Hx weighting as per DIN 45671-1:1990-09 is applied. Since an acceleration is to be treated, but only a velocity was measured, the first derivative is
taken. Only filtering is conducted; not the calculation of the RMS value.

See also:
FilterAnalog, FiltLP, dFilt, ExpoRms

imc FAMOS Func on Reference - 1112 -

(c) 2024 imc Test & Measurement GmbH

VpBackStep

Available in: Professional Edition and above (Video-Kit)

Displays the frame, which is followed by the present frame.

Declaration:
VpBackStep (Player) -> Error code

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The video file's last frame is frozen. If the file reaches the start, the function posts an error.

Examples:
In the following example, a file named EXAMPLE.AVI is opened in the Plug-in window. The second frame is displayed and after a 10s pause, the
first frame.

VpVideoLoad ("C:\VIDEO\EXAMPLE.AVI", 0)
VpSingleStep(0)
sleep(10)
VpBackStep(0)

See also:
VpSingleStep

imc FAMOS Func on Reference - 1113 -

(c) 2024 imc Test & Measurement GmbH

VpContinue

Available in: Professional Edition and above (Video-Kit)

Resumes playback of the video file fom the current position.

Declaration:
VpContinue (Player) -> Error code

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
If the video was halted by means of the Pause button or of the Kit function VpPause(), playback can be resumed using the function VpContinue().
Multiple running of this function doesn't stop the video, nor is an error code < 0 posted. If the video wasn't stopped in the middle of playback, but
rather is in the resetted state (right after opening or having been stopped), calling VpContinue() has no effect.

Examples:
The following example assumes a file EXAMPLE.AVI located in the folder C:\VIDEO. This file is loaded, played back for 10 seconds, then paused
for 10 seconds, after which playback resumes.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlay(0)
sleep(10)
VpPause(0)
sleep(10)
VpContinue(0)

The video freezes for 10 seconds at the frame which was reached after 10 seconds, before playback resumes.

See also:
VpPause

imc FAMOS Func on Reference - 1114 -

(c) 2024 imc Test & Measurement GmbH

VpDelLink

Available in: Professional Edition and above (Video-Kit)

Deletes a link to a curve window

Declaration:
VpDelLink (Player) -> Error code

Parameter:

Player Selection of the Video Player for which the function is to be performed. Reserved; always set it to zero. The function can only be
applied to the Video Player in the FAMOS Plug-in window.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
If a link to a curve window or the Data Editor exists, it is closed. This doesn't affect the Video-Player's state.

Examples:
In the following example, the file EXAMPLE.AVI from the folder C:\VIDEO is opened and a link is set up to a curve window, which displays the
time behavior of the variable Test. The video is played back for 10 seconds, then the linkage is cut.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
id=FileOpenDSF("TEST.DAT", 0)
test = FileObjRead(id, 1)
CvConfig(test, "TEST.CCV")
VpSetLink(test, 0)
VpPlay(0)
sleep(10)
VpDelLink(0)

See also:
VpSetLink, VpLinkExists

imc FAMOS Func on Reference - 1115 -

(c) 2024 imc Test & Measurement GmbH

VpGetAbsStartTime

Available in: Professional Edition and above (Video-Kit)

Returns the date and time when the currently opened video file was created.

Declaration:
VpGetAbsStartTime (Player) -> Time point

Parameter:

Player Selection of the Video Player for which the function is to be performed. Reserved; always set it to zero. The function can only be
applied to the Video Player in the FAMOS Plug-in window.

Time
point

Time
point Date and time of creation.

Description:
If absolute time statements are used in a linked curve window, it's necessary to take the video recording's absolute starting time into account. By
default, the video's creation time is used for this. The function VpGetAbsStartTime() returns the absolute start time set.

The absolute start time is stated as text in the form "tt.mm.yy hh:mm:ss" (Day.Month.Year Hours:Minutes:Seconds).

The function has no error codes. If an error occurs, an empty text is returned.

Examples:
In the following example, the file EXAMPLE.AVI from the folder C:\VIDEO is opened and its creation time is stored in the variable "build".

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
build=VpGetAbsStartTime(0)

See also:
VpSetAbsStartTime, VpGetXOffset, VpSetXOffset

imc FAMOS Func on Reference - 1116 -

(c) 2024 imc Test & Measurement GmbH

VpGetAbsStartTime2

Available in: Professional Edition and above (Video-Kit)

Returns the date and time when the currently opened video file was created.

Declaration:
VpGetAbsStartTime2 (Player) -> Time point

Parameter:

Player
Selection of the Video-Player for which the function is to be performed. Reserved; always set ot 1. The function can only be applied to
the video player selected in the current Panel of the FAMOS Data Browser. If there are multiple players available, it is possible to select
the player desired by previously calling the function VpSelect().

Time
point

Time
point Creation time (FAMOS time format).

Description:
If the time is stated in absolute terms in a linked curve window, it is necessary to take the video recording's absolute start time into account. By
default, the video's creation time is used. The function VpGetAbsStartTime2() returns the absolute start time set.

The return value in the FAMOS time format can be subjected to further processing using the functions of the group '18> Date, Time'.

If an error occurs, an error code (always negative) is returned.

Both the Video Player display element and an open video file can each have an explicitly assigned start time. Depending on its type, the video
file's start time can be entered either in the file header or in a parallel configuration file (*.ivi), either directly when it is integrated into the
system or subsequently by the user (dialog: 'Video-Properties'). The Video Player-element itself is associated with a corresponding property
which can be determined during the Design process.

When determining the operative start time, the display element's setting is dominant, and only if this setting is on 'automatic' will any private
start time for the video displayed be observed. If there isn't any such start time either, the resulting start time is the same as the video file's
creation time.

Examples:
In the following example, the file EXAMPLE.AVI is loaded from the folder C:\VIDEO and its creation time is queried.

VpVideoLoad("C:\VIDEO\BEISPIEL.AVI", 1)
StartTime = VpGetAbsStartTime2(1)
TxStartTime = ZeitInText(StartTime, 0)

See also:
VpSetAbsStartTime2, VpGetXOffset, VpSetXOffset

imc FAMOS Func on Reference - 1117 -

(c) 2024 imc Test & Measurement GmbH

VpGetErrorText

Available in: Professional Edition and above (Video-Kit)

Returns the error test belonging to the specified error code.

Declaration:
VpGetErrorText (Error code) -> Error text

Parameter:

Error code The number returned by the Video-Kit functions at fault condition.

Error text

Error text Error text for the error code.

Description:
Many Video-Player functions return a number as the return value, which in case of an error provides information on the error cause. If the
function is successful, a 0 is returned. For every error code there is a text stating the error cause. This text can be obtained using
VpGetErrorText().

Specifying the error code's negative sign is not necessary for this function.

Examples:
The following sequence is faulty, because it attempt to skip to a too high position. This assumes that the video file EXAMPLE.AVI is located in the
folder C:\VIDEO.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
erg = VpGetLengthFrames(0)
erg = erg + 1
num = VpSetPosFrames(erg, 0)
txt = VpGetErrorText(num)

This sequence sets txt = "Unable to skip to specified position".

See also:

imc FAMOS Func on Reference - 1118 -

(c) 2024 imc Test & Measurement GmbH

VpGetFileName

Available in: Professional Edition and above (Video-Kit)

Returns the name and directory path of the currently open video file.

Declaration:
VpGetFileName (Player) -> Name

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Name

Name Name and path of current file

Description:
The function VpGetFileName() returs the name and path of the currently open video-file.

This function has no error codes. If an error occurs, an empty text is returned.

Examples:
In the following example, it is asumeed that the video file EXAMPLE.AVI was opened by the user from the folder C:\VIDEO before the sequence
was run. After the sequence has been run, the variable "name" contains the string "C:\VIDEO\EXAMPLE.AVI".

name = VpGetFileName(0)

See also:

imc FAMOS Func on Reference - 1119 -

(c) 2024 imc Test & Measurement GmbH

VpGetImages

Available in: Professional Edition and above (Video-Kit)

Retrieves one or more frames from the video file currently displayed in the active der Panel Video Player.

Declaration:
VpGetImages (Frame count) -> Image data

Parameter:

Frame count Specifies the amount of frames to be extracted from the currently loaded video file.

Image data

Image data Data set with the requested image data

Description:
The function continually exports the amount of video frames specified by the parameter "Frame count", starting from the current position. If the
video is being played back at the moment the function is called, playback is stopped without any warning message and not resumed.

The result data set's data format is "4 Byte unsigned integer". Each pixel is represented by one 4-Byte value, using the "RGB" format. The most
significant Byte is always 0, followed by the values for the color components blue, green and red, in the value range 0 ... 255. A 4-Byte vlaue of
0x00000000 corresponds to black; a value of 0x00FFFFFF (decimal => 16777215) corresponds to white. The resulting data set is segmented; the
segment length corresponds to the width of a video frame, expressed in pixels. The segment count in a frame corresponds to the video frame's
height, expressed in pixels. The first segment represents the bottom line of the frame. The first sample of the first segment represents the
bottom left pixel.

If only one frame is exported, then a simple data set is created; otherwise an event-based data set is created in which each event represents one
frame. If more frames are specified for export than the amount of frames which follow the current position, then only the still-available number
of frames is exported, without any warning message appearing. Thus, the total length of the data set is given by the image width x height (pixels)
x count of frames returned.

On error, a data set of length 1 is returned, containing the error code. The associated error text can be retreived using the function
"VpGetErrorText".

The function can only be applied to the video player selected in the current Panel of the FAMOS Data Browser. If there are multiple players
available, it is possible to select the player desired by previously calling the function VpSelect().

Examples:
In the following example, the file SAMPLE.AVI is loaded into the current Panel video player. VpSetPosFrames() is used to set the video to the
position which corresponds to the frame number (100) provided. Subsequently, five frames are extracted from the video file which is currenly
loaded in the Video-Player. Extraction of the first of the five frames starts from the current time. In conclusion, the individual color components
of the first frame's first pixel (bottom left) are extracted.

VpVideoLoad("c:\SAMPLE.AVI",1)
VpSetPosFrames(100,1)
images = VpGetImages(5)
image1 = images[1]
row1 = image1[1]
pixel1 = row1[1]
redValue = BitAnd(Pixel1, 0x000000FF, 32)
greenValue = BitShift(BitAnd(Pixel1, 0x0000FF00, 32), -8, 32)
blueValue = BitShift(BitAnd(Pixel1, 0x00FF0000, 32), -16, 32)

See also:
RGB

imc FAMOS Func on Reference - 1120 -

(c) 2024 imc Test & Measurement GmbH

VpGetLengthFrames

Available in: Professional Edition and above (Video-Kit)

Reterns the number of frames iin the currently open video file.

Declaration:
VpGetLengthFrames (Player) -> Length

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Length

Length Length of the video in frames

>= 0 : Frame number

< 0 : Error code

Description:
The function VpGetLengthFrames() returns the number of frames in the currently opened video-file.

Examples:
The file EXAMPLE.AVI is opened from the folder C:VIDEO. Since the count of frames starts at 1, VpGetLengthFrames() can be used to determine
and display the last frame.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
last = VpGetLengthFrames(0)
VpSetPosFrames(last, 0)

See also:
VpGetLengthSeconds

imc FAMOS Func on Reference - 1121 -

(c) 2024 imc Test & Measurement GmbH

VpGetLengthSeconds

Available in: Professional Edition and above (Video-Kit)

Returns the length of the currently open video-file, in seconds.

Declaration:
VpGetLengthSeconds (Player) -> Length

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Length

Length The video's length in seconds

>= 0 : The video's length

< 0 : Error code

Description:
The function VpGetLengthSeconds() returns the length of the currently open video file in seconds.

Examples:
The file EXAMPLE.AVI from the folder C:\VIDEO is opened, and its length in seconds is retrieved.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
length = VpGetLengthSeconds(0)

See also:
VpGetLengthFrames

imc FAMOS Func on Reference - 1122 -

(c) 2024 imc Test & Measurement GmbH

VpGetPlayRate

Available in: Professional Edition and above (Video-Kit)

Retunrs the currently oped video's playback speed.

Declaration:
VpGetPlayRate (Player) -> Playback speed

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the
function VpSelect() to set the desired Player.

Playback
speed

Playback
speed The video's playback speed

>= 0 : Playback speed

< 0 : Error code

Description:
The currently opened video is played back at the defualt speed. This speed is stated in frames per second, FPS; it is saved in the video file. The
playback speed can be changed temporarily; see VpSetPlayRate(). The function VpGetPlayRate() returns returns the currently set playback speed.

Examples:
In the following example, the video EXAMPLE.AVI is opened from the folder C:\VIDEO, and its default playback speed is determined.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
rate = VpGetPlayRate(0)

See also:
VpSetPlayRate, VpGetRecordRate, VpSetRecordRate

imc FAMOS Func on Reference - 1123 -

(c) 2024 imc Test & Measurement GmbH

VpGetPosFrames

Available in: Professional Edition and above (Video-Kit)

Returns the number of the currently displayed frame.

Declaration:
VpGetPosFrames (Player) -> Frame number

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the
function VpSelect() to set the desired Player.

Frame
number

Frame
number Number of the current frame

>= 0 : Frame number

< 0 : Error code

Description:
Videos are saved as (compressed) single frames in a fixed order. In the video-player, the count starts at 1; Frame 1 is thus the curren frame if the
position (in seconds) lies in the range from 0.0000s to (video length in seconds/ number of frames). VpGetPosFrames() returns the current
frame's number.

Examples:
In the following example the video EXAMPLE.AVI is loaded from the folder C:\VIDEO into the FAMOS Plug-in window, played for 10s and then the
current frame number at the current time is determined.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlay(0)
sleep(10)
position = VpGetPosFrames(0)

If the recording speed was 10 frames per second (FPS), the variable "position" holds the value 101 after the sequence has been run.

See also:
VpSetPosFrames, VpGetPosSeconds, VpSetPosSeconds

imc FAMOS Func on Reference - 1124 -

(c) 2024 imc Test & Measurement GmbH

VpGetPosSeconds

Available in: Professional Edition and above (Video-Kit)

Returns the position of the currently displayed frame.

Declaration:
VpGetPosSeconds (Player) -> Position

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Position

Position Position of the current frame in seconds

Description:
When a video is recorded, the individual frames are saved at a certain recording speed. A frame's position in seconds is then the frame number
divided by the recording speed. The functionn VpGetPosSeconds() then returns the current frame's position in seconds.

The function has no error codes. If an error occurs, 0.000 is returned.

Examples:
In the following example, the video EXAMPLE.AVI is opened from the folder C:\VIDEO, played back up to frame number 20, and the frame's
position in seconds is then returned.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlaySync(20, 0)
position = VpGetPosSeconds(0)

If the recording speed was 10 frames per second (FPS), the variable "position" holds the value 1.9 after the sequence has been run.

See also:
VpSetPosSeconds, VpGetPosFrames, VpSetPosFrames

imc FAMOS Func on Reference - 1125 -

(c) 2024 imc Test & Measurement GmbH

VpGetRecordRate

Available in: Professional Edition and above (Video-Kit)

Determines the recording speed of the currently loaded Video-file in frames per second.

Declaration:
VpGetRecordRate (Player) -> Rate (FPS)

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Rate
(FPS)

Rate
(FPS) Recording speed in frames per second

>= 0 : Recording speed

< 0 : Error code

Description:
The video file consists of (compressed) single frames, which were recorded at a certain speed. This speed is stated in frames per second (FPS). By
default, it is assumed that the recording speed and the playback speed are the same. However, they can take different values, e.g. if high-speed
recordings are converted to .AVI-files. Using the function VpGetRecordRate(), the recording speed currently set can be retrieved.

Video Player-element in the Data Browser:

Both the Video Player display element and an open video file can each have an explicitly assigned recording rate. Depending on its type, the
video file's recording rate can be entered either in the file header or in a parallel configuration file (*.ivi), either directly when it is integrated
into the system or subsequently by the user (dialog: 'Video-Properties'). The Video Player-element itself is associated with a corresponding
property which can be determined during the Design process.

When determining the operative rate, the display element's setting is dominant, and only if this setting is on 'automatic' will any private
recording rate for the video displayed be observed. If there isn't any such rate either, the resulting rate is the same as the video file's original
rate.

Examples:
The file EXAMPLE.AVI is opened from the folder C:\VIDEO, and its recording speed is determined. Once the sequece has been run, the variable
rate contains the value specifying the default playback speed.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
rate = VpGetRecordRate(0)

See also:
VpSetRecordRate, VpGetPlayRate, VpSetPlayRate

imc FAMOS Func on Reference - 1126 -

(c) 2024 imc Test & Measurement GmbH

VpGetState

Available in: Professional Edition and above (Video-Kit)

Returns a number which describes the Video-Player's state.

Declaration:
VpGetState (Player) -> State

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

State

State Number describing the Video-Player's state

Description:
The Video-Player's state can change in response to Kit functions or to manipulation of the control elements. The function VpGetState() returns a
number reflecting the current state. The following values are possible:

0: No video is open.

1: The Video-Player is reset; the video is at its initial position (newly loaded or Stop).

3: The video is being played back (Play).

5: The video was stopped, without having been played back before. (This state occurs if the picture position after loading or stopping is adjusted
manually).

7: The video has been halted (Pause).

Examples:
The function VpGetState() is used to verify whther a video is open in the Plug-in window. If so, i is closed and then EXAMPLE.AVI is loaded from
the folder C:\VIDEO and played back.

erg = VpGetState(0)
IF erg > 0
 VpVideoClose(0)
END
VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlay(0)

Note: This manner of proceeding isn't necessary; see VpVideoLoad().

See also:
VpGetStateText

imc FAMOS Func on Reference - 1127 -

(c) 2024 imc Test & Measurement GmbH

VpGetStateText

Available in: Professional Edition and above (Video-Kit)

Returns a text describing the Video-Player's current state.

Declaration:
VpGetStateText (Player) -> State

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

State

State State of the Video-Player

Description:
The Video-Player's state can change in response to Kit functions or to manipulation of the control elements. The function VpGetStateText()
returns a number text the current state. The following values are possible for the text variables:

"No video opened."

"Video is reset (newly opened or stopped)."

"Video being played back (Play)."

"Video is reset and halted (New/Stop or Pause)."

"Video has been halted (Pause)."

The function has no error codes. If an error occurs, an empty text is returned.

Examples:
The video EXAMPLE.AVI in the folder C:\VIDEO is opened in the Plug-in window and played for 30 seconds. Then the function VpGetStateText() is
used to check whether or not the video is still playing.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlay(0)
sleep(30)
erg = VpGetStateText(0)

Depending on the length of the video, the variable erg contains either the text "Video being played back (Play)." or "Video was halted (Pause).".

See also:
VpGetState

imc FAMOS Func on Reference - 1128 -

(c) 2024 imc Test & Measurement GmbH

VpGetXOffset

Available in: Professional Edition and above (Video-Kit)

Returns the time offset of the video file currently opened, in seconds.

Declaration:
VpGetXOffset (Player) -> Time offset

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Time
offset

Time
offset The video's time offset in seconds.

Description:
By default, playback of a video file begins at the time 0.000s. The function VpGetXOffset() returns the video's starting time. This relative starting
time determines the position (in seconds) displayed for the video's first frame.

The function has no error codes. If an error occurs, the value 0.000 is returned.

Video Player-element in the Data Browser:

Both the Video Player display element and an open video file can each have an explicitly assigned offset. Depending on its type, the video file's
offset can be entered either in the file header or in a parallel configuration file (*.ivi), either directly when it is integrated into the system or
subsequently by the user (dialog: 'Video-Properties'). The Video Player-element itself is associated with a corresponding property which can be
determined during the Design process.

When determining the operative offset, the display element's setting is dominant, and only if this setting is on 'automatic' will any private offset
for the video displayed be observed. If there isn't any such offset either, the resulting offset is 0.

Examples:
The file EXAMPLE.AVI from the folder C:\VIDEO is opened; after running the sequence, the file's relative start time is reflected in the variable
xoff.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
xoff=VpGetXOffset(0)

See also:
VpSetXOffset, VpGetAbsStartTime, VpSetAbsStartTime

imc FAMOS Func on Reference - 1129 -

(c) 2024 imc Test & Measurement GmbH

VpLinkExists

Available in: Professional Edition and above (Video-Kit)

States whether a linkage to a curve window or to the FAMOS Data Editor exists.

Declaration:
VpLinkExists (Player) -> Value

Parameter:

Player Selection of the Video Player for which the function is to be performed. Reserved; always set it to zero. The function can only be
applied to the Video Player in the FAMOS Plug-in window.

Value

Value 1, if linkage exists, else 0.

Description:
States whether a linkage to a curve window or to the FAMOS Data Editor exists. If a linkage exists, the function VpLinkExists() returns the value 1,
otherwise 0.

The function doesn't have any error codes. When an error occurs, it returns 0.

Examples:
In the following example, the system checks whether there is a link to a curve window; in this case it is deleted.

link = VpLinkExists(0)
IF link > 0
 VpDelLink(0)
END

See also:
VpSetLink, VpDelLink

imc FAMOS Func on Reference - 1130 -

(c) 2024 imc Test & Measurement GmbH

VpPause

Available in: Professional Edition and above (Video-Kit)

Pauses the video file at the current position.

Declaration:
VpPause (Player) -> Error code

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
Playback of the video file is interrupted at the current position; the current frame is frozen. In contrast to the use of the buttons, multiple runs of
the function function VpPause() doesn't cause the videos to be resumed; even an error code < 0 is not posted.

Examples:
In the following example, a Panel having a Video Player is opened, the video EXAMPLE.AVI is opened, played for 10 seconds and then paused.

DbLoadPanel(" c:\VIDEO\VIDEO.PANEL", 0)
VpVideoLoad("C:\VIDEO\BEISPIEL.AVI", 1)
VpPlay(1)
sleep(10)
VpPause(1)

The video halts at the frame reached after 10 seconds.

See also:
VpContinue

imc FAMOS Func on Reference - 1131 -

(c) 2024 imc Test & Measurement GmbH

VpPlay

Available in: Professional Edition and above (Video-Kit)

Plays the open Video file.

Declaration:
VpPlay (Player) -> Error code

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The video file currently open is played back. For this purpose, the setting for the playback speed is observed. The settings for the start time and
the recording speed are entered in the display of the position (in seconds). Playback is performed asynchronously, which means that is even
possible during playback to operate the program.

How the function behaves depends on the Player selected. With the Plug-in, playback continues as of the current position. With the Player in the
Panel, playback always starts at the beginning of the video; for this case, use VpContinue() to resume playback from the current position.

Note: Calling the function VpPlay(0) corresponds to clicking the Play-button.

Examples:
In the following example, a file named EXAMPLE.AVI is loaded from the folder C:\VIDEO and played back from the first frame at the default
playback speed.

VpVideoLoad ("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlay(0)

In the next example, a Panel having a Video Player is opened in the Data Browser, the specified video is loaded and playback is started.

DbLoadPanel(" c:\VIDEO\VIDEO.PANEL", 0)
VpVideoLoad ("C:\VIDEO\BEISPIEL.AVI", 1)
VpPlay(1)

In the following example, sleep() is used, in order to delay execution of VpPause() for 10 seconds. However, playback cannot be interrupted
during these 10 seconds, since the sleep()-command prevents it.

VpVideoLoad ("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlay(0)
sleep(10)
VpPause(0)

See also:
VpPlaySync

imc FAMOS Func on Reference - 1132 -

(c) 2024 imc Test & Measurement GmbH

VpPlaySync

Available in: Professional Edition and above (Video-Kit)

Plays the video back until the specified position has been reached

Declaration:
VpPlaySync (Frame number, Player) -> Error code

Parameter:

Frame
number Frame number at which playback is to end

Player Selection of the Video-Player for which the function is to be performed. Reserved; it must always be set to zero. The function can
only be applied to the Video Player in the FAMOS Plug-in window.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The video file currently open is played back. This takes the current position and the playback speed into account. Playback is synchronous, i.e.
during playback it's not possible to issue other commands; even the display and the linkage to the curve window aren't updated during playback.
VpPlaySync() expects the specification of a position (as frame number), at which playback is to be ended.

Examples:
In the following example, a file named EXAMPLE.AVI is loaded from the folder C:\VIDEO and played back from the first frame at the default
playback speed. Playback cannot be interrupted until the last frame has been reached.

VpVideoLoad ("C:\VIDEO\EXAMPLE.AVI", 0)
length = VpGetLengthFrames(0)
VpPlaySync(length, 0)

See also:
VpPlay

imc FAMOS Func on Reference - 1133 -

(c) 2024 imc Test & Measurement GmbH

VpSelect

Available in: Professional Edition and above (Video-Kit)

Selection of the Video Player in the current Data Browser Panel, upon which the subsequent calls to Video-Kit functions are to apply.

Declaration:
VpSelect (TxVideoplayerName)

Parameter:

TxVideoplayerName Name of the Video Player element to be selected.

Description:
The Video Kit's functions have a parameter which specifies whether the Video Player in the integrate FAMOS Plug-in (0) or a Video Player in the
current Panel (1) is meant. If the Panel has multiple Video Player elements, this function is used to select the element affected. If this functino is
not called, the first Video Player found is affected.

The Video Player can be selected either in the form [PageName].[ElementName] or only by the element name. If the page is not explicitly
specified, the system searches for the Video Player as follows:

If the function is called within an event sequence, and the event can be assigned to a page (e.g. a button's 'Pressed'-event), then the system
searches for Video Player with the specified name on this page.
Otherwise the search is performed on the active (visible) page.

If no panel is loaded in the data browser, the current panel is in design mode or there is no video player with the specified name, the function
aborts with an error message.

Multithreading: The functions of the Video kit can be called anywhere and have a global effect. The Player selected here is therefore valid for all
execution threads.

Examples:
On a Panel page, there are 2 Video Players and one button. When the button is pushed, 2 video files are opened and played back.

The 'Start'-button's Event-Sequence 'Pressed'

VpSelect("Player1")
VpVideoLoad("c:\video\sample1.avi", 1)
VpPlay(1)
VpSelect("Player2")
VpVideoLoad("c:\video\sample2.avi", 1)
VpPlay(1)

imc FAMOS Func on Reference - 1134 -

(c) 2024 imc Test & Measurement GmbH

VpSetAbsStartTime

Available in: Professional Edition and above (Video-Kit)

Sets the time and date of creation for the currently open video-file.

Declaration:
VpSetAbsStartTime (Time point, Player) -> Error code

Parameter:

Time
point Creation time

Player Selection of the Video Player for which the function is to be performed. Reserved; always set it to zero. The function can only be
applied to the Video Player in the FAMOS Plug-in window.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
If absolute time statements are used in a linked curve window, it's necessary to take the video recording's absolute starting time into account. By
default, the video's creation time is used for this. With the function VpSetAbsStartTime(), the video recording's start date and time can be set.
The format is a text in the form "tt.mm.yy hh:mm:ss" (Day.Month.Year Hours:Minutes:Seconds).

Examples:
The file EXAMPLE.AVI from the folder C:\VIDEO is opened, its absolute start time is set to January 1, 2000, 0:00 hours.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpSetAbsStartTime("01.01.00 00:00:00", 0)

See also:
VpGetAbsStartTime, VpGetXOffset, VpSetXOffset

imc FAMOS Func on Reference - 1135 -

(c) 2024 imc Test & Measurement GmbH

VpSetAbsStartTime2

Available in: Professional Edition and above (Video-Kit)

Sets the time and date of creation for the currently open video-file.

Declaration:
VpSetAbsStartTime2 (Time point, Player) -> Error code

Parameter:

Time
point Creation time point (FAMOS-time format). -1 for automatic.

Player
Selection of the Video-Player for which the function is to be performed. Reserved; always set ot 1. The function can only be applied to
the video player selected in the current Panel of the FAMOS Data Browser. If there are multiple players available, it is possible to select
the player desired by previously calling the function VpSelect().

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
If the time readout in a linked curve window indicates absolute time, it is necessary to take the video recording's absolute start time into
account. By default, the video's creation time is used. Using the function VpSetAbsStartTime2(), it is possible to adapt video recording's start date
and time.

The time specification in the FAMOS time format can be generated using functions belonging to the group '18> Date, Time'.

The function sets the Video Player's corresponding property, which is dominant over any already existing private video file property (saved in the
file header or in a parallel *.ivi configuration file). In order to reset the Video Player property to 'automatic' (and thus to put any video file setting
back into effect), enter the value -1.

Examples:
The file EXAMPLE.AVI from the folder C:\VIDEO is opened, its absolute start time is set to January 1, 2000, 0:00 hours.

VpVideoLoad("C:\VIDEO\BEISPIEL.AVI", 1)
time = TimeJoin(1, 1, 2000, 0, 0, 0)
VpSetAbsStartTime2(time, 1)

See also:
VpGetAbsStartTime2, VpGetXOffset, VpSetXOffset

imc FAMOS Func on Reference - 1136 -

(c) 2024 imc Test & Measurement GmbH

VpSetLink

Available in: Professional Edition and above (Video-Kit)

Establishes a link to an existing curve window or the FAMOS Data Editor.

Declaration:
VpSetLink (Reference data set, Player) -> Error code

Parameter:

Reference
data set Channel with which the link is established

Player Selection of the Video Player for which the function is to be performed. Reserved; always set it to zero. The function can only be
applied to the Video Player in the FAMOS Plug-in window.

Error code

Error code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
Any given data set whose x-axis can be interpreted as the time axis can be displayed in a curve window or in the FAMOS Data Editor. Using the
function VpSetLink() it's possible to establish a link between a video and this reference data set. As a result, the video and the data set can be
synchronized, i.e. playback of the video or dragging of the position cursor in the x-direction leads to corresponding adjustment of the position in
the linked window. The starting time in such a case is determined by the linking window. If absolute timedisplay is selected for the data set, this
reflected in the video's playback. The relative starting time (x-offset) is observed in any case.

Examples:
The file EXAMPLE.AVI from the folder C:\VIDEO is opened and linked with a variable named "test", which is generated from the waveform
TEST.DAT with a curve window configuration TEST.CCV. Then, the video is played; the curve window displays the assciated measured values.

id=FileOpenDSF("TEST.DAT", 0)
test = FileObjRead(id, 1)
CvConfig(test, "TEST.CCV")
VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpSetLink(test, 0)
VpPlay(0)

See also:
VpDelLink, VpLinkExists

imc FAMOS Func on Reference - 1137 -

(c) 2024 imc Test & Measurement GmbH

VpSetPlayRate

Available in: Professional Edition and above (Video-Kit)

Sets the playback speed to a different value.

Declaration:
VpSetPlayRate (Playback speed, Player) -> Error code

Parameter:

Playback
speed Sets the playback speed to a different value.

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the
function VpSelect() to set the desired Player.

Error code

Error code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The currenly open video is played back at the default speed. This speed is stated in frames per second frames per second, FPS; its stored in the
video file. With the function VpSetPlayRate(), the playback speed can be set to another value. This value is valid as long as the video is open; it
isn't saved.

The maximum playback speed is 200-times the default value. However, this value depends on the video- or audio-CODEC; with most videos
having audio, a maximum playback speed of twice the pre-set value is possible.

Note: Entering a zero for th edesired playback speed sets it to the default speed.

Examples:
In the following example, the video EXAMPLE.AVI is opened from the folder C:\VIDEO and its playback speed is set to the value 5 FPS.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpSetPlayRate(5, 0)
VpPlay(0)

If the file's default playback speed is 10 FPS, for instance, then after the sequence has been run, it is played back at half speed.

See also:
VpGetPlayRate, VpGetRecordRate, VpSetRecordRate

imc FAMOS Func on Reference - 1138 -

(c) 2024 imc Test & Measurement GmbH

VpSetPosFrames

Available in: Professional Edition and above (Video-Kit)

Displays the frame with the number given.

Declaration:
VpSetPosFrames (Frame number, Player) -> Error code

Parameter:

Frame
number The number of the frame to whose position the system is to skip

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the
function VpSelect() to set the desired Player.

Error code

Error code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
Videos are saved as (compressed) single frames in a fixed order. In the video-player, the count starts at 1; Frame 1 is thus the curren frame if the
position (in seconds) lies in the range from 0.0000s to (video length in seconds/ number of frames). VpSetPosFrames() sets the video to the
position which corresponds to the frame number given. The video is halted if it was being played back at the time the command is run.

Examples:
In the following example, a Panel having a Video Player is opened, the video EXAMPLE.AVI from the folder C:\VIDEO is played back for 10s, after
which the frame with the number 5 is displayed.

DbLoadPanel("C:\VIDEO\VIDEO.PANEL", 0)
VpVideoLoad("C:\VIDEO\BEISPIEL.AVI", 1)
VpPlay(1)
sleep(10)
VpSetPosFrames(5, 1)

See also:
VpGetPosFrames, VpGetPosSeconds, VpSetPosSeconds

imc FAMOS Func on Reference - 1139 -

(c) 2024 imc Test & Measurement GmbH

VpSetPosSeconds

Available in: Professional Edition and above (Video-Kit)

Displays the frame which is the current frame at the specified time.

Declaration:
VpSetPosSeconds (Seconds, Player) -> Error code

Parameter:

Seconds Position of the frame to be displayed, in seconds.

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
When the video is recorded, the individual frame are saved at a certain recording speed. The position of a frame in seconds is then the frame
number divided by the recording speed. The function VpSetPosSeconds() sets the video at the frame which was recorded at the specified time.

Examples:
In the following example, a Panel having a Video Player is opened, the video EXAMPLE.AVI is loaded from the folder C:\VIDEO and it is played
back as of the frame recorded at 10s.

DbLoadPanel("C:\VIDEO\VIDEO.PANEL", 0)
VpVideoLoad("C:\VIDEO\BEISPIEL.AVI", 1)
VpSetPosSeconds(10, 1)
VpContinue(1)

See also:
VpGetPosSeconds, VpGetPosFrames, VpSetPosFrames

imc FAMOS Func on Reference - 1140 -

(c) 2024 imc Test & Measurement GmbH

VpSetRecordRate

Available in: Professional Edition and above (Video-Kit)

Sets the recording speed of the currently open video-file in frames per second.

Declaration:
VpSetRecordRate (Rate, Player) -> Error code

Parameter:

Rate Original speed at which the video is recorded.

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The video file consists of (compressed) single frames recorded at a certain speed. This speed is stated in frames per second (frames per second,
FPS). By default, it is assumed that the recording speed and the playback speed are the same. However, they can also take different values, e.g. if
high-speed recordings are converted to .AVI-files. With the help of the function VpSetRecordRate(), the recording speed can be set. Time
specifications for the position and length are adjusted automatically. However, the playback speed is independent of the recording speed.

Video Player-element in the Data Browser:

The function sets the Video Player's corresponding property, which is dominant over any already existing private video file property (saved in the
file header or in a parallel *.ivi configuration file) or over the original data recording rate. In order to reset the Video Player property to
'automatic' (and thus to put any video file setting back into effect), enter the value 0.

Examples:
The file EXAMPLE.AVI is opened from the folder C:\VIDEO and its recording speed is set to 1000 frames per second.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpSetRecordRate(1000, 0)
length=VpGetLengthSeconds(0)

Assuming that the file consists of 1000 frames, then the variable length has the value 1 after execution of the sequence. If the playback speed is
set to 10 FPS, complete playback of the video lasts 100s. Thus, playback speed versus recording speed is 1/100.

See also:
VpGetRecordRate, VpGetPlayRate, VpSetPlayRate

imc FAMOS Func on Reference - 1141 -

(c) 2024 imc Test & Measurement GmbH

VpSetXOffset

Available in: Professional Edition and above (Video-Kit)

Sets the currently opened video file's time offset in seconds.

Declaration:
VpSetXOffset (Rate, Player) -> Error code

Parameter:

Rate The video's starting time stated in seconds

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
By default, playback of a video file begins at the time 0.000s. With the help of the function VpSetXOffset(), the time can be set to a different
value.

Video Player-element in the Data Browser:

The function sets the Video Player's corresponding property, which is dominant over any already existing private video file property (saved in the
file header or in a parallel *.ivi configuration file). In order to reset the Video Player property to 'automatic' (and thus to put any video file setting
back into effect), enter the value 1e35.

Examples:
The file EXAMPLE.AVI from the folder C:\VIDEO is opened and linked with a variable named "test", which is generated from the waveform
TEST.DAT with a curve window configuration TEST.CCV. Um In order to compensate for a time offset between the starting times of these two
files, the video's relative starting time is set to 1s, so that the video's first frame coincides with the measurement value recorded after one
second.

id=FileOpenDSF("TEST.DAT", 0)
test = FileObjRead(id, 1)
CvConfig(test, "TEST.CCV")
VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpSetLink(test, 0)
VpSetXOffset(1, 0)

See also:
VpGetXOffset, VpGetAbsStartTime, VpSetAbsStartTime

imc FAMOS Func on Reference - 1142 -

(c) 2024 imc Test & Measurement GmbH

VpSingleStep

Available in: Professional Edition and above (Video-Kit)

Displays the frame following the current frame.

Declaration:
VpSingleStep (Player) -> Error code

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The video-file's next frame is frozen on screen. If the file has reached the end, the function posts an error.

Examples:
In the following example, a file named EXAMPLE.AVI is opened in the Plug-in window. The second frame is displayed and after a 10s pause, the
third frame.

VpVideoLoad ("C:\VIDEO\EXAMPLE.AVI", 0)
VpSingleStep(0)
sleep(10)
VpSingleStep(0)

See also:
VpBackStep

imc FAMOS Func on Reference - 1143 -

(c) 2024 imc Test & Measurement GmbH

VpStop

Available in: Professional Edition and above (Video-Kit)

Halts the video file and sets it back to its start.

Declaration:
VpStop (Player) -> Error code

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The video is halted irrespective of its current state; the first frame is shown. Settings for the recording and playback speed, as well as the relative
and absolute start times (in the info-dialog) remain intact.

Examples:
In the following example, the file EXAMPLE.AVI is assumed to be located in the folder C:\VIDEO. This file is opened in the Plug-in window, played
for 10 seconds, and then set back to the start.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlay(0)
sleep(10)
VpStop(0)

See also:

imc FAMOS Func on Reference - 1144 -

(c) 2024 imc Test & Measurement GmbH

VpVideoClose

Available in: Professional Edition and above (Video-Kit)

Closes the video file which is currently open..

Declaration:
VpVideoClose (Player) -> Error code

Parameter:

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the function
VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The Video-Player can have only one video file open at any time. This file is then closed using VpVideoClose(), and the control elements (except
for the button for loading a video file) are returned to the active state.

Examples:
The following example assumes that the folder C:\VIDEO contains a file with the name EXAMPLE.AVI. This file is opened in the Plug-in window,
played for 10 seconds and then closed.

VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)
VpPlay(0)
sleep(10)
VpVideoClose(0)

See also:
VpVideoLoad

imc FAMOS Func on Reference - 1145 -

(c) 2024 imc Test & Measurement GmbH

VpVideoLoad

Available in: Professional Edition and above (Video-Kit)

Loads a video file

Declaration:
VpVideoLoad (Filename, Player) -> Error code

Parameter:

Filename Name and path of the video file to be loaded

Player Selection of the Video-Player, for which the function is to be performed

0 : Video Player in the FAMOS Plug-in window

1 : Video Player in the FAMOS-Data Browser's current Panel. If there are multiple Players, it is possible to previously call the
function VpSelect() to set the desired Player.

Error
code

Error
code Success of the function (optional).

0 : Function executed successfully

< 0 : Error code

Description:
The parameter "Filename" expects the name and the path of a file which the Video-Player is able to play back. The ending (.avi, .mpg, .mov or
other) must be contained in the name. Then the Video-Player opens this file and skips to the start of the video. This can be playd back using the
control elements or other Video-Kit functions.

If another video file is open at the time when VpVideoLoad() is called, the file is closed.

Multithreading: The functions of the Video kit can be called anywhere and have a global effect. So the video loaded here is valid for all Execution
threads.

Examples:
The following example assumes that in the path C:\VIDEO ther is an AVI file named EXAMPLE.AVI. This file is opened in the Video Plug-in.

erg = VpVideoLoad("C:\VIDEO\EXAMPLE.AVI", 0)

In the following example, a Panel having a Video Player is opened, a video is loaded to the Player and playback is started.

DbLoadPanel("C:\VIDEO\VIDEO.PANEL", 0)
VpVideoLoad("C:\VIDEO\BEISPIEL.AVI", 1)

See also:
VpVideoClose

imc FAMOS Func on Reference - 1146 -

(c) 2024 imc Test & Measurement GmbH

WFTLOAD

Loads a Nicolet WFT-file (Copyright 1988 Nicolet Instrument Corporation).

Declaration:
WFTLOAD SvSegment SvTimeBase Filename VariableName

Parameter:

SvSegment Segment to be loaded (1..1024)

SvTimeBase Time base to be loaded (1..3)

Filename Name of the file to be loaded

VariableName Variable in to which the file excerpt is entered

Description
A WFT file from the Nicolet Instrument Corporation is loaded in FAMOS. A WFT file can contain from 1 to 1024 segments and 1 to 3 time bases.
The parameters "Segment" and "TBase" can be used to read a defined segment and time base. The parameter "Segment" can assume values
between 1 and 1024, the parameter "TBase" between 1 and 3.

The selected file excerpt is loaded with the designation specified under [VariableName].

For additional file formats belonging to the company Nicolet, such as "Nicolet Team" and "Nicolet Frequency Domain (WFF)", external import
filters are available. Such files can be loaded with the function FileLoad() or FileOpenFAS():

FileLoad("c:\data\channel1.wff", "Nicolet_FreqDomain.FAS", 0)

The filename can be a complete pathname included folder and filename extension, but can also be specified without either. Then, the
system searches for the file in the folder from which FAMOS loads data. The extension is selected automatically.
The filename can also be specified to contain quotation marks. This can be necessary, if, for instance, the path contains spaces.

Examples:

WFTLOAD 4 1 WAVE0001 seg4
WFTLOAD 4 1 c:\data\WAVE0001 seg4

In both cases, the first time base of the fourth segment is read from the file "WAVE0001.WFT" and entered into imc FAMOS under the designation
"seg4".

seg = 4
bas = 1
WFTLOAD seg bas WAVE01 data

Two variables define the desired range of the file "WAVE01". It is entered under the designation "Data".

WFTLOAD 4 1 "c:\My Data Files\WAVE0001" seg4

The pathname contains spaces and must therefore be written inside of quotation marks.

See also:
FileLoad, FileOpenFAS, LDIR

imc FAMOS Func on Reference - 1147 -

(c) 2024 imc Test & Measurement GmbH

WHILE

Conditonal loop. The following instructions are run cyclically as long as the expression specified here returns a value > 0.

Declaration:
WHILE Condition

Parameter:

Condition As long as the condition is met (evaluation returns a value >0), the instructions of the subsequent block are repeated.

Description
The end of the loop is denoted using the command END.

As the condition, it is possible to specify, for example, a single value variable or a complex expression using logical operators (AND, OR..) and/or
comparison operators (<, =, ...).

In the loop, it is possible to use the commands BREAK and CONTINUE in order to interrupt execution of the instructions prematurely.

Instead of a WHILE loop, in many applications it is easier to use a FOR or FOREACH-loop.

Examples:
Smoothes a data set until its standard deviation is no longer greater than 0.2.

WHILE StDev(data) > 0.2
 Data = Smo5(data)
END

The first text object located in a file containing multiple data objects is read out.

fh = FileOpenDSF("test.dat", 0)
IF fh > 0
 n = FileObjNum?(fh)
 i = 1
 WHILE i <= n
 IF FileObjType?(fh, i) = 2
 text = FileObjRead(fh, i)
 BREAK ; exit loop
 END
 i = i + 1
 END
 FileClose(fh)
END

Tip: The task intended is more elegantly accomplished by means of a FOR loop.

See also:
FOREACH, FOR

imc FAMOS Func on Reference - 1148 -

(c) 2024 imc Test & Measurement GmbH

XDel

Specifies a data set's increment in the x-direction (Delta-X, sampling interval).

Declaration:
XDel (Data, SvXDelta) -> Result

Parameter:

Data Data set whose x-increment is to be set

SvXDelta New Delta-X (>0)

Result

Result Data set copy with new Delta-X.

Description:
A copy of the input data is generated and the specified x-increment is entered. All other numbers and characteristic values remain unaffected.

Delta-X represents the difference between the x-coordinates of adjacent points in the data set.

For measurement data, which have been sampled equidistant over time, this corresponds to the sampling rate.

The new Delta-X should have the data set's x-unit.
The size of the new Delta-X should not be too many orders of magnitude less than the x-offset. Otherwise, the resolution may not be
sufficient to represent differences between the x-coordinates of the data set's data points.

Examples:
The sampling interval of a data set which was imported in the form of ASCII data without time tbase information is set to 2ms:

SetUnit(NDdata,0, "s")
NDdata = XDel(NDdata, 2e-3)

See also:
XDel?, XOff, Leng, XDELTA

imc FAMOS Func on Reference - 1149 -

(c) 2024 imc Test & Measurement GmbH

XDel?

Determines a data set's increment in x-direction (Delta-X, sampling interval).

Declaration:
XDel? (Data) -> SvXDelta

Parameter:

Data Data set whose Delta-X is to be determined

SvXDelta

SvXDelta Delta-X

Description:
Delta-X represents the difference between the x-coordinates of adjacent points in the data set.

For measurement data, which have been sampled equidistant over time, this corresponds to the sampling rate.

The result has the x-unit of the data set passed.

Examples:
The duration of a data set is the product of its length and sampling interval:

duration = XDel?(NDdata) * Leng?(NDdata)

The sampling frequency is the reciprocal of the sampling interval:

freq = 1 / XDel?(NDdata)

See also:
XDel, XOff?, Leng?

imc FAMOS Func on Reference - 1150 -

(c) 2024 imc Test & Measurement GmbH

XDELTA

Sampling interval; set x-Delta

Declaration:
XDELTA VariableName SvDeltaX

Parameter:

VariableName Name of the variable whose x-axis is to be re-apportioned.

SvDeltaX Disance between 2 data points in x-units

Description
The command XDELTA is obsolete; instead in newly created sequences, the function XDel() is used.
The divisions of the x-axis (sampling intervals) are redefined.

Examples:

XUNIT Voltage s
XDELTA Voltage 60

The variable "Voltage" first receives the x-unit "s", then the distance between two points is defined to "60", so that the new sampling rate is 60 s .

See also:
XDel, XDel?, XOff

imc FAMOS Func on Reference - 1151 -

(c) 2024 imc Test & Measurement GmbH

XlBuildA1Ref

Scope: Excel remote control

Forms a cell-/range reference in the A1-style from the column and row numbers.

Declaration:
XlBuildA1Ref (Row, Column, RangeHeight, RangeWidth [, ReferenceCell]) -> TxA1Reference

Parameter:

Row Row number (1..)

Column Column number (1..)

RangeHeight Height (1..) of range

RangeWidth Width (1..) of range

ReferenceCell Cell reference for the reference cell in the A1-style. If this is specified, then [Row] and [Column] are not interpreted as
absolute specifications but rather as offsets relative to this cell. (optional)

TxA1Reference

TxA1Reference Cell/range-reference in A1-style.

Description:
Some of this kit's funtions require specification of a cell with a reference in the style 'A1' (or of a range in the form 'A1:B2'), where the letters
represent the column (A=1, Z = 26, AA = 27 etc.) and the numbers represent the row number.

With this function, a cell reference can be constructed from the column-/row-number and the size of the desired range.

If a reference cell is specified as the 5th parameter, then the colummn and row numbers are interpreted as offsets to this cell.

Examples:

ref = XlBuildA1Ref(1, 1, 1, 1) ; Result: "A1"
ref = XlBuildA1Ref(3, 2, 1, 1) ; "B3"
ref = XlBuildA1Ref(1, 2, 100, 1) ; "B1:B100"
ref = XlBuildA1Ref(2, 2, 255, 100) ; "B2:CW256"
ref = XlBuildA1Ref(65536, 256, 1, 1) ; "IV65536" (maximum table size in XLS-format)
ref = XlBuildA1Ref(1048576, 16384, 1, 1) ; "XFD1048567" (maximum table size in XLSX-format)
ref = XlBuildA1Ref(1, 1, 1, 1, "A1") ; "B2"
ref = XlBuildA1Ref(0, -1, 1, 1, "B2") ; "A2"

A new Excel table is created and all channels belonging to a data group 'MyGroup' are transferred point-by-point into a column's cells.
Subsequently, the output format for all filled cells is set to a maximum of 2 decimal places (it is assumed that all channels are of the same
length).

XlWbNew("")
ChanNum = GrChanNum?(MyGroup)
FOR I = 1 TO ChanNum
 ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, MyGroup:[I], 0)
END

count = leng?(MyGroup:[1])
range = XlBuildA1Ref(1, 1, count, ChanNum)
XlSetCellFormat(range, "0.##")
XlWbSave("c:\results\report", 0)
XlQuit()

In a table, a time track is created and formatted accordingly for output.

time = XlCreateTimeLine(channel1, 1, 0)
XlSetValues("A1", 0, time, 1)
Count = Leng?(time)
Range = XlBuildA1Ref(1, 1, count, 1)
XlSetCellFormat(Range, "dd.mm.yy hh:mm:ss.0")

See also:
XlSetText, XlSetValue, XlGetValues

imc FAMOS Func on Reference - 1152 -

(c) 2024 imc Test & Measurement GmbH

XlCellMerge

Scope: Excel remote control

Joins the specified cells in the active worksheet.

Declaration:
XlCellMerge (TxRange)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

Description:
The specified cells in the active worksheet are merged. If the cells are already filled, EXCEL posts a message. In order to avoid interrupting the
sequence run, the cells should be empty before merging.

Examples:

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;generating a matrix for the table
 Matrix = MatrixInit(10, 10, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(3, I+2, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 ; merging cells
 XlCellMerge("A1:B14")
 XlCellMerge("C1:L2")
 XlCellMerge("C13:L14")
 XlCellMerge("M1:N14")
 ; drawing red crosses right and left in the merged cells
 XlSetBorderStyle("A1:B14", 48, "continous")
 XlSetBorderColor("A1:B14", 48, RGB(255,0,0))
 XlSetBorderStyle("M1:N14", 48, "continous")
 XlSetBorderColor("M1:N14", 48, RGB(255,0,0))
END

imc FAMOS Func on Reference - 1153 -

(c) 2024 imc Test & Measurement GmbH

XlCreateTimeLine

Scope: Excel remote control

Constructs an explicit time track for an equidistant data set for subsequent transfer to Excel.

Declaration:
XlCreateTimeLine (DataSet, Type, Reserved) -> TimeTrack

Parameter:

DataSet Data set to be generated for the time track

Type

0 : Relative timetrack

1 : Absolute time track

Reserved Reserved parameter, always 0

TimeTrack

TimeTrack Constructed time track

Examples:
A new Excel file with a worksheet is created, and a data set is transferred into the table. The first column is configured as a time column with
absolute Date/Time and 1ms resolution; the second column contains the data set's actual values.

The file created in this way is then saved.

XlWbNew("")
time = XlCreateTimeLine(channel1, 1, 0)
XlSetValues("A1", 0, time, 1)
Count = Leng?(time)
Range = XlBuildA1Ref(1, 1, count, 1)
XlSetCellFormat(Range, "dd.mm.yy hh:mm:ss.0")
XlSetValues("B1", 0, channel1, 0)
XlWbSave("c:\results\report", 0)
XlQuit()

Like above, however here the time column is configured in relative terms (seconds since triggering). Output begins from the 2nd row; the data
set's trigger time is entered in the cell A1.

XlSetValue("A1", Time?(Channel1), 1)
XlSetCellFormat("A1", "dd.mm.yy hh:mm:ss.0")
time = XlCreateTimeLine(channel1, 0, 0)
XlSetValues("A2", 0, time, 0)
Count = Leng?(time)
Range = XlBuildA1Ref(2, 1, count, 1)
XlSetCellFormat(Range, "0.000")
XlSetValues("B2", 0, channel1, 0)

See also:
XlSetValues

imc FAMOS Func on Reference - 1154 -

(c) 2024 imc Test & Measurement GmbH

XlFind

Scope: Excel remote control

Searches through the current sheet for text.

Declaration:
XlFind (TxSearch, SvWhere, SvWholeCell, SvUpperLower, SvDirection) -> Search results

Parameter:

TxSearch The text for which to search

SvWhere Specifies in which content to search.

0 : Values

1 : Formulas

2 : Comments

SvWholeCell Specifies whether the entire cell content is to be compared.

0 : The text to find must be contained in the cell content.

1 : The text to find must exactly match the row content.

SvUpperLower Groß-/Kleinschreibung beachten

0 : Groß-/Kleinschreibung NICHT beachten

1 : Groß-/Kleinschreibung beachten

SvDirection Sets the search direction.

0 : Column-by-column

1 : Row-by-row

Search results

Search results Text box containing all locations found. The hits are returned in 'A1'-reference style.

Description:
This command replicates the functionality of the Excel-dialog "Find...".

If the current selection comprises more than one cell, the search is limited to the selected region. Otherwise, the entire table sheet is searched.

If the text to be found is not located, an empty text array is returned.

Examples:
A workbook is loaded and all table sheets are searched for the text 'ENGINE_0124'. In case of success, the value in the adjacent cell to the right is
read.

IF XlWbOpen("z:\tmp\results.xlsx")
 sheetcount = XlSheetGetCount()
 FOR i = 1 TO sheetcount
 XlSheetActivate(i)
 hits = XlFind("ENGINE_0134", 0, 1, 0, 0)
 IF TxArrayGetSize(hits) = 1
 cell = XLBuildA1Ref(0, 1, 1, 1, hits[1])
 val = XlGetValue(cell, 0)
 BREAK
 END
 END
 XlQuit()
END

A workbook is loaded and in the 2nd column of the table sheet 'Table', the system searches for all cells containing the text '_Engine_'. The entire
content of the cells flound is entered into a new text array.

IF XlWbOpen("z:\tmp\results.xlsx")
 XlSheetActivate("Table2")
 XlSelectRange("B:B")
 hits = XlFind("_Engine_", 0, 0, 0, 0)
 foundNames = TxArrayCreate(0)
 FOR i = 1 TO TxArrayGetSize(hits)
 foundNames[i] = XlGetText(hits[i])

imc FAMOS Func on Reference - 1155 -

(c) 2024 imc Test & Measurement GmbH

 END
 XlQuit()
END

See also:
XlGetText, XlSelectRange, XlBuildA1Ref

imc FAMOS Func on Reference - 1156 -

(c) 2024 imc Test & Measurement GmbH

XlGetSelectedRange

Scope: Excel remote control

Excel: Get selected region

Declaration:
XlGetSelectedRange () -> TxRange

Parameter:

TxRange

TxRange Returns the currently selected cell-region as an 'A1'-reference. Empty text, if no cell region is selected.

Description:
This function affects the current sheet of the active workbook.

Examples of [TxRange]-specifications in the 'A1'-style:

Selection of an individual cell "C2" Cell C2 (3rd column, 2nd row)

Selection of a contiguous region "C2:E3" Cells C2 through E3 (3rd through 5th columns, 2nd and 3rd rows)

Selection of a column "C:C" The 3rd column is selected.

Selection of multiple columns "C:E" The 3rd, 4th and 5th columns are selected.

Selection of a row "2:2" The 2nd row is selected.

Selection of multiple rows "2:4" The 2nd, 3rd and 4th rows are selected.

Multi-selection "A1:A3;C4" The cells A1,A2,A3 And C4 are selected.
As demonstrated in the last example, it is also possible for multiple references (separated by semicolons) to be returned if a non-contiguous
region is selected.

Examples:
The currently selected cell is moved down by one row:

sel = XlGetSelectedRange()
sel = XlBuildA1Ref(1, 0, 1, 1, sel)
XlSelectRange(sel)

See also:
XlSetSelectedRange, XlBuildA1Ref

imc FAMOS Func on Reference - 1157 -

(c) 2024 imc Test & Measurement GmbH

XlGetText

Scope: Excel remote control

Gets the content of the specified cell in the active worksheet as a text.

Declaration:
XlGetText (TxCell) -> TxContent

Parameter:

TxCell Cell to be read. Either a cell reference in the stype 'A1' or the name of a designated cell.

TxContent

TxContent Content of the table cell

Examples:
The user selects an Excel file to open. The values contained in the first column of the file's 2nd worksheet are read out, where the channel's
name appears in the first row.

filename = DlgFileName("c:\results", "xlsx", "", 0)
IF XlWbOpen(filename)
 XlSheetActivate(2)
 TxName = XlGetText("A1")
 <TxName> = XlGetValues("A2", 0, 0, 0)
END

See also:
XlSetText, XlGetValue, XlSetValue, XlGetValues

imc FAMOS Func on Reference - 1158 -

(c) 2024 imc Test & Measurement GmbH

XlGetTextArray

Scope: Excel remote control

Specifies the content of a column or row in the active worksheet.

Declaration:
XlGetTextArray (TxStartCell, SvRowOrColumn, SvCount) -> Content

Parameter:

TxStartCell Reading begins at this cell. Either a cell reference in the 'A1' style, or the name of a specified cell.

SvRowOrColumn Specifies whether to read in the vertical direction (column) or horizontally (row).

0 : Vertical (column)

1 : Horizontal (row)

SvCount Specifies the maximum count of cells to be read. Reading concludes once the count specified here has been reached.

Content

Content Text array with the cell content imported

Examples:

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 XlSetText("A1","Text 1")
 XlSetText("A2","Text 2")
 XlSetText("B1","Text 3")
 XlSetText("B2","Text 4")
 aColumnA = XlGetTextArray("A1",0,2)
 aRow1 = XlGetTextArray("A1",1,2)
END

imc FAMOS Func on Reference - 1159 -

(c) 2024 imc Test & Measurement GmbH

XlGetValue

Scope: Excel remote control

Determines the content of the specified cell in the active worksheet and returns it as a number.

Declaration:
XlGetValue (TxCell, Format) -> Content

Parameter:

TxCell Cell to be read. Either a cell reference in the stype 'A1' or the name of a designated cell.

Format Data format of cell to be read

0 : The cell value is read without conversion.

1 : The value read is interpreted as an Excel Date/Time (amount of days since 1.1.1900) and converted to the imc time format (amount
of seconds since 1.1.1980). For data < 1.1.1980, a 0 is returned.

Content

Content Content of the table cell

Description:
At fault condition, for instance if the content of a cell can not be converted to a number, a 0 is returned.

Examples:
A data set is read from an Excel file's first column. The first cell contains the name; the triggering time and sampling time are next. The actual data
begin in the 4th row.

IF XlWbOpen("c:\results\report.xlsx")
 name = XlGetText("A1")
 time = XlGetValue("A2", 1)
 dx = XlGetValue("A3", 0)
 <name> = XlGetValues("A4", 0, 0, 0)
 SetTime(<name>, time)
 XDELTA <name> dx
END

See also:
XlSetValue, XlSetText, XlGetText, XlGetValues

imc FAMOS Func on Reference - 1160 -

(c) 2024 imc Test & Measurement GmbH

XlGetValues

Scope: Excel remote control

Gets the (numerical) content of a column or cell in the active worksheet.

Declaration:
XlGetValues (TxStartCell, RowOrColumn, Format, Amount) -> Content

Parameter:

TxStartCell Reading begins at this cell. Either a cell reference in the 'A1' style, or the name of a specified cell.

RowOrColumn Specifies whether to read in the vertical direction (column) or horizontally (row).

0 : Vertical (column)

1 : Horizontal (row)

Format Data format of the range to be read

0 : The value of the cells is read without conversion.

1 : The values read are interpreted as Excel-Date/Time (amount of days since 1.1.1900) and converted to the imc time format
(amount of seconds since 1.1.1980). With data < 1.1.1980, a 0 is returned.

Amount
Returns the maximum amount of cells to be read. Reading is concluded once the amount specified here has been reached or at
the first cell whose contents not be converted to a number. If you enter 0, reading continues automatically up until the first
non-numeric cell.

Content

Content Data set with the imported content of the cells.

Examples:
A data set is imported from an Excel file. The first column contains the time stamp of the values, stated with Date/Time. The second column
contains the associated numerical values.

In FAMOS, a XY-waveform 'channel' is created, to which the first sample's time is assigned as the trigger time. The X-track then contains the
relative differences from the start time.

IF XlWbOpen("c:\results\report.xlsx")
 time = XlGetValues("A1", 0, 1, 0)
 data = XlGetValues("B1", 0, 0, 0)
 channel = XYof(time - time[1], data)
 SetTime(channel, time[1])
END

See also:
XlGetValues2, XlSetValues, XlGetValue, XlGetText

imc FAMOS Func on Reference - 1161 -

(c) 2024 imc Test & Measurement GmbH

XlGetValues2

Scope: Excel remote control

Gets the (numerical) content of a column or cell in the active worksheet.

Declaration:
XlGetValues2 (TxStartCell, RowOrColumn, Format, Amount, SubstituteValue, Reserved) -> Content

Parameter:

TxStartCell Reading begins at this cell. Either a cell reference in the 'A1' style, or the name of a specified cell.

RowOrColumn Specifies whether to read in the vertical direction (column) or horizontally (row).

0 : Vertical (column)

1 : Horizontal (row)

Format Data format of the range to be read

0 : The value of the cells is read without conversion.

1 : The values read are interpreted as Excel-Date/Time (amount of days since 1.1.1900) and converted to the imc time format
(amount of seconds since 1.1.1980). With data < 1.1.1980, a 0 is returned.

Amount States the amount of cells to be read

SubstituteValue This value is used if cell contents can not be converted to a numerical value.

Reserved Reserved parameter, always set to 0

Content

Content Data set with the imported content of the cells.

Description:
Data series in EXCEL-tables sometiimes contain gaps to mark invalid values. Such invalid values are denoted by, for instance, empty cells or a
special text (e.g. 'ZERO').

In contrast to the function XlGetValues(), which would end reading at such cells, the function XlGetValues2() skips such cells which can not be
converted to a number and instead inserts a selectable substitute value into the data set generated.

Later if needed these can be extracted from the data set in FAMOS, for which purpose such functions as SearchLevel() are provided.

Examples:
An Excel file contains 2 data sets. The first column contains the common time column stating Date/Time. The second and third column contain the
corresponding numerical values, where empty cells are possible if only one channel has a valid value at a particular time stamp.

The 3rd column is read and saved in FAMOS as an XY-waveform 'channel'. The invalid values are subsequently deleted from the data set.

IF XlWbOpen("c:\results\report.xlsx")
 time = XlGetValues("A1", 0, 1, 0)
 count = leng?(time)
 data = XlGetValues2("C1", 0, 0, count, -1e30, 0)
 channel = XYof(time - time[1], data)
 channel = SearchLevel(channel, 2, -1e29, 0, 0, 0, 0, 0)
 SetTime(channel, time[1])
END

See also:
XlGetValues, XlSetValues, XlGetValue, XlGetText

imc FAMOS Func on Reference - 1162 -

(c) 2024 imc Test & Measurement GmbH

XlPaste

Scope: Excel remote control

Inserts the content of the Clipboard into the active sheet.

Declaration:
XlPaste (TxInsertPosition) -> Success

Parameter:

TxInsertPosition Determines the position at which the content of the Clipboard is to be inserted. Either a cell-reference in 'A1'-style or the
name of a named cell. If empty, the currently selected cell is used.

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Examples:
A curve window is displayed and copied to the Clipboard. A new Excel-document is generated, the curve plot inseted at the position 'B2', the
workbook saved.

CwLoadCCV(channel1, "layout.ccv")
CwAction("clipboard.copy")
XlWbNew("")
XlPaste("B2")
XlWbSave("z:\tmp\channel1.xlsx", 0)
XlQuit()

See also:
XlSetText, XlSetValue

imc FAMOS Func on Reference - 1163 -

(c) 2024 imc Test & Measurement GmbH

XlQuit

Scope: Excel remote control

Closes the linked Excel instance

Declaration:
XlQuit ()

Parameter:

Description:
This function closes the Excel instance started explicitly with XlStart() or implicitly with XlWbOpen()/XlWbNew().

Any files still open are closed, any changes are discarded.

Examples:
An Excel file is opened and data inserted. The updated file is printed out, after which Excel is closed.

IF XlWbOpen("c:\Templates\Template.xlsx")
 XlSetText("B1", "Channel1")
 XlSetValues("B2", 0, Channel1, 0)
 XlWbPrint()
 XlQuit()
END

See also:
XlStart, XlVisible

imc FAMOS Func on Reference - 1164 -

(c) 2024 imc Test & Measurement GmbH

XlRunMacro

Scope: Excel remote control

Runs the specified Excel macro.

Declaration:
XlRunMacro (Macroname) -> Success

Parameter:

Macroname Name of the macro to run.

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Examples:
An Excel file is opened and data are inserted. Subsequently, a macro is run, which is savedd with the template. The updated file is saved under
the new name, after which Excel is closed again.

IF XlWbOpen("c:\Templates\Template.xlsx")
 XlSetText("B1", "Channel1")
 XlSetValues("B2", 0, Channel1, 0)
 XlRunMacro("Calculation"))
 XlWbSave("c:\results\report", 0)
 XlQuit()
END

Excel is started, made visible and a macro is run, which is defined in the workbook 'MyMacros.xlsm'. Subsequently, Excel is closed again.

IF XlStart()
 XlVisible(1)
 IF NOT(XlRunMacro("'c:\XLSTemplates\MyMacros.xlsm'!Macro2"))
 BoxMessage("Error", GetLastError(), "!1")
 END
 XlQuit()
END

See also:
XlWbOpen

imc FAMOS Func on Reference - 1165 -

(c) 2024 imc Test & Measurement GmbH

XlSelectRange

Scope: Excel remote control

Selects a cell or a cell region.

Declaration:
XlSelectRange (TxRange) -> Success

Parameter:

TxRange Cell or cell region to be selected. Either a cell refernce in 'A1'-style or the name of a named cell/cell region.

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the error
can be found using the function GetLastError().

Description:
This function affects the current sheet of the active workbook.

Examples of [TxRange]-specifications in the 'A1'-style:

Selection of an individual cell "C2" Cell C2 (3rd column, 2nd row)

Selection of a contiguous region "C2:E3" Cells C2 through E3 (3rd through 5th columns, 2nd and 3rd rows)

Selection of a column "C:C" The 3rd column is selected

Selection of multiple columns "C:E" The 3rd, 4th and 5th columns are selected.

Selection of a row "2:2" The 2nd row is selected

Selection of multiple rows "2:4" The 2nd, 3rd and 4th rows are selected

Multi-selection "A1:A3,C4" The cells A1,A2,A3 and C4 are selected.
As demonstrated in the last example, you can also specify multiple references (separated by semicolons), in order to select non-contiguous
regions.

Examples:
In the current sheet of the current workbook, all cells containing the text 'Overflow' are shaded red. To do this, an Excel-macro 'MakeCellRed' is
used, which is defined in the workbook 'MyMacros.xlsm' and takes effect on the cell selected.

hits = XlFind("Overflow", 0, 0, 0, 0)
FOR i = 1 TO TxArrayGetSize(hits)
 XlSelectRange(hits[i])
 XlRunMacro("'c:\XLSTemplates\MyMacros.xlsm'!MakeCellRed")
END

VBA-source text of the macro:

Sub MakeCellRed()
 With Selection.Interior
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 .Color = 255
 End With
End Sub

The currently selected cell is moved down by one row:

sel = XlGetSelectedRange()
sel = XlBuildA1Ref(1, 0, 1, 1, sel)
XlSelectRange(sel)

See also:
XlGetSelectedRange, XlBuildA1Ref

imc FAMOS Func on Reference - 1166 -

(c) 2024 imc Test & Measurement GmbH

XlSetBorderColor

Scope: Excel remote control

Sets the color of frame lines for the specified cells in the active worksheet.

Declaration:
XlSetBorderColor (TxRange, SvFrameLine, SvLineColor)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

SvFrameLine Frame lines of the cell or group

1 : Line: left

2 : Line: right

4 : Line: top

8 : Line: bottom

15 : Cell frame

16 : Line: diagonally down

32 : Line: diagonally up

48 : Cross

64 : Line: cell group left

128 : Line: cell group right

256 : Line: cell group top

512 : Line: cell group bottom

960 : Cell group frame

1024 : Vertical line within the cell group

2048 : Horizontal line within the cell group

3072 : Horizontal + vertical line within the cell group

SvLineColor Color of the frame line

Examples:
The colors for a cell's frame lines are generated individually.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;generating a matrix for the table
 Matrix = MatrixInit(5, 5, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 LOCAL colred = 0
 LOCAL colgreen = 0
 FOR I = 1 TO count
 FOR J = 1 TO count
 LOCAL ref = XlBuildA1Ref(I, J, 1, 1)
 ; defining the line type and thickness for all 4 sides of the cell
 XlSetBorderStyle(ref,15,"continous")
 XlSetBorderThickness(ref,15,"thick")
 ; specifying the colors for the left and right lines
 XlSetBorderColor(ref,1+2,RGB(colred,0,0))
 ; specifying the colors for the top and bottom lines
 XlSetBorderColor(ref,4+8,RGB(0,colgreen,0))
 ; increasing color values
 colgreen = colgreen + 8
 colred = colred + 8
 END
 END

imc FAMOS Func on Reference - 1167 -

(c) 2024 imc Test & Measurement GmbH

END
imc FAMOS Func on Reference - 1168 -

(c) 2024 imc Test & Measurement GmbH

XlSetBorderStyle

Scope: Excel remote control

Sets the style of frame lines for the specified cells in the active worksheet.

Declaration:
XlSetBorderStyle (TxRange, SvFrameLine, TxLineType)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

SvFrameLine Frame lines of the cell or group

1 : Line: left

2 : Line: right

4 : Line: top

8 : Line: bottom

15 : Cell frame

16 : Line: diagonally down

32 : Line: diagonally up

48 : Cross

64 : Line: cell group left

128 : Line: cell group right

256 : Line: cell group top

512 : Line: cell group bottom

960 : Cell group frame

1024 : Vertical line within the cell group

2048 : Horizontal line within the cell group

3072 : Horizontal + vertical line within the cell group

TxLineType Type of the line

"noline" : no line

"continous" : line with strikethrough

"dash" : dashed line

"dot" : dotted line

"dashdot" : dashed/dotted line

"dashdotdot" : dashed/double-dotted line

"double" : double-line

"slanteddashdot" : hashed line

Description:
The line types are binary-encoded. Each line has its own code. The individual codes can be summed in order to achieve different frames.

Examples:
Various frame lines and line types are placed in and around the cells.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;removing all frame lines
 XlSetBorderStyle("B1:J10",0x3FF,"noline")
 ;frame line left, solid
 XlSetBorderStyle("B1:J1",1,"continous")
 ;frame line top, bottom, solid
 XlSetBorderStyle("B3:J3",12,"continous")

imc FAMOS Func on Reference - 1169 -

(c) 2024 imc Test & Measurement GmbH

 ;frame line of whole frame dashed
 XlSetBorderStyle("B5:J5",15,"dash")
 ;frame line around cell group, solid
 XlSetBorderStyle("B7:J10",960,"continous")
 ;frame line diagonally downward, dotted
 XlSetBorderStyle("B12:J12",16,"dot")
 ;cross
 XlSetBorderStyle("B14:J14",48,"continous")
 ;frame line diagonally upward, dotted
 XlSetBorderStyle("B16:J16",32,"dot")
END

imc FAMOS Func on Reference - 1170 -

(c) 2024 imc Test & Measurement GmbH

XlSetBorderThickness

Scope: Excel remote control

Ses the frame line for the specified cells in the active worksheet.

Declaration:
XlSetBorderThickness (TxRange, SvFrameLine, TxFrameThickness)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

SvFrameLine Sets the frame line of the corresponding thickness.

1 : Line: left

2 : Line: right

4 : Line: top

8 : Line: bottom

15 : Cell frame

16 : Line: diagonally down

32 : Line: diagonally up

48 : Cross

64 : Line: cell group left

128 : Line: cell group right

256 : Line: cell group top

512 : Line: cell group bottom

960 : Cell group frame

1024 : Vertical line within the cell group

2048 : Horizontal line within the cell group

3072 : Horizontal + vertical line within the cell group

TxFrameThickness Sets the frame line of the corresponding thickness.

"hairline" : Hair line

"thin" : thin

"medium" : medium

"thick" : thick

Description:
The line types are binary-encoded. Each line has its own code. The individual codes can be summed in order to achieve different frames.

Examples:
Various frame lines of various thicknesses and line types are placed around the cells.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;removing all frame lines
 XlSetBorderStyle("B1:J10",0x3FF,"noline")
 ;frame line around cell group, solid
 XlSetBorderStyle("B2:J10",960,"continous")
 ;thick frame line around the cell group
 XlSetBorderThickness("B2:J10",960,"thick")
 ;frame line around the cell group, dashed
 XlSetBorderStyle("C4:I8",960,"dash")
 ;thin frame line around the cell group
 XlSetBorderThickness("C4:I8",960,"thin")
END

imc FAMOS Func on Reference - 1171 -

(c) 2024 imc Test & Measurement GmbH

XlSetCellFormat

Scope: Excel remote control

Sets the output format for the specified cells in the active worksheet.

Declaration:
XlSetCellFormat (TxRange, TxFormat)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

TxFormat Format code

Description:
This function sets the output format for numerical values in Excel tables. This is especially crucial for Date/Time - for example, the number
'36526.5' in the Excel time format (amount of days since 1.1.1900) means '1.1.2000 12:00'. In order for this time to be displayed accordingly and not
siimply as a real number, the output format for the cell must explicitly be set to a date-format.

This function corresponds to the menu command 'Format Cells/Numbers' in Excel. An overview of the available format codes is found in this
dialog in the category 'User-defined' or in Excel's help under the heading 'Numerical format codes'. Note that the format codes depend on the
language of the Excel version used; this applies particularly to the frequently required codes for Date/Time components and the decimal
separator for numbers (period vs. comma).

Selected format codes:

Display German code English code (if different)
Decimal digits (significant) "#"

Decimal digits (possibly non-significant zero) "0"

Decimal separator "," (comma) "." (period)

Scientific notation "E-", "e-", "e+", "e-"

Month "M" (1-12) / "MM" (01-12) "m" / "mm"

Day "T" (1-31) / "TT" (01-31) "d" / "dd"

Year "JJ" (00-99) / "JJJJ" (1900-9999) "yy" / "yyyy"

Hour "h" (0-23) / "hh" (00-23)

Minute "m" (0-59) / "mm" (00-59)

Second "s" (0-59)/ "ss" (00-59)

Time elapsed in minutes , e.g. 63:46: [mm]:ss

Fractions of a second h:mm:ss,00 h:mm:ss.00
Examples:

Number Format code (German Excel) Display
38710.5036 "0,00" "38710,50"

38710.5036 "0,##" "38710,5"

38710.5036 "0.000E+0" "3.871E+4"

38710.5036 "dd.mm.yy hh:mm" "24.12.05 12:05"

38710.5036 "dd.mm.yyyy hh:mm:ss.000" "24.12.2005 12:05:11,040"

Examples:
A new Excel file with a worksheet is created and a data set is transferred to this table. The first column is configured as a time column with
specification of absolute Date/Time, the second column contains the data set's actual values.

The output format of both columns is specified explicitly. The file thus created is then saved.

XlWbNew("")
time = XlCreateTimeLine(channel1, 1, 0)
XlSetValues("A1", 0, time, 1)
Count = Leng?(time)
Range = XlBuildA1Ref(1, 1, count, 1)
XlSetCellFormat(Range, "dd.mm.yy hh:mm:ss.0")
XlSetValues("B1", 0, channel1, 0)
Range = XlBuildA1Ref(1, 2, count, 1)

imc FAMOS Func on Reference - 1172 -

(c) 2024 imc Test & Measurement GmbH

XlSetCellFormat(Range, "0.00")
XlWbSave("c:\results\report", 0)
XlQuit()

Like above, however here the time column is configured in relative terms (seconds since triggering). The time columns is outputted with 1ms
resolution; the data column with a maximum of 2 decimal places.

XlWbNew("")
time = XlCreateTimeLine(channel1, 0, 0)
XlSetValues("A1", 0, time, 0)
Count = Leng?(time)
Range = XlBuildA1Ref(1, 1, count, 1)
XlSetCellFormat(Range, "0.000")
XlSetValues("B1", 0, channel1, 0)
Range = XlBuildA1Ref(1, 2, count, 1)
XlSetCellFormat(Range, "0.##")
XlWbSave("c:\results\report", 0)
XlQuit()

See also:
XlSetText, XlSetValue

imc FAMOS Func on Reference - 1173 -

(c) 2024 imc Test & Measurement GmbH

XlSetColor

Scope: Excel remote control

Sets the colors for display of the specified cells in the active worksheet.

Declaration:
XlSetColor (TxRange, TxCellProperty, SvColor)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

TxCellProperty Property for the specified cells

"background" : Color of the cell's background

"text" : Color of the text in the cell

SvColor RGB-value

Examples:
Specifies the text color and background color of a specified area.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;generating a matrix for the table
 Matrix = MatrixInit(10, 10, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 ; setting background color
 XlSetColor("A1:J10","background",RGB(250,250,150))
 ; setting text color
 XlSetColor("A1:J10","text",RGB(0,0,250))
END

imc FAMOS Func on Reference - 1174 -

(c) 2024 imc Test & Measurement GmbH

XlSetColumnWidth

Scope: Excel remote control

Defines the width of the columns as a multiple of a basis width. For proportional fonts, the basis width is the width of the character "0", else the
width of a character in Normal format.

Declaration:
XlSetColumnWidth (TxRange, SvColumnWidth)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

SvColumnWidth Defines the column width. The value -1 sets the width to "automatic".

Examples:
The height and width of table cells are specified.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ; text output
 XlSetText("A1", "example text 1")
 XlSetText("B1", "example text 2")
 XlSetText("C1", "example text 3")
 ; cell width as a multiple of the 1st character's width
 XlSetColumnWidth("A1:C1", 20)
 ; spcifying cell height in points (pixels)
 XlSetRowHeight("A1:C1", 50)
END

imc FAMOS Func on Reference - 1175 -

(c) 2024 imc Test & Measurement GmbH

XlSetConditionColor

Scope: Excel remote control

Sets the color for display of the specified cells in the active worksheet, dependent on a condition.

Declaration:
XlSetConditionColor (TxRange, TxCellProperty, TxConditionType, TxExpression, TxConditionOperator, SvParameter1,
SvParameter2, SvColor)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

TxCellProperty Cell property for which the color is used when the condition is met.

"background" : Color of the cell's background

"text" : Color of the text in the cell

"border" : Color of the cell frame

TxConditionType Refernce of the condition

"cellcontent" : The condition refers to the cell's content.

"expression" : The condition is the evaluated expression.

"reset" : All conditions for the cells are reset.

TxExpression Expression which is evaluated for the condition (e.g. A1>0).

TxConditionOperator Operator for evaluating the cell contents

"between" : The cell contents lie between the parameters 1 and 2

"notbetween" : The cell contents do not lie between the parameters 1 and 2

"equal" : The cell contents equal the Parameter 1

"notequal" : The cell contents do not equal the Parameter 1

"greater" : The cell contents are greater than the Parameter 1

"less" : The cell contents are less than the Parameter 1

"greaterequal" : The cell contents are greater than or equal to the Parameter 1

"lessequal" : The cell contents are less than or equal to the Parameter 1

SvParameter1 Comparison value or lower boundary value

SvParameter2 Upper boundary value

SvColor Color to be used when condition is met

Examples:
The colors for the text, background and frame of a specified area are specified according to a condition.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;generating a matrix for the table
 Matrix = MatrixInit(10, 10, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 ; setting background color
 XlSetConditionColor("A1:J10","background","cellcontent","","equal",1,0,RGB(250,250,0))
 ; setting text color
 XlSetConditionColor("A1:J10","text","cellcontent","","equal",1,0,RGB(250,0,0))
 ; setting the frame color
 XlSetConditionColor("A1:J10","border","expression","=A1=1","",0,0,RGB(250,0,0))
END

imc FAMOS Func on Reference - 1176 -

(c) 2024 imc Test & Measurement GmbH

XlSetFontSize

Scope: Excel remote control

Sets the font size for the specified cells in the active worksheet.

Declaration:
XlSetFontSize (TxRange, SvSize)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

SvSize Font size for the cell in pixels

Examples:
The system magnifies the text incrementally.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;generating a matrix for the table
 Matrix = MatrixInit(5, 5, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 LOCAL TextSize = 8
 FOR I = 1 TO count
 FOR J = 1 TO count
 LOCAL ref = XlBuildA1Ref(I, J, 1, 1)
 XlSetFontSize(ref, TextSize)
 TextSize = TextSize + 1;
 END
 END
END

imc FAMOS Func on Reference - 1177 -

(c) 2024 imc Test & Measurement GmbH

XlSetFontStyle

Scope: Excel remote control

Sets the font style for the specified cells in the active worksheet.

Declaration:
XlSetFontStyle (TxRange, TxStyle)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

TxStyle Font style

"reset" : Restores the original state

"bold" : Bold text

"italic" : 'Italic' text

"underlined" : Text with single underline

"underlineddouble" : Text double-underlined

"underlineddoubleclosed" : Text double-underlined directly below the text

"subscript" : subscript

"superscript" : superscript

"strikethrough" : Text with strikethrough

Description:
This function sets a style for the text in a cell. Certain styles can be combined. "Reset" resets all styles.

Examples:
The font size and text style are specified.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;generating a matrix for the table
 Matrix = MatrixInit(10, 10, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 ; setting font size
 XlSetFontSize("A1:J1",10)
 XlSetFontSize("A5:J5",20)
 ; setting font style
 XlSetFontStyle("A2:J2","italic")
 XlSetFontStyle("A3:J3","bold")
 XlSetFontStyle("A4:J4","strikethrough")
 XlSetFontStyle("A5:J5","underlined")
END

imc FAMOS Func on Reference - 1178 -

(c) 2024 imc Test & Measurement GmbH

XlSetRowHeight

Scope: Excel remote control

Defines the height of the rows in pixels for the specified cells in the active worksheet.

Declaration:
XlSetRowHeight (TxRange, SvRowHeight)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

SvRowHeight Defines the row height.

Examples:
The height and width of table cells are specified.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ; text output
 XlSetText("A1", "example text 1")
 XlSetText("B1", "example text 2")
 XlSetText("C1", "example text 3")
 ; cell width as a multiple of the 1st character's width
 XlSetColumnWidth("A1:C1", 20)
 ; spcifying cell height in points (pixels)
 XlSetRowHeight("A1:C1", 50)
END

imc FAMOS Func on Reference - 1179 -

(c) 2024 imc Test & Measurement GmbH

XlSetText

Scope: Excel remote control

Fills the specified cell in the active worksheet with a text.

Declaration:
XlSetText (TxCell, TxContent) -> Success

Parameter:

TxCell Cell to which to write. Either a cell reference in the style 'A1' or the name of a designated cell.

TxContent New content

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the error
can be found using the function GetLastError().

Examples:
An Excel file is opened and transferred to 2 columns. The first row contains the respective channel's name. The updated file is printed and saved
under a new name.

IF NOT (XlWbOpen("c:\Templates\Template.xlsx"))
 BoxMessage("Can't open file", GetLastError(), "!1")
ELSE
 XlSetText("B1", "Channel1")
 XlSetValues("B2", 0, Channel1, 0)
 XlSetText("C1", "Channel2")
 XlSetValues("C2", 0, Channel2, 0)
 XlWbPrint()
 IF NOT(XlWbSave("c:\Results\Report.xlsx", 0))
 BoxMessage("Can't save file", GetLastError(), "!1")
 END
 XlQuit()
END

See also:
XlGetText, XlGetValue, XlSetValue, XlGetValues

imc FAMOS Func on Reference - 1180 -

(c) 2024 imc Test & Measurement GmbH

XlSetTextAlignment

Scope: Excel remote control

Sets the orientation of the texts of the specified cells in the active worksheet.

Declaration:
XlSetTextAlignment (TxRange, TxOrientation)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

TxOrientation Position of the text within the cell

"left" : left

"hcenter" : centered horizontally

"right" : right

"top" : top

"vcenter" : centered vertically

"bottom" : bottom

Examples:
Various orientations and directions are specifed for the cell texts.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;generating a matrix for the table
 Matrix = 100*MatrixInit(4, 4, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 ; centering all cell texts horizontally and vertically
 XlSetTextAlignment("A1:D4", "hcenter")
 XlSetTextAlignment("A1:D4", "vcenter")
 ; rotate all cell texts of the diagonals
 XlSetTextOrientation("A1", 45)
 XlSetTextOrientation("B2", 90)
 XlSetTextOrientation("C3", -90)
 XlSetTextOrientation("D4", -45)
END

imc FAMOS Func on Reference - 1181 -

(c) 2024 imc Test & Measurement GmbH

XlSetTextArray

Scope: Excel remote control

Sets the content of a column or row in the active worksheet.

Declaration:
XlSetTextArray (TxStartCell, SvRowOrColumn, TaTextArray) -> Success

Parameter:

TxStartCell Writing begins at this cell. Either a cell-reference in the style 'A1' or the name of a designated cell.

SvRowOrColumn Specifies whether to write in either the vertical direction (column) or horizontal direction (row).

0 : Vertical (column)

1 : Horizontal (row)

TaTextArray Text data to be written

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Examples:
Text arrays are created as column and row vectors.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 LOCAL headlines = TxArrayCreate(3)
 headlines[1]="1.Headline"
 headlines[2]="2.Headline"
 headlines[3]="3.Headline"
 LOCAL data = TxArrayCreate(3)
 data[1]="1.Dataset"
 data[2]="2.Dataset"
 data[3]="3.Dataset"
 XlSetTextArray("B1",1,headlines)
 XlSetTextArray("A2",0,data)
 ;generating a matrix for the table
 LOCAL Matrix = MatrixInit(3, 3, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 LOCAL I
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(2, I+1, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 XlSetColumnWidth("A1:D1",15)
 XlSetTextAlignment("B1:D4","hcenter")
END

imc FAMOS Func on Reference - 1182 -

(c) 2024 imc Test & Measurement GmbH

XlSetTextOrientation

Scope: Excel remote control

Sets the orientation of the text in the specified cells in the active worksheet.

Declaration:
XlSetTextOrientation (TxRange, SvOrientation)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

SvOrientation Orientation of the text within the cell

Examples:
Various orientations and directions are specifed for the cell texts.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;generating a matrix for the table
 Matrix = 100*MatrixInit(4, 4, "I")
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 LOCAL ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 ; centering all cell texts horizontally and vertically
 XlSetTextAlignment("A1:D4", "hcenter")
 XlSetTextAlignment("A1:D4", "vcenter")
 ; rotate all cell texts of the diagonals
 XlSetTextOrientation("A1", 45)
 XlSetTextOrientation("B2", 90)
 XlSetTextOrientation("C3", -90)
 XlSetTextOrientation("D4", -45)
END

imc FAMOS Func on Reference - 1183 -

(c) 2024 imc Test & Measurement GmbH

XlSetTextShrinkToFit

Scope: Excel remote control

Activates text shrinking to fit to the cell size for the specified cells in the active worksheet.

Declaration:
XlSetTextShrinkToFit (TxRange, TxShrink)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

TxShrink Fitting the text's to the cell's size.

"noshrink" : Do not fit text

"shrink" : Fit text

Examples:
Defines various methods for fitting a cell text.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ; text output
 XlSetText("A1", "example text 1")
 XlSetText("B1", "example text 2")
 XlSetText("C1", "example text 3")
 ; cell size as a multiple of the 1st character's width
 XlSetColumnWidth("A1:C1", 8)
 ; defining a text line break
 XlSetTextWrap("A1", "wrap")
 ; specifying a text fitting method
 XlSetTextShrinkToFit("B1", "shrink")
END

imc FAMOS Func on Reference - 1184 -

(c) 2024 imc Test & Measurement GmbH

XlSetTextWrap

Scope: Excel remote control

Activates the text line break mode for the specified cells in the active worksheet.

Declaration:
XlSetTextWrap (TxRange, TxLineBreak)

Parameter:

TxRange Range to be formatted. Either a range reference in the style 'A1:B2' or the name of a named range.

TxLineBreak Defines the line break of the text within the cell.

"nowrap" : Do not line break text

"wrap" : Line break text

Examples:
Defines various methods for fitting a cell text.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ; text output
 XlSetText("A1", "example text 1")
 XlSetText("B1", "example text 2")
 XlSetText("C1", "example text 3")
 ; cell size as a multiple of the 1st character's width
 XlSetColumnWidth("A1:C1", 8)
 ; defining a text line break
 XlSetTextWrap("A1", "wrap")
 ; specifying a text fitting method
 XlSetTextShrinkToFit("B1", "shrink")
END

imc FAMOS Func on Reference - 1185 -

(c) 2024 imc Test & Measurement GmbH

XlSetValue

Scope: Excel remote control

Fills the specified cell in the active worksheet with a number.

Declaration:
XlSetValue (TxCell, Value, Format) -> Success

Parameter:

TxCell Cell to which to write. Either a cell reference in the style 'A1' or the name of a designated cell.

Value Value to be transferred

Format Data format of the value to be transferred

0 : The value is written without conversion.

1 : The value read is interpreted as a Date/Time (amount of seconds since 1.1.1980) in imc format and converted to the time Excel
format (amount of days since 1.1.1900).

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the error can
be found using the function GetLastError().

Description:
When Option 1 (Date/Time) is specified, the target cell's current cell formatting is checked. If it is set to 'Defaul', the output format is set for
Date/Time.

Examples:
The data set 'Channel1' is written to a new Excel file's first column. The first row contains the name; the trigger time and the sampling time are
next. The actual data begin in the 4th row.

XlWbNew("")
XlSetText("A1", "Channel1")
XlSetValue("A2", Time?(Channel1), 1)
XlSetCellFormat("A2", "dd.mm.yy hh:mm:ss.000")
XlSetValue("A3", xdel?(Channel1), 0)
XlSetValues("A4", 0, Channel1, 0)
XlWbSave("c:\results\report", 0)
XlQuit()

See also:
XlGetValue, XlGetText, XlSetText, XlGetValues

imc FAMOS Func on Reference - 1186 -

(c) 2024 imc Test & Measurement GmbH

XlSetValues

Scope: Excel remote control

Sets the content of a column or row in the active worksheet.

Declaration:
XlSetValues (TxStartCell, RowOrColumn, Data, Format) -> Success

Parameter:

TxStartCell Writing begins at this cell. Either a cell-reference in the style 'A1' or the name of a designated cell.

RowOrColumn Specifies whether to write in either the vertical direction (column) or horizontal direction (row).

0 : Vertical (column)

1 : Horizontal (row)

Data Data to be written

Format Data format of the data to be transferred.

0 : The values are written without conversion.

1 : The values are interpreted as Date/Time in the imc time format (amount of seconds since 1.1.1980) and converted to the
Excel Date/Time-format (amount of days since 1.1.1900).

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Description:
The data set to be transferred must be sampled equidistantly, and unstructured. With structured waveforms (components (XY, complex),
segments, events), the individual elemente may have to be transferred sequentially.

When Option 1 (Date/Time) is specified, the current cell formatting of the target range is checked. If it is set to 'Default', the output format is set
to Date/Time.

To write Excel files, you can also use the functions FileOpenXLS() and in particular FileOpenXLS2(). In general, these are more powerful and
faster, but in return less flexible than the corresponding functions in this Kit.

Examples:
A new Excel file with a worksheet is created, and a data set is transferred into the table. The second column has the header 'Data', followed by
the data set's values. The first column has the header 'Time', followed by the corresponding specifications of the Date/Time. The output format
for both columns is set explicitly. The file thus created is then saved.

XlWbNew("")
; Fill column with Date/Time
XlSetText("A1", "Time")
time = XlCreateTimeLine(channel1, 1, 0)
XlSetValues("A2", 0, time, 1)
Count = Leng?(time)
Range = XlBuildA1Ref(2, 1, count, 1)
XlSetCellFormat(Range, "dd.mm.yy hh:mm:ss.0")
; fill data column
XlSetText("B1", "Data")
XlSetValues("B2", 0, channel1, 0)
Range = XlBuildA1Ref(2, 2, count, 1)
XlSetCellFormat(Range, "0.00")
XlWbSave("c:\results\report", 0)
XlQuit()

A event-based data set's events are sequentially transferred to consecutive columns of an Excel table.

XlWbNew("")
count = EventNum?(channel)
; In case the data set is segmented:
; count = Leng?(Channel) / SegLen?(Channel)
FOR I = 1 TO count
 ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, channel[I], 0)
END
XlWbSave("c:\results\report", 0)
XlQuit()

imc FAMOS Func on Reference - 1187 -

(c) 2024 imc Test & Measurement GmbH

See also:
XlGetValues2, XlGetValue, XlGetText

imc FAMOS Func on Reference - 1188 -

(c) 2024 imc Test & Measurement GmbH

XlSheetActivate

Scope: Excel remote control

Activates a sheet belonging to the current workbook.

Declaration:
XlSheetActivate (TxTitleOrIndex) -> Success

Parameter:

TxTitleOrIndex Title or index of the sheet to be activated. The first sheet's index is 1.

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Description:
Many functions belonging to this Kit affect the active sheet of the active workbook. The active sheet can change if a sheet is created or deleted
with XlSheetAdd()/XlSheetDelete(), if a new sheet is explicitly activated using XlSheetActivate(), or if the user manually activates another page
(e.g. clicking on the corresponding tab in the workbook).

Examples:
An Excel file is opened and data are transferred into 2 worksheets. The updated file is printed out and saved under a new name.

IF NOT (XlWbOpen("c:\Templates\Template.xlsx"))
 BoxMessage("Can't open file", GetLastError(), "!1")
ELSE
 XlSheetActivate("Table1")
 XlSetText("B1", "Channel1")
 XlSetValues("B2", 0, Channel1, 0)
 XlSheetActivate("Table2")
 XlSetText("B1", "Channel2")
 XlSetValues("B2", 0, Channel2, 0)
 XlWbPrint()
 IF NOT(XlWbSave("c:\Results\Report.xlsx", 0))
 BoxMessage("Can't save file", GetLastError(), "!1")
 END
 XlQuit()
END

See also:
XlSheetAdd, XlSheetGetActive

imc FAMOS Func on Reference - 1189 -

(c) 2024 imc Test & Measurement GmbH

XlSheetAdd

Scope: Excel remote control

A worksheet is inserted into the current workbook.

Declaration:
XlSheetAdd (TxTitle, SvPos, TxTemplate) -> Success

Parameter:

TxTitle Title of the new worksheet

SvPos States the position at which the new worksheet is inserted. Enter a 0 if you wish to append the worksheet at the last position.
Entering 1 means that the new worksheet is the workbook's first worksheet, etc.

TxTemplate If you specify an empty text, an empty standard worksheet is created. You can also specify the complete pathname of an Excel file
to be used as the template for the new sheet.

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Examples:
A new Excel file is created and filled with the data from a FAMOS data group called 'MyGroup'. The first sheet is filled with some general
specifications, then a new worksheet is created for each of the group's channels and the first column is filled with the channel's values.

For cover sheets and data sheets each, a pre-made template is used which comes with fixed texts and cell formatting.

IF XlWbNew("c:\templates\firstpage.xlsx")
 XlVisible(1)
 XlSetText("A3", "Name: Mike Smith")
 XlSetText("A4", "Date: " + TimeToText(TimeSystem?(),0))
 FOR I = 1 TO GrChanNum?(MyGroup)
 XlSheetAdd(GrChanName?(MyGroup, I), 0, "c:\templates\datapage.xlsx")
 XlSetValues("A1", 0, MyGroup:[I], 0)
 END
 XlWbSave("c:\results\report", 0)
 XlQuit()
END

See also:
XlSheetDelete

imc FAMOS Func on Reference - 1190 -

(c) 2024 imc Test & Measurement GmbH

XlSheetDelete

Scope: Excel remote control

A worksheet is deleted from the active workbook.

Declaration:
XlSheetDelete (TxTitleOrIndex) -> Success

Parameter:

TxTitleOrIndex Title or index of the worksheet to be deleted. The first sheet's index is 1.

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Examples:
An Excel template with 2 worksheets is opened. However, for the current task, only the first worksheet is needed, the second sheet is thus
deleted before saving the updated file.

XlWbOpen("c:\TemplateWith2Sheets.xlsx")
;...updating first worksheet...
XlSheetDelete(2)
; or e.g. : XlSheetDelete("Table2")
XlWbSave("c:\results\report", 0)

See also:
XlSheetAdd

imc FAMOS Func on Reference - 1191 -

(c) 2024 imc Test & Measurement GmbH

XlSheetExist

Scope: Excel remote control

Checks whether the active workbook contains a sheet with the specified title.

Declaration:
XlSheetExist (TxTitle) -> Result

Parameter:

TxTitle Title of the sheet to be found

Result

Result 1 if such a sheet exists; else 0. -1 at fault condition; the error cause can be found by using the function GetLastError().

Examples:
An Excel-file is loaded and is checked for the presence of a spreadsheet having a particular title. If it is not present, an error message is posted.

XlWbOpen("c:\results\report.xlsx")
ok = XlSheetExist("Data from 20.07.2018")
IF NOT ok
 BoxMessage("Error", "Unexpected excel file", "!1")
END

See also:
XlSheetGetActive, XlSheetGetTitle, XlSheetGetCount, XlWbExist

imc FAMOS Func on Reference - 1192 -

(c) 2024 imc Test & Measurement GmbH

XlSheetGetActive

Scope: Excel remote control

Finds the active sheet of the active workbook

Declaration:
XlSheetGetActive () -> TxTitle

Parameter:

TxTitle

TxTitle Title of the active sheet

Description:
Many functions belonging to this Kit affect the active sheet of the active workbook. The active sheet can change if a sheet is created or deleted
with XlSheetAdd()/XlSheetDelete(), if a new sheet is explicitly activated using XlSheetActivate(), or if the user manually activates another page
(e.g. clicking on the corresponding tab in the workbook).

The title which this finds matches the name displayed on the corresponding tab in the workbook.

At fault condition, an empty text is returned. The cause can be determined by means of the function GetLastError().

Examples:
The user selects an Excel file to open. The values in the first column of the file's 2nd worksheet are read out. The data set generated contains the
worksheet's name.

filename = DlgFileName("c:\results", "xlsx", "", 0)
IF XlWbOpen(filename)
 XlSheetActivate(2)
 SheetName = XlSheetGetActive()
 <SheetName> = XlGetValues("A1", 0, 0, 0)
END

See also:
XlSheetAdd, XlSheetActivate

imc FAMOS Func on Reference - 1193 -

(c) 2024 imc Test & Measurement GmbH

XlSheetGetCount

Scope: Excel remote control

Gets the count of sheets in the active workbook.

Declaration:
XlSheetGetCount () -> Amount

Parameter:

Amount

Amount Number of sheets. -1 at fault condition; the error cause can be found by using the function GetLastError().

Description:

Examples:
An Excel-file is loaded and the titles of all table sheets is outputted in the output window.

IF XlWbOpen("z:\tmp\results.xlsx")
 sheetCount = XlSheetGetCount()
 FOR i = 1 TO sheetCount
 BoxOutput(XlSheetGetTitle(i), EMPTY, "", 1)
 END
END

A workbook is opened and a copy of the last page appended.

IF XlWbOpen("z:\tmp\results.xlsx")
 sheetCount = XlSheetGetCount()
 XlSheetInsertCopy("", sheetCount, 0, "Tabelle " + TForm(sheetCount+1, ""))
 ;...
END

See also:
XlSheetGetActive, XlSheetGetTitle, XlSheetExist

imc FAMOS Func on Reference - 1194 -

(c) 2024 imc Test & Measurement GmbH

XlSheetGetTitle

Scope: Excel remote control

The title of a sheet in the active workbook is found.

Declaration:
XlSheetGetTitle (Index) -> TxTitle

Parameter:

Index Index of the sheet. Lies between 1 and the count of sheets in the active workbook.

TxTitle

TxTitle Title of the sheet. Empty text at fault condition; the error cause can be found by using the function GetLastError().

Description:
The count of sheets and thus the maximum value for [Index] can be found by using the function XlSheetGetCount().

Examples:
An Excel-file is loaded and the titles of all table sheets is outputted in the output window.

IF XlWbOpen("z:\tmp\results.xlsx")
 sheetCount = XlSheetGetCount()
 FOR i = 1 TO sheetCount
 BoxOutput(XlSheetGetTitle(i), EMPTY, "", 1)
 END
END

See also:
XlSheetGetActive, XlSheetGetCount, XlSheetExist

imc FAMOS Func on Reference - 1195 -

(c) 2024 imc Test & Measurement GmbH

XlSheetInsertCopy

Scope: Excel remote control

The copy of a sheet is inserted into the active workbook.

Declaration:
XlSheetInsertCopy (TxSourceWorkbook, SourceSheetTitleOrIndex, SvPos [, TxSheetTitle]) -> Success

Parameter:

TxSourceWorkbook Name of the workbook containing the sheet to be copied. Empty string, if the current workbook is to be used.

SourceSheetTitleOrIndex Title or index of the sheet to be copied. The first sheet's index is 1.

SvPos States the position at which the new worksheet is inserted. Enter a 0 if you wish to append the worksheet at the last
position. Entering 1 means that the new worksheet is the workbook's first worksheet, etc.

TxSheetTitle Title of the new sheet. If empty, the name automatically assigned by Excel is used. (optional , Default value: "")

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the
cause of the error can be found using the function GetLastError().

Description:
Wenn das einzufügende Blatt aus einer anderen Mappe stammt (Parameter [TxQuellArbeitsMappe] ist nicht leer), so muß auch diese
Vorlagenmappe vorher mit XlWbOpen() geladen worden sein.

Examples:
A workbook is opened and a copy of the last page appended.

IF XlWbOpen("z:\tmp\results.xlsx")
 sheetCount = XlSheetGetCount()
 XlSheetInsertCopy("", sheetCount, 0, "Tabelle " + TForm(sheetCount+1, ""))
 ;...
END

The first sheet of a template file "templates.xlsx" is appended to the workbook 'results.xlsx' angehängt and the 2nd column is filled with the
values of 'channel', a previously loaded data set. The new workbook is assigned the data set's trigger date as its title. Subsequently, the updated
workook is saved.

IF XlWbOpen("z:\tmp\templates.xlsx")
 IF XlWbOpen("z:\tmp\results.xlsx")
 XlSheetInsertCopy("templates.xlsx", 1, 0, TimeToText(Time?(channel), 1))
 XlSetValues("B2", 0, channel, 0)
 XlWbSave("", 0)
 END
 XlQuit()
END

See also:
XlSheetDelete, XlSheetAdd, XlSheetMove

imc FAMOS Func on Reference - 1196 -

(c) 2024 imc Test & Measurement GmbH

XlSheetMove

Scope: Excel remote control

The sheet's position within the active workbook is changed, or a sheet is moved from another workbook to the current workbook.

Declaration:
XlSheetMove (TxSourceWorkbook, SourceSheetTitleOrIndex, SvPos [, TxSheetTitle]) -> Success

Parameter:

TxSourceWorkbook Name of the workbook containing the sheet to be moved. Empty string, if the current workbook is to be used.

SourceSheetTitleOrIndex Title or index of the sheet to be moved. The first sheet's index is 1.

SvPos Specifies the moved sheet's new position within the active workbook. Enter 0 to append the sheet at the last
position. Entering 1 makes the sheet the first sheet in the workbook, etc.

TxSheetTitle Title of the new sheet. If empty, the name automatically assigned by Excel is used. (optional , Default value: "")

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the
cause of the error can be found using the function GetLastError().

Description:
Wenn das einzufügende Blatt aus einer anderen Mappe stammt (Parameter [TxQuellArbeitsMappe] ist nicht leer), so muß auch diese Mappe
vorher mit XlWbOpen() geladen worden sein.

Examples:
A workbook is opened and the last page is moved to the first position.

IF XlWbOpen("z:\tmp\results.xlsx")
 sheetCount = XlSheetGetCount()
 XlSheetMove("", sheetCount, 1)
 ;...
END

The first sheet of a workbook 'results1.xlsx' is moved into the workbook 'results2.xlsx' at hte last position. Subsequently, both workbooks are
saved.

IF XlWbOpen("z:\tmp\results1.xlsx")
 IF XlWbOpen("z:\tmp\results2.xlsx")
 XlSheetMove("results1.xlsx", 1, 0)
 XlWbSave("", 0)
 XlWbActivate("results1.xlsx")
 XlWbSave("", 0)
 END
 XlQuit()
END

See also:
XlSheetDelete, XlSheetAdd, XlSheetInsertCopy

imc FAMOS Func on Reference - 1197 -

(c) 2024 imc Test & Measurement GmbH

XlSheetPrint

Scope: Excel remote control

The active sheet of the active workbook is printed out.

Declaration:
XlSheetPrint () -> Success

Parameter:

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the error can
be found using the function GetLastError().

Examples:
An Excel file is opened and the 2nd and 3rd sheet of the workbook are printed out.

filename = "c:\results\report.xlsx"
IF XlWbOpen(filename)
 XlSheetActivate(2)
 XlSheetPrint()
 XlSheetActivate(3)
 XlSheetPrint()
END

See also:
XlWbOpen, XlWbPrint

imc FAMOS Func on Reference - 1198 -

(c) 2024 imc Test & Measurement GmbH

XlSheetRename

Scope: Excel remote control

Renames a sheet in the active workbook.

Declaration:
XlSheetRename (TxTitleOrIndex, TxNewTitle) -> Success

Parameter:

TxTitleOrIndex Title or index of the sheet to be renamed. The first sheet's index is 1.

TxNewTitle New title

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Description:

Examples:
An Excel-file is loaded and updated. Subsequently, the first table sheet is named according to the current date, and the file is saved under the
new name.

XlWbOpen("z:\tmp\results.xlsx")
; ... various updates
TxDate = TimeToText(TimeSystem?(), 1)
ok = XlSheetRename(1, TxDate)
XlWbSave("z:\tmp\results_"+ TxDate + ".xlsx", 0)

See also:
XlSheetGetTitle, XlSheetGetCount, XlSheetAdd

imc FAMOS Func on Reference - 1199 -

(c) 2024 imc Test & Measurement GmbH

XlSheetSetColumnStandardWidth

Scope: Excel remote control

Specifies the default width for table columns as a multiple of one character's width.

Declaration:
XlSheetSetColumnStandardWidth (SvDefaultWidth)

Parameter:

SvDefaultWidth Width of one table column

Examples:
A new Excel document is generated. Determines the new width for all columns.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ;specifying column width for all columns
 XlSheetSetColumnStandardWidth(25)
END

imc FAMOS Func on Reference - 1200 -

(c) 2024 imc Test & Measurement GmbH

XlSheetSetOption

Scope: Excel remote control

Sets display and printing options for the active sheet.

Declaration:
XlSheetSetOption (TxOptionName, TxNewSetting) -> Success

Parameter:

TxOptionName Designation of the option

"GridLines.Show" : Show grid

"GridLines.Print" : Print out grid

"Headings.Show" : Show column-/row headings

"Headings.Print" : Print column-/row headings

"Page.Orientation" : Defines the page's orientation (portrait/landscape)

TxNewSetting [TxOptionsName] determines what settings are possible:

"GridLines.Show" : Show grid

"on" yes

"off" no

"GridLines.Print" : Print out grid

"on" yes

"off" no

"Headings.Show" : Show column-/row headings

"on" yes

"off" no

"Headings.Print" : Print column-/row headings

"on" yes

"off" no

"Page.Orientation" : Print column-/row headings

"portrait" Portrait format

"landscape" Landscape format

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Description:

Examples:
A new Excel-document is generated; the first column is filled with the values of a previously calculated data set 'channel1' and printed out. In the
printout, the gridlines and column/row headers are displayed.

channel1 = Ramp(0,1,100)
XlWbNew("")
XlSetValues("A1", 0, channel1, 0)
XlSheetSetOption("GridLines.Print", "on")
XlSheetSetOption("Headings.Print", "on")
XlWbPrint()

See also:
XlWbPrint

imc FAMOS Func on Reference - 1201 -

(c) 2024 imc Test & Measurement GmbH

XlSheetSetPicture

Scope: Excel remote control

Inserts an image from a file.

Declaration:
XlSheetSetPicture (TxFilename, SvOptions, TxRange, SvPosX, SvPosY, SvWidth, SvHeight)

Parameter:

TxFilename Name of image file

SvOptions Paste options

0 : The cell area is valid; the image covers the specified cells and will be fitted.

1 : Only the upper left corner of the cell area is valid; the image retains its original size.

2 : All position specifications are valid; the image covers the spcified area and will be fitted.

3 : Only the position is valid; the image retains its original size.

TxRange Cell area of the image; either a cell-reference in the style 'A1', or the name of a known cell or cell area

SvPosX Position left

SvPosY Position top

SvWidth Width of image

SvHeight Height of image

Examples:
A new Excel document is generated, an image is loaded to various positions and fitted.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 ; The image covers over the cells in the specified cell area.
 XlSheetSetPicture("C:\imc\Projects\ExcelTestProjekt\Flugzeug.jpg",0,"D1:F9",0,0,0,0)
 ; The image cover the pixel region 150x100 starting at the position 25,25.
 XlSheetSetPicture("C:\imc\Projects\ExcelTestProjekt\Flugzeug.jpg",2,"",25,25,150,100)
 ; The image covers over the pixel region corresponding to the size of the image beginning at the upper left corner of the cell range.
 XlSheetSetPicture("C:\imc\Projects\ExcelTestProjekt\Flugzeug.jpg",1,"A150",0,0,0,0)
 ; The image covers over the pixel region corresponding to the size of the image beginning at the specified position.
 XlSheetSetPicture("C:\imc\Projects\ExcelTestProjekt\Flugzeug.jpg",3,"",100,200,0,0)
END

imc FAMOS Func on Reference - 1202 -

(c) 2024 imc Test & Measurement GmbH

XlSheetSetPrintArea

Scope: Excel remote control

Defines the area comprising the cells in the active worksheet to be printed.

Declaration:
XlSheetSetPrintArea (TxRange)

Parameter:

TxRange Area to be printed. Either an area reference in the style of 'A1:B2' or the name of a known area.

Examples:
A new Excel document is generated and filled with a matrix. The printing area is defined to comprise the entire matrix and the printing area is to
be fitted to 1 page.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 Matrix = MatrixInit(20, 20, "I") ; Matrix für die Tabelle erzeugen
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 ;defining the print area
 XlSheetSetPrintArea("A1:T20")
 ;specifying print area on 1 page
 XlSheetSetPrintFitTo(1,1)
END

imc FAMOS Func on Reference - 1203 -

(c) 2024 imc Test & Measurement GmbH

XlSheetSetPrintFitTo

Scope: Excel remote control

Fits the area of cells to be printed to the specified count of either vertically or horizontally adjacent pages.

Declaration:
XlSheetSetPrintFitTo (SvHorizontalCount, SvVerticalCount)

Parameter:

SvHorizontalCount Count of horizontally adjacent pages

SvVerticalCount Count of vertically adjacent pages

Examples:
A new Excel document is generated and filled with a matrix. The printing area is defined to comprise the entire matrix and the printing area is to
be fitted to 1 page.

IF XlStart() ; EXCEL start
 XlVisible(1) ; EXCEL show
 XlWbNew(""); workbook create
 Matrix = MatrixInit(20, 20, "I") ; Matrix für die Tabelle erzeugen
 LOCAL count = Leng?(Matrix) / SegLen?(Matrix)
 FOR I = 1 TO count
 ref = XlBuildA1Ref(1, I, 1, 1)
 XlSetValues(ref, 0, Matrix[I], 0)
 END
 ;defining the print area
 XlSheetSetPrintArea("A1:T20")
 ;specifying print area on 1 page
 XlSheetSetPrintFitTo(1,1)
END

imc FAMOS Func on Reference - 1204 -

(c) 2024 imc Test & Measurement GmbH

XlStart

Scope: Excel remote control

Starts an Excel instance

Declaration:
XlStart () -> Success

Parameter:

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the error can
be found using the function GetLastError().

Description:
The function checks whether an active Excel instance already exists, which had been created by functions belonging to this Kit. If not, a new Excel
instance is started which becomes the target of all subsequent calls to this Kit's functions.

A hidden instance of Excel is started. Use the function XlVisible() if necessary, in order to make the Excel main window visible.

You do not need to call this function if you wish to load a file right afterwards (XlWbOpen()) or create a new workbook (XlWbNew()). Both
functions check whether an instance of Excel already exists and start Excel if needed.

At the end of the utilzation of Excel, it is absolutely necessary to call XlQuit() to close any (possibly not visible) Excel instances and thus to free up
any no longer required resources.

Multithreading: Each execution thread uses its own EXCEL instance. If, for example, EXCEL is started in a parallel sequence function
(BEGIN_PARALLEL) using XlWbOpen () and a document is loaded, further access to this document is only permitted within the same sequence
function. If the EXCEL instance was not explicitly closed with XlQuit (), it is closed automatically at the end of the sequence function.

Examples:
Excel is started, made visible and a macro is run, which is defined in the workbook 'MyMacros.xlsm'. Subsequently, Excel is closed again.

IF XlStart()
 XlVisible(1)
 IF NOT(XlRunMacro("'c:\XLSTemplates\MyMacros.xlsm'!Macro2"))
 BoxMessage("Error", GetLastError(), "!1")
 END
 XlQuit()
END

See also:
XlQuit, XlVisible

imc FAMOS Func on Reference - 1205 -

(c) 2024 imc Test & Measurement GmbH

XlVisible

Scope: Excel remote control

With this function, you can govern the visibility of the working windows which belong to the linked Excel instance.

Declaration:
XlVisible (Option)

Parameter:

Option Visibility

0 : Excel is not visible.

1 : Excel is visible (and operable).

Examples:
A Excel file is opened and the worksheet having the title 'Table2' is activated and displayed.

Following confirmation by the user, the data are read into the 2nd column (beginning at Row 3) and transferred to FAMOS.

IF XlWbOpen("c:\results\report.xlsx")
 XlVisible(1)
 XlSheetActivate("Table2")
 IF BoxMessage("Check", "Transfer these data?", "?4") = 1
 DataColumn2 = XlGetValues("B3", 0, 0, 0)
 END
 XlQuit()
END

See also:
XlStart, XlQuit

imc FAMOS Func on Reference - 1206 -

(c) 2024 imc Test & Measurement GmbH

XlWbActivate

Scope: Excel remote control

The workbook having the specified name is activated.

Declaration:
XlWbActivate (Name) -> Success

Parameter:

Name Name of the workbook to be activated

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the error can
be found using the function GetLastError().

Description:
This function is sometimes necessary if you have multiple workbooks open at the same time. Most of this Kit's functions affect the active
workbook set here.

The name to be entered here exactly matches the name displayed in the title bar of the associated Excel window, including the filename
extension (e.g. '.xls' or '.xlxs') in the case of already saved workbooks.

Examples:
At the beginning of an analysis, a new Excel file is created. The name (automatically assigned by Excel) is noted. At the end of the analysis, the
newly created workbook is to be saved.

XlWbNew("")
XlVisible(1)
NewBook = XlWbGetActive()
;...
IF XlWbActivate(NewBook)
 XlWbSave("c:\results\report.xlsx", 0)
END

See also:
XlWbOpen, XlWbGetActive

imc FAMOS Func on Reference - 1207 -

(c) 2024 imc Test & Measurement GmbH

XlWbClose

Scope: Excel remote control

Closes the current workbook

Declaration:
XlWbClose ()

Parameter:

Description:
Any changes to the workbook which have not already been saved are lost.

Examples:
In a specified folder, all existing Excel fles are opened, displayed and printed out (after user confirmation) in succession.

FileListID = FsFileListNew("c:\results", "*.xlsx", 0, 0, 1)
count = FsFileListGetCount(FileListID)
FOR I = 1 TO count
 filename = FsFileListGetName(FileListID, I)
 IF XlWbOpen(filename)
 XlVisible(1)
 IF BoxMessage("Check", "Print this file?", "?4") = 1
 XlWbPrint()
 END
 XlWbClose()
 END
END
XlQuit()

See also:
XlWbOpen, XlWbNew

imc FAMOS Func on Reference - 1208 -

(c) 2024 imc Test & Measurement GmbH

XlWbExist

Scope: Excel remote control

Checks whether a workbook having the specified name is currently open.

Declaration:
XlWbExist (Name) -> Result

Parameter:

Name Name of the workbook to be found

Result

Result 1, if such a workbook existiert, else 0. -1 at fault condition; the error cause can be found by using the function GetLastError().

Description:
The name to be specified here exactly matches the name displayed in the title bar of the associated Excel-window; for documents already saved,
this includes the filename extension (e.g. '.xls' or '.xlxs').

Only such workbooks are taken into account which were opened by the Excel instance generated by FAMOS.

Alongside workbooks generated by remote control using XlWbOpen()/XlWbNew(), this also includes files which may have been loaded manually
by the user in the user interface made visbile by means of XlVisible().

Examples:
At the beginning of a long evaluation procedure, an Excel-file is loaded and displayed, which at he end of the evaluation and after various
updates is to be printed out. Since the used may already have closed the file manually in the meantime, before printing there is a check of
whether the desired file is still open.

XlWbOpen("c:\results\report.xlsx")
XlVisible(1)
;...
ok = XlWbExist("report.xlsx")
IF ok
 XlWbActivate("report.xlsx")
 XlWbPrint()
END
XlQuit()

See also:
XlWbGetActive, XlWbGetName, XlWbGetCount

imc FAMOS Func on Reference - 1209 -

(c) 2024 imc Test & Measurement GmbH

XlWbGetActive

Scope: Excel remote control

The name of the currently active workbook is found.

Declaration:
XlWbGetActive () -> Name

Parameter:

Name

Name Name of the active workbook. At fault condition, an empty text; the error cause can be determined using the function GetLastError().

Description:
This funciton is occasionally necessary when you have multiple open workbooks at the same time. Most of this Kit's functions affect the active
workbook. The active workbook can change if a new workbook is created using XlWbOpen() or XlWbNew(), if a new workbook is explicitly
activated using XlWbActivate(), or if the user manually activated another workbook (e.g. by clicking in the corresponding Excel window).

The name found here exactly matches the name displayed in the title bar of the associated Excel window; for already saved documents, including
the filename extension (e.g. '.xls' or '.xlxs').

Examples:
At the beginning of an analysis, a new Excel file is created. The name (automatically assigned by Excel) is noted for later use.

XlWbNew("")
NewBookName = XlWbGetActive()

At the beginning of a long analysis, an Excel file which is to be printed after a variety of updates is opened and displayed. Since the user may have
closed the file manually, or loaded another file, the system verifies prior to printout whether the desired file is still active.

XlWbOpen("c:\results\report.xlsx")
XlVisible(1)
;...
tx = XlWbGetActive()
IF tx = "report.xlsx"
 XlWbPrint()
END
XlQuit()

See also:
XlWbOpen, XlWbNew

imc FAMOS Func on Reference - 1210 -

(c) 2024 imc Test & Measurement GmbH

XlWbGetCount

Scope: Excel remote control

Gets the number of workbooks currently open.

Declaration:
XlWbGetCount () -> Amount

Parameter:

Amount

Amount Count of open workbooks. -1 at fault condition; the error cause can be found using the function GetLastError().

Description:
The count determined here only pertains to workbooks opened in an instance of Excel generated by FAMOS.

Alongside workbooks generated by remote control using XlWbOpen()/XlWbNew(), this also includes files which may have been loaded manually
by the user in the user interface made visbile by means of XlVisible().

Examples:
At the end of a long evaluation procedure, all open workbooks are enumerated. If the name begins with "Report_", the workbook is printed out.

n = XlWbGetCount()
FOR i = 1 to n
 name = XlWbGetName(i)
 IF TLike(name, "report_*", 0)
 XlWbPrint()
 END
END
XlQuit()

See also:
XlWbGetActive, XlWbGetName, XlWbExist

imc FAMOS Func on Reference - 1211 -

(c) 2024 imc Test & Measurement GmbH

XlWbGetName

Scope: Excel remote control

Finds the name of an opened workbook.

Declaration:
XlWbGetName (Index) -> Name

Parameter:

Index Index of the workbook. Lies between 1 and the count of currently open workbooks.

Name

Name Name of the workbook. Empty text at fault condition; the error cause can be found by using the function GetLastError().

Description:
The name found here exactly matches the name displayed in the title bar of the associated Excel window; for already saved documents, including
the filename extension (e.g. '.xls' or '.xlxs').

Only such workbooks are taken into account which were opened by the Excel instance generated by FAMOS.

Alongside workbooks generated by remote control using XlWbOpen()/XlWbNew(), this also includes files which may have been loaded manually
by the user in the user interface made visbile by means of XlVisible().

The count of open workbooks and this the maximum value for [Index] can be found by using the function XlWbGetCount().

Examples:
At the end of a long evaluation procedure, all open workbooks are enumerated. If the name begins with "Report_", the workbook is printed out.

n = XlWbGetCount()
FOR i = 1 to n
 name = XlWbGetName(i)
 IF TLike(name, "report_*", 0)
 XlWbPrint()
 END
END
XlQuit()

See also:
XlWbGetActive, XlWbGetCount, XlWbExist

imc FAMOS Func on Reference - 1212 -

(c) 2024 imc Test & Measurement GmbH

XlWbNew

Scope: Excel remote control

Creates a new workbook.

Declaration:
XlWbNew (TxTemplate) -> Success

Parameter:

TxTemplate If you specify an empty text, a new workbook with exactly one worksheet is created. You can also enter the complete pathname
of an Excel file, which is then used as the template for the new document.

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Description:
Unless it has already happened by means of a previous call of XlStart()/ XlWbOpen() /XlWbNew(), a hidden instance of Excel starts, upon which
all subsequent commands of this Kit take effect. If desired, use the function XlVisible() to make the main Excel window visible.

At the end of the utilzation of Excel, it is absolutely necessary to call XlQuit() to close any (possibly not visible) Excel instances and thus to free up
any no longer required resources.

For the purpose of reading from and writing to Excel files, you can also use the functions FileOpenXLS() and FileOpenXLS2(). These are generally
much more powerful and fast, but in return less flexible than the corresponding funcitons in this Kit.

Multithreading: Each execution thread uses its own EXCEL instance. If, for example, EXCEL is started in a parallel sequence function
(BEGIN_PARALLEL) using XlWbOpen () and a document is loaded, further access to this document is only permitted within the same sequence
function. If the EXCEL instance was not explicitly closed with XlQuit (), it is closed automatically at the end of the sequence function.

Examples:
A new Excel file with a worksheet is created, and a data set is transferred into the table. The second column has the header 'Data', followed by
the data set's values. The first column has the header 'Time', followed by the corresponding specifications of the Date/Time. The output format
for both columns is set explicitly. The file thus created is then saved.

XlWbNew("")
; Fill column with Date/Time
XlSetText("A1", "Time")
time = XlCreateTimeLine(channel1, 1, 0)
XlSetValues("A2", 0, time, 1)
Count = Leng?(time)
Range = XlBuildA1Ref(2, 1, count, 1)
XlSetCellFormat(Range, "dd.mm.yy hh:mm:ss.0")
; fill data column
XlSetText("B1", "Data")
XlSetValues("B2", 0, channel1, 0)
Range = XlBuildA1Ref(2, 2, count, 1)
XlSetCellFormat(Range, "0.00")
XlWbSave("c:\results\report", 0)
XlQuit()

A new Excel file is created and filled with the data from a FAMOS data group called 'MyGroup'. The first sheet is filled with some general
specifications, then a new worksheet is created for each of the group's channels and the first column is filled with the channel's values.

For cover sheets and data sheets each, a pre-made template is used which comes with fixed texts and cell formatting.

IF XlWbNew("c:\templates\firstpage.xlsx")
 XlVisible(1)
 XlSetText("A3", "Name: Mike Smith")
 XlSetText("A4", "Date: " + TimeToText(TimeSystem?(),0))
 FOR I = 1 TO GrChanNum?(MyGroup)
 XlSheetAdd(GrChanName?(MyGroup, I), 0, "c:\templates\datapage.xlsx")
 XlSetValues("A1", 0, MyGroup:[I], 0)
 END
 XlWbSave("c:\results\report", 0)
 XlQuit()
END

See also:
XlWbOpen, XlWbSave

imc FAMOS Func on Reference - 1213 -

(c) 2024 imc Test & Measurement GmbH

XlWbOpen

Scope: Excel remote control

Opens the specifiedd file in EXCEL format.

Declaration:
XlWbOpen (Filename [, Password]) -> Success

Parameter:

Filename Complete pathname of the the file to open

Password If the workbook is protected, the required password. (optional , Default value: "")

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the error
can be found using the function GetLastError().

Description:
Unless it has already happened by means of a previous call of XlStart()/ XlWbOpen() /XlWbNew(), a hidden instance of Excel starts, upon which
all subsequent commands of this Kit take effect. If desired, use the function XlVisible() to make the main Excel window visible.

At the end of the utilzation of Excel, it is absolutely necessary to call XlQuit() to close any (possibly not visible) Excel instances and thus to free up
any no longer required resources.

For the purpose of reading from and writing to Excel files, you can also use the functions FileOpenXLS() and FileOpenXLS2(). These are generally
much more powerful and fast, but in return less flexible than the corresponding funcitons in this Kit.

Multithreading: Each execution thread uses its own EXCEL instance. If, for example, EXCEL is started in a parallel sequence function
(BEGIN_PARALLEL) using XlWbOpen () and a document is loaded, further access to this document is only permitted within the same sequence
function. If the EXCEL instance was not explicitly closed with XlQuit (), it is closed automatically at the end of the sequence function.

Examples:
An Excel file is opened and data are transferred to 2 columns. The updated file is printed out and saved under a new name.

IF NOT (XlWbOpen("c:\Templates\Template.xlsx"))
 BoxMessage("Can't open file", GetLastError(), "!1")
ELSE
 XlSetText("B1", "Channel1")
 XlSetValues("B2", 0, Channel1, 0)
 XlSetText("C1", "Channel2")
 XlSetValues("C2", 0, Channel2, 0)
 XlWbPrint()
 IF NOT(XlWbSave("c:\Results\Report.xlsx", 0))
 BoxMessage("Can't save file", GetLastError(), "!1")
 END
 XlQuit()
END

A Excel file is opened and the worksheet having the title 'Table2' is activated and displayed.

Following confirmation by the user, the data are read into the 2nd column (beginning at Row 3) and transferred to FAMOS.

IF XlWbOpen("c:\results\report.xlsx")
 XlVisible(1)
 XlSheetActivate("Table2")
IF BoxMessage("Check", "Transfer these data?", "?4") = 1
 DataColumn2 = XlGetValues("B3", 0, 0, 0)
 END
 XlQuit()
END

See also:
XlWbSave, XlWbNew

imc FAMOS Func on Reference - 1214 -

(c) 2024 imc Test & Measurement GmbH

XlWbPrint

Scope: Excel remote control

Prints out the current workbook

Declaration:
XlWbPrint () -> Success

Parameter:

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the error can
be found using the function GetLastError().

Examples:
An Excel file is opened and the data are transferred into 2 columns. The updated file is printed out.

IF NOT (XlWbOpen("c:\Templates\Template.xlsx"))
 BoxMessage("Can't open file", GetLastError(), "!1")
ELSE
 XlSetText("B1", "Channel1")
 XlSetValues("B2", 0, Channel1, 0)
 XlSetText("C1", "Channel2")
 XlSetValues("C2", 0, Channel2, 0)
 XlWbPrint()
 XlQuit()
END

See also:
XlWbOpen, XlSheetPrint

imc FAMOS Func on Reference - 1215 -

(c) 2024 imc Test & Measurement GmbH

XlWbSave

Scope: Excel remote control

Saves the current workbook.

Declaration:
XlWbSave (TxFilename, Reserved) -> Success

Parameter:

TxFilename Filename under which to save the workbook. if you specify an empty text here, the file is saved under its current name.

Reserved Reserved parameter, always set to 0

Success

Success Success of the function: 1, if the function could be performed successfully; 0 in case of error. In case of error, the cause of the
error can be found using the function GetLastError().

Examples:
An Excel file is opened and data are transferred to 2 columns. The updated file is printed out and saved under a new name.

IF NOT (XlWbOpen("c:\Templates\Template.xlsx"))
 BoxMessage("Can't open file", GetLastError(), "!1")
ELSE
 XlSetText("B1", "Channel1")
 XlSetValues("B2", 0, Channel1, 0)
 XlSetText("C1", "Channel2")
 XlSetValues("C2", 0, Channel2, 0)
 XlWbPrint()
 IF NOT(XlWbSave("c:\Results\Report.xlsx", 0))
 BoxMessage("Can't save file", GetLastError(), "!1")
 END
 XlQuit()
END

A new Excel file is created and filled with the data from a FAMOS data group called 'MyGroup'. The first sheet is filled with some general
specifications, then a new worksheet is created for each of the group's channels and the first column is filled with the channel's values.

For cover sheets and data sheets each, a pre-made template is used which comes with fixed texts and cell formatting.

IF XlWbNew("c:\templates\firstpage.xlsx")
 XlVisible(1)
 XlSetText("A3", "Name: Mike Smith")
 XlSetText("A4", "Date: " + TimeToText(TimeSystem?(),0))
 FOR I = 1 TO GrChanNum?(MyGroup)
 XlSheetAdd(GrChanName?(MyGroup, I), 0, "c:\templates\datapage.xlsx")
 XlSetValues("A1", 0, MyGroup:[I], 0)
 END
 XlWbSave("c:\results\report", 0)
 XlQuit()
END

See also:
XlWbOpen, XlWbNew

imc FAMOS Func on Reference - 1216 -

(c) 2024 imc Test & Measurement GmbH

xMax

Returns the x-positions of all relative maxima which lie above a specified threshold.

Declaration:
xMax (Data, SvfLimit) -> XMaxima

Parameter:

Data Data set examined. Allowed types: [ND],[XY].

SvfLimit Threshold

XMaxima

XMaxima The X-coordinates of relative maxima above [SvThreshold] found.

Description:
The results are the x-coordinates of all relative maxima greater than a specified threshold.

If NyData is an XY-data set, it must have a monotonous time or x-track.

The Value() function can be used to determine the associated y-coordinates.
Set the threshold to -1e100 to determine all relative maxima.
If the value of a relative maximum is held over more than one data point in a data set, only the first x-coordinate is returned.

Examples:

NDxmaxi = xMax(Smo5(NDdata), 10 'A')

The x-coordinates of all relative maxima in the data set NwData greater than 10A form the result. The data set is somewhat smoothed first to
suppress insignificant relative maxima.

NDymaxi = Value(NDdata, xMax(NDdata, -1e100))

The result is the y-coordinates of all relative maxima of the NDdata data set that are greater than -1e100. In practice, all relative maxima are
determined in this way.

xMini = xMax(-NDdata, 0)
xyMini = xyOf(xMini, Value(NDdata, xMini))

The result is an XY data set that contains all the relative minima of NDdata with a negative y value.

See also:
Value2, All0, Top

imc FAMOS Func on Reference - 1217 -

(c) 2024 imc Test & Measurement GmbH

XOff

Specifies a data set's offset in the x-direction

Declaration:
XOff (Data, SvXOffset) -> Result

Parameter:

Data Data set whose x-offset is to be specified

SvXOffset New x-offset.

Result

Result Data set copy with new offset

Description:
A copy of the input data is generated and the specified x-offset is entered. All other numerical and characteristic values remain unaffected.

The x-offset is the x-coordinate of the data set's first data point. With measurement data captured plotted over time, this characteristic value is
ofter referred to as the pretrigger.

The unit of the new x-offset should match the x-unit of the data set passed.
The size of the new Delta-X should not be too many orders of magnitude greater than the sampling interval. Otherwise, the resolution may
not be sufficient to represent differences between the x-coordinates of the data set's data points.

Examples:
The x-coordinate of a histogram's value, which was imported in the form of ASCII-data without time base information , is set to -128.

NDcorrect = XOff(NDhisto, -128)

See also:
XOff?, XDel, Leng, XOFFSET

imc FAMOS Func on Reference - 1218 -

(c) 2024 imc Test & Measurement GmbH

XOff?

A data set's offset in the x-direction

Declaration:
XOff? (Data) -> SvXOffset

Parameter:

Data Data set whose x-offset is to be determined

SvXOffset

SvXOffset x-offset

Description:
The x-offset is the x-coordinate of the data set's first data point. With measurement data captured plotted over time, this characteristic value is
ofter referred to as the pretrigger.

The result has the x-unit of the data set passed.

Examples:
The x-coordinate of the data set's 2nd data point is determined:

xOf2ndSample = XOff?(NDdata) + XDel?(NDdata)

See also:
XOff, XDel?, Leng?

imc FAMOS Func on Reference - 1219 -

(c) 2024 imc Test & Measurement GmbH

XOFFSET

Set X-offset

Declaration:
XOFFSET VariableName SvXOffset

Parameter:

VariableName Name of the variable whose x-offset is to be re-apportioned

SvXOffset Distance of the first data point from the origin, in x-units

Description
The command XOFFSET is obsolete; instead of it, the function XOff() shoud be used in newly created sequences.
The parameter's x-offset is set to a new value.

Examples:

XUNIT Temp s
XOFFSET Temp 10

First the x-unit "s" is assigned to the variable "Temp". The command following has the effect that the first data point of the variable "Temp" lies
at "10 s".

See also:
XOff, XOff?, XDel

imc FAMOS Func on Reference - 1220 -

(c) 2024 imc Test & Measurement GmbH

XOR

Logical "Exclusive-OR"-operator

Declaration:
Operand1 XOR Operand2 -> ZeroOrOne

Parameter:

Operand1 First single value or data set to be compared.

Operand2 Second single value or data set to be compared.

ZeroOrOne Result, 0 or 1 (or data set consisting of 0 and 1).

Description
"Exclusive-OR" operator applied to two numbers. The result is 1, if exactly one of the operands equals 0. Else, the result is 0.

The operator can be applied to single values or data sets. With data sets, the operation is applied data point by data point..

If one parameter's type is XY, the other parameter must be a single value.

Both parameters may be structured (events/segments); but the respective counterpart parameter must then either have exactly the same
structure (same segment length, event-count and -length) or it must be a single value.

Examples:
The exclusive disjunction operation is applied to two digital data sets. The result data set's value is 1 everywhere that the two operand data sets'
values are different.

Result = (DigChannel1 XOR DigChannel2)

See also:
AND, NOT, OR

imc FAMOS Func on Reference - 1221 -

(c) 2024 imc Test & Measurement GmbH

XUNIT

Set X-unit

Declaration:
XUNIT VariableName NewUnit

Parameter:

VariableName Name of the variable to which a new x-unit is to be assigned

NewUnit New x-unit

Description
The command XUNIT is obsolete; instead of it the function SetUnit() should be used in newly created sequences.
The unit of the x-axis of a waveform is redefined, i.e. the data set is assigned a new x-unit.

The waveform is the first parameter, the unit is the second.

The unit is specified without quotation marks. If there is no second parameter, the unit of the x-axis is deleted.

In complex data sets, only the unit of the first component is changed. In xy-data sets, the unit of the x-components is set.

Examples:

ASCII
FileLoad("test.dat", "", 0)
h = Histo(test)
XUNIT h V

The unit of the x-axis in a histogram is set to "V". This information was not available in the ASCII file.

XUNIT data

After this command is executed, the variable has no unit on the x-axis.

See also:
SetUnit, Unit?, YUNIT, XDELTA

imc FAMOS Func on Reference - 1222 -

(c) 2024 imc Test & Measurement GmbH

XY

A data set given by its (X,Y)-coordinates is resampled at a fixed sampling rate.

Declaration:
XY (XData, YData) -> Result

Parameter:

XData The time- or x-values for the data set to be resampled. Type: [ND]

YData The y-values for the data set to be resampled. Type: [ND]

Result

Result The resulting equidistantly sampled data set

Description:
This function uses linear resampling at a constant sampling rate (delta-X) to generate an equidistantly sampled data set from an input data set's
X- and Y-coordinates. The delta-X for the resampling is determined automatically from the X-component.

In general, the functions XYdt() and XYdt2() are more appropriate.. With this functions, you can specify sampling rate and interpolation type.

The function should be used only for strictly monotonous (parts of) data sets. The XY function assumes that the number of points, the sampling
rate and the x-offset are the same.

If the sampling rates or the x-offsets of the components differ, use the function RSamp or RSampEx to equalize them.
When the components have different lengths, the shorter length is used for both components.
If the x-component is not strictly monotonous, the XY function cannot work properly. The result in imc FAMOS must always be a definite
curve.
The x-components may not be constant, since the created data set must always have a time range.
The resolution of the created data set corresponds to the smallest distance between adjacent xcoordinates. A maximum of 10e6 result
points are generated.
The XY-function in the Curve Window works somewhat differently (real-time and genuine superpositioning of the components).

Examples:
NwX and NwY are example data sets. NwX increases monotonously and NwY is the first harmonic of the sine function. The XY-superposition of
both components yields a semicircle.)

NDx = -cos(Ramp(0, PI / 100, 100))
NDy = sin(Ramp(0, PI / 100, 100))
NDhalfCircle = XY(NDx, NDy)

See also:
XYdt2, XYdt, RSampEx, XYof

imc FAMOS Func on Reference - 1223 -

(c) 2024 imc Test & Measurement GmbH

XYdt

A data set given by its (X,Y)-coordinates is resampled at a fixed sampling rate.

Declaration:
XYdt (XData, YData, Svdt) -> Result

Parameter:

XData The time- or x-values for the data set to be resampled. Type: [ND]

YData The y-values for the data set to be resampled. Type: [ND]

Svdt Resulting sampling interval or delta-x of the calculated (equidistantly sampled) result data set

Result

Result The resulting equidistantly sampled data set

Description:
This function uses resampling at a constant sampling rate (or delta-x) to generate from one data set's X- and Y-coordinates a new, equidistantly
sampled data set.

Waveforms to be calculated using mathematical functions generally must have the same sampling rate and be equidistant. Here equidistant
means that the distance between measurement points is the same for all values in the data set. However, this is not always the case in long-term
measurement or reduced data sets. The measurement values are often coordinate pairs for time and measurement values.

In order to process such data sets, they first must be converted to equidistant data sets using this function. The sampling rate of the resulting data
set can be specified.

The new data set is calculated from x- and y-coordinates by linear interpolation. This is as if a set timeslot pattern with the new sampling rate is
put on the curve and then all points on the curve which cut the grid are marked and transferred to the new curve.

If you wish to resample the data set with constant interpolation, you can use the function XYdt2().

The X data set must be monotonically increasing.
Information is lost when a data set is resampled. If a high sampling rate is used for resampling, the minima and maxima of the curve may be
distorted.

Examples:
If the data set to be sampled is an XY-data set with two components, this data set may be used with information about the component (.X, .Y)
characteristics.

NormalSet = XYdt(XYSet.X, XYSet.Y, 0.1)

In this example, the equidistant data set "Channel1dt" is generated from the data sets "Channel1" and "Time" is generated with a sampling rate
of 1.6 seconds.

Channel1dt = XYdt(Time, Channel1, 1.6)

The figure shows the upper curve of the original data set. Each recorded measurement value is marked by a circle. The lower curve shows the

imc FAMOS Func on Reference - 1224 -

(c) 2024 imc Test & Measurement GmbH

result of resampling. Here, each value is marked by a square.

See also:
XYdt2, RSampEx, Value2, XYof

imc FAMOS Func on Reference - 1225 -

(c) 2024 imc Test & Measurement GmbH

XYdt2

A data set given by its (X,Y)-coordinates is resampled at a fixed sampling rate.

Declaration:
XYdt2 (XData, YData, Svdt, Svnterpolation) -> Result

Parameter:

XData The time- or x-values for the data set to be resampled. Type: [ND]

YData The y-values for the data set to be resampled. Type: [ND]

Svdt Resulting sampling interval or delta-x of the calculated (equidistantly sampled) result data set

Svnterpolation If an X-coordinate does not exactly coincide with one of the data set's X-coordinates, the result is interpolated as follows:

0 : Linear. The input data set is interpolated linearly.

1 : Constant, preceding value. The input data set is subject to level interpolation, i.e. each value is kept constant until a new
sample value becomes effective. Thus, the result value is the input data set's value whose x-coordinate is immediately
BEFORE the x-coordinate examined.

2 : Constant, closest value. The result value is the input data set's value whose x-coordinate is CLOSEST to the x-coordinate
examined.

Result

Result The resulting equidistantly sampled data set

Description:
This function uses resampling at a constant sampling rate (or delta-x) to generate from one data set's X- and Y-coordinates a new, equidistantly
sampled data set.

The X-data set must be monotonically increasing.
The lengths of the parameter data sets for X and Y should be equal. Otherwise, 'extra' values in the longer data set will be ignored.
Linear interpolation is generally used for continuous input signals. This function's behavior thus matches that of XYdt().
The constant interpolation styles are most sensible to use when the input signal is comprised of predefined discrete values. This applies to
digital data , or measured data which by nature can only take integer values (e.g. the current gear in a transmission system). The resulting
data set consists only of values which also exist in the input data set, and has the same data format.
Linear interpolation with digital input data is not posible; the interpolation parameter is automatically corrected to the value 1 (constant
interpolation).
With the constant interpolation styles, the result has the same data format as the Y-data provided.
Resampling a data set causes the loss of some informationen. If you resample at a long sampling interval, some minima and maxima in the
curve may be distorted.

Examples:
An XY-data set is resampled at 0.1s. If needed, linear interpolation is applied.

Signal01 = XYdt2(Signal.X, Signal.Y, 0.1, 0)

A vehicle's gear currently engaged is recorded. Each time the gear is shifted, the gear engaged (<gear>, taking the values 1 - 5) and the time <t>
(since starting measurement) are saved. To simplify subsequent calculations, these two input data sets are used to generate a new data set
having 0.5 s equidistant sampling.

gear_resampled = XYdt2(t, gear, 0.5, 1)

See also:
XYdt, RSampEx, Value2, XYof

imc FAMOS Func on Reference - 1226 -

(c) 2024 imc Test & Measurement GmbH

XYof

From the X- and Y-components, an XY-data set is formed.

Declaration:
XYof (ComponentX, ComponentY) -> XYData

Parameter:

ComponentX Data set from which the X-component is derived [ND]

ComponentY Data set from which the Y-component is derived [ND]

XYData

XYData Resulting XY-data set

Description:
Joins two real data sets to form an XY-data set with two components.

When the parameter sets have different lengths, the Y-track is truncated accordingly or filled with zeroes (for scalable integer data formats, the
unscaled numerical value is set to 0), since X- and Y-components must have the same length.

Both parameters may be structured (events/ segments), however, in that case, the respective other parameter must have exactly the same
structure (same segment length, event-count and -length).

Examples:
Generating an XY-data set whose value pairs form a circle:

x = sin(Ramp(0, 2*PI/ 360, 360)) + 3
y = cos(Ramp(0, 2*PI/ 360, 360))
circle = XYof(x, y)

See also:
CmpX, CmpY, XYdt, XYdt2

imc FAMOS Func on Reference - 1227 -

(c) 2024 imc Test & Measurement GmbH

YUNIT

Sets Y-unit

Declaration:
YUNIT VariableName NewUnit

Parameter:

VariableName Name of the variable to which a new y-unit is to be assigned.

NewUnit New y-unit

Description
The command YUNIT is obsolete; instead of it, the function SetUnit() should be used in newly created sequences.
The unit of the y-axis in a data set is redefined, i.e. the data set is assigned a new y-unit.

The waveform is the first parameter, the unit is the second.

The unit is specified without quotation marks. If there is no second parameter, the unit of the x-axis is deleted.

With complex data sets, only the unit of the first component is changed. With XY-data sets, the unit of the Y-component is set.

Examples:

YUNIT Data A

The y-axis unit of the data set "Data" is set to "A".

YUNIT Data

Now the variable "Data" no longer has any units along the y-axis.

See also:
SetUnit, Unit?, XUNIT

imc FAMOS Func on Reference - 1228 -

(c) 2024 imc Test & Measurement GmbH

ZDel?

The increment in the z-direction (Delta-Z) is determined

Declaration:
ZDel? (Data) -> SvZDelta

Parameter:

Data Data set whose z-increment is to be determined

SvZDelta

SvZDelta Delta-Z

Description:
A data set's increment in the z-direction is set. Examples of the use of this value include for the scaling of the z-axis in 3D-displays of segmented
data.

See also:
SetZDel, ZOff?, Leng?

imc FAMOS Func on Reference - 1229 -

(c) 2024 imc Test & Measurement GmbH

ZOff?

The offset in the z-direction is determined.

Declaration:
ZOff? (Data) -> SvZOffset

Parameter:

Data Data set whose z-offset is to be determined

SvZOffset

SvZOffset z-offset

Description:
The initial value in the z-direction is set. Examples of the use of this value include for the scaling of the z-axis in 3D-displays of segmented data.

See also:
SetZOff, ZDel?, SetZDel

imc FAMOS Func on Reference - 1230 -

(c) 2024 imc Test & Measurement GmbH

ZoomSpectrumChirpZ

Available in: Professional Edition and above (SpectrumAnalysis-Kit)

The Chirp-z transformation is applied to the time-based signal. For this purpose, the signal's RMS-spectrum is determined in a selected frequency
range. The time signal's length need not be a power of two. The spectrum can be determined with any resolution from 0 Hz up to half of the
sampling frequency.

Declaration:
ZoomSpectrumChirpZ (Time-based signal, FreqMin, FreqMax, FreqDelta, WindowType) -> Result

Parameter:

Time-based
signal The time plot of the signal from which the spectrum is to be computed

FreqMin Lower end of frequency range, >=0

FreqMax Upper end of frequency range, <= half of sampling frequency

FreqDelta Frequency line distance, >= 0

WindowType Windowing function for the FFT used

0 : Rectangle

1 : Hamming

2 : Hanning

3 : Blackman

4 : Blackman / Harris

5 : Flat Top

Result

Result The spectrum determined is a complex data set with magnitude and phase. The magnitude of the individual frequency lines is
stated as an RMS-value.

Description:
The number of frequency lines determined is:

Count = 1 + (FreqMax - FreqMin) / FreqDelta

Toward this end, we round up. FreqMin is always adhered to as the lower limit.

For the following parameters, the time data's general DFT (discrete Fourier transformation) is determined, but with a fast algorithm. Refer also to
DFTSpectrum():

FreqMin = 0
FreqMax = sampling frequency / 2
FreqDelta = FreqMax / points_in_time_singal / 2

If only one frequency line is to be determined, select the following:

FreqDelta = 0.0
FreqMin = FreqMax

In all other cases: FreqDelta > 0.0.

Examples:
A time signal's spectrum in a narrow range around 50Hz is to be determined:

Spectrum = ZoomSpectrumChirpZ (t, 48, 52, 0.01, 0)

The DFT of a time signal t is to be determined:

fmax = 0.5 / xdel?(t) ; highest frequency
fdelta = fmax / leng?(t) / 2 ; frequency line distance
Spectrum = ZoomSpectrumChirpZ (t, 0, fmax, fdelta, 0)

imc FAMOS Func on Reference - 1231 -

(c) 2024 imc Test & Measurement GmbH

file:///D:/usr2024/Famos/Help/Help.FunctionReference/pdf.eng/SpectrumAnalysisKit.pdf

See also:
FFT, DFTSpectrum

imc FAMOS Func on Reference - 1232 -

(c) 2024 imc Test & Measurement GmbH

PowerPoint-Kit (Overview)

Available in: Professional Edition and above

Overview
This kit provides functions which govern Microsoft PowerPoint.

You can create a presentation.

Slides can be inserted from a different presentation into the current presentation. Slides can be duplicated, moved and deleted.

In the presentation, it is possible to replace text boxes, table contents, or pictures with content from FAMOS.

The PowerPoint-Kit requires imc FAMOS 7.3 or higher.

The prerequiste is that a supported version of PowerPoint-Version is installed on the same computer.

At this time, PowerPoint 2010, 2013 and 2016 are supported.

System requirements and installation
The Powerpoint-Kit is included in the 'Professional' and 'Enterprise' editions of imc FAMOS.

In order to be able to use the Powerpoint-Kit in FAMOS, it must be registered. During the normal installation procedure, this happens
automatically and the contained functions are shown in the FAMOS function list under "Presentation / Powerpoint-Kit".

If the functions are not available, please check the registered Kits with the menu command "Extra / Options / Extensions / Kits". This list should
also include an entry "PowerPoint-Kit [imcPowerPointKit.dll]". If this entry isn't there, check whether the file "imcPowerPointKit.dll" is in the
same folder as the file "Famos.exe". If necessary, contact the Hotline.

Preparing a presentation for use by the imc PowerPoint Kit
Some additional preparations must be made in order to use a PowerPoint file by the imc PowerPoint Kit. The kit can replace the content of text
boxes, tables and pictures. To do this, these objects must be identified in PowerPoint.

This identification is provided by means of the shape's alternative text. To each object in a slide, it is possible to assign an alternative text.

The Kit-functions search through all shapes in a slide for the alternative text. If a shape has been found, the text, the table cell content, or the
picture is replaced.

In PowerPoint you can enter the alternative text in the following way:

1. On the slide, select shape object
2. Right-click the mouse within the element and select "Format shape" or "Format graphic".
3. Click on "Size and Properties", then on "Alt Text"
4. In the box "Description" enter a text as the designation, e.g. FAMOS_Text1. This designatory text is used in Kit-functions to find the shape
object.
5. Important! Do not enter the designatory text in the box "Title".
6. If you wish to use the alternative text for it's original function (barrier-free PowerPoint), then first enter the designating text in the box
"Description", followed by a semicolon (;). After that enter the text intended for the barrier free PowerPoint. The semicolon is not part of the
designating text.

Multithreading
Each Execution thread uses its own Powerpoint instance. If, for example, Powerpoint is started in a parallel sequence function (BEGIN_PARALLEL)
using PptOpenPresentation () and a document is loaded, further access to this document is only permitted within the same sequence function. If
the Powerpoint instance was not explicitly closed with PptClosePresentation (), it is closed automatically at the end of the sequence function.

Copyright
Microsoft PowerPoint is a registered trademark of Microsoft Corporation, USA.

To access PowerPoint, the kit uses the PowerPointApi.dll, OfficeApi.dll, VBIDEApi.dll and NetOffice.dll assemblies from the NetOffice 1.7.3
package. The package was published under the MIT Licence copyright © 2012 Sebastian Lange.

(c) 2024 imc Meßsysteme GmbH

imc FAMOS Func on Reference - 1233 -

(c) 2024 imc Test & Measurement GmbH

R-Kit (Overview)

Available in: Professional Edition and above

Overview
This Kit provides functions for connecting the R-System with FAMOS.

The functions provide a bridge to the R-system.

R is a programming system for statistical analysis. R contains a very large library of functions which can be applied in statistics analyses. R is freely
available.

The R-Kit contains functions for setting and reading R variables and for executing R scripts.

Prerequisites
The R-Kit is included in the 'Professional' and 'Enterprise' editions of imc FAMOS and requires at least version 7.3.

The R-System must be installed on the PC. The minimum required version is 3.3.2. It is available for download and installation on the Internet at
http://www.r-project.org. During installation, it is advisable to retain all of the suggested default settings.

In order to use the R-System in an effective way, some R-programming skills are needed.

If there is no R- System or an R version on the PC that is smaller as 3.3.2, the R version 3.3.2 is also installed. If higher versions of the R system are
present on the PC, no R- System is installed.

Registration in FAMOS
In order to be able to use the R-Kit in FAMOS, it must be registered. During the normal installation procedure, this happens automatically and the
contained functions are shown in the FAMOS function list under "Analysis / Statistics / R-Kit".

If the functions are not available, please check the registered Kits with the menu command "Extra / Options / Extensions / Kits". This list should
also include an entry "R- Kit [imcRKit.dll]". If this entry isn't there, check whether the file "ImcRKit.dll" is in the same folder as the file
"Famos.exe". If necessary, contact the Hotline.

Multithreading
All functions of the R-Kit can be called in any execution thread (BEGIN_PARALLEL), but have a global and cross-thread effect. All calls are first
moved internally to the FAMOS Main thread and executed from there, since the R runtime environment does not support parallel calls from
different threads.

General Notes
In R, the function names and variable names are case-sensitive.

Incorrect execution of an R-Kit function causes the FAMOS-sequence to abort.

Copyright
R is is released under the GNU General Public License (GPL), Version 2.

R's source data are provided under https://cran.r-project.org/sources.html.

In order to access the R-System, the R-Kit uses these assemblies:

R.Net and RDotNet.NativeLibrary : Copyright (c) 2010, RecycleBin

DynamicInterop : Copyright (c) 2015 Jean-Michel Perraud; Copyright (c) 2014 Daniel Collins, CSIRO;Copyright (c) 2013 Kosei, evolvedmicrobe

The examples of the t-test are sourced from Friedrich Leisch: Introduction to Inductive Statistics
http://groll.userweb.mwn.de/StatistikII_SS09/VL_Folien_3.pdf.

The data for the example in the Chi-square goodness-of-fit test were sourced from Dipl.-Math. Uwe Gorbracht, published under http://rechen-
fuchs.de/chi-quadrat-anpassungstest-wuerfel-beispiel/.

The data for the example of sales distributions are sourced from an internet page belonging to the University of St.Gallen, University of Basel,
FhbB, 2007, http://www.mri.imh.unisg.ch/Analysemethoden/Datenanalyse/Induktiv/univariat/chi2anpassungstest.html.

For the test of independence between eye and hair color, data from Annette Bieniusa's "Programmieren in Anwendungen" of the Technical
University of Kaiserslautern, https://softech.informatik.uni-kl.de/homepage/teaching/PIA_SS14/7_Hypotheses.pdf were used.

For the test of independence regarding occupations, the data are sourced from http://wikis.fu-berlin.de/pages/viewpage.action?
pageId=712409813.

(c) 2024 imc Meßsysteme GmbH

imc FAMOS Func on Reference - 1234 -

(c) 2024 imc Test & Measurement GmbH

Python-Kit (Overview)

Available in: imc FAMOS 2022, Professional Edition and above

The Python-Kit supplies functions which provide a bridge to the programming language Python.

Python is an all-purpose object-oriented programming language which is very prevalent in the fields of education, science and technology due to
its accessibility to beginners, its platform independence, expansion capability and open source availability. A large selection of libraries is
available, for instance for numeric calculations, visualized data processing, image analysis and all the way to machine learning. Familiar
expansion libraries for the technical/scientific sector include, for example: NumPy, SciPy and TensorFlow.

FAMOS generates an embedded instance of the Python runtime environment, which provides an interpreter for the Python programming
language.

There are functions available for reading and writing Python variables, as well as for running Python functions, code lines or whole programs.

System prerequisites:

FAMOS:

The Python-Kit requires imc FAMOS 2022, Professional Edition, or a higher version.

Python:

On the PC a supported version of Python must be installed.
Support is provided exclusively for the Python reference implementation of the "Python Software Foundation" (CPython) in one of the
versions listed below, which can be downloaded and installed at https://www.python.org.
Compatible CPython-versions: 3.8 (64Bit), 3.9 (64Bit), 3.10 (64Bit), 3.11 (64Bit)
The path to the Python installation directory should be included in the PATH environment variable.

NumPy (optional):

The FAMOS-Python bridge (optionally) offers special support for data types, which are defined in the expansion library "NumPy"
(https://numpy.org).
Compatible 1.19 (64Bit) ... 1.23 (64Bit)

Tip: For a quick check of whether an appropriate Python-version is installed, you can simply enter "python" in the Windows command prompt. If
Python is installed, the Interpreter starts and indicates the version.

Multithreading:
All functions of the Python-Kit can be called in any execution thread (BEGIN_PARALLEL), but have a global and cross-thread effect. All calls are
initially moved internally to the FAMOS main thread and executed from there, since the Python Runtime Environment does not support parallel
calls from different threads.

(c) 2024 imc Meßsysteme GmbH

imc FAMOS Func on Reference - 1235 -

(c) 2024 imc Test & Measurement GmbH

https://www.python.org
https://numpy.org

ASAM-ODS-Kit (Overview)

Available in: Enterprise Edition and above

Overview
The ASAM-ODS plug-in for FAMOS consists of 2 parts: the actual Browser plug-in with its user interface for working manually with ODS-
conforming data storage, and the ODS-Kit. This is a collection of functions containing basic functions for automated access to ODS servers for use
in FAMOS sequences.

The description of the ODS-Kit functions is found in this section. Introductory comments on the ASAM-ODS standard, on the server types
supported and on operation of the plug-in user interface are found in Chapter "Plugin".

System requirements and installation
The ASAM-ODS-Kit is included in the 'Enterprise' edition of imc FAMOS.

In order to be able to use the ASAM-ODS-Kit in FAMOS, it must be registered. During the normal installation procedure, this happens
automatically and the contained functions are shown in the FAMOS function list under "Databases / ASAM-ODS-Kit".

If the functions are not available, please check the registered Kits with the menu command "Extra / Options / Extensions / Kits". This list should
also include an entry "ASAM-ODS-Kit [ImcOds02.dll]". If this entry isn't there, check whether the file "imcOds02.dll" is in the same folder as the
file "Famos.exe". If necessary, contact the Hotline.

Multithreading
All functions of the ODS-Kit may only be called in the standard execution thread. A call within a BEGIN_PARALLEL block (i.e. within sequence
functions that are executed in a separate thread) is not permitted.

(c) 2024 Test & Measurement GmbH

imc FAMOS Func on Reference - 1236 -

(c) 2024 imc Test & Measurement GmbH

ms-its:OdsBrowserPlugin.chm::/odsbrowser_eng_introduction.htm

VideoPlayer-Kit (Overview)

Available in: Professional Edition and above

The Video Player-Kit is a component of the Video Player Plug-in for playback of video files. It can be used both for remote control of the Plug-in
and for governing Video Player elements in FAMOS-Dat Browser panel. Using the Kit's functions, it is possible to automate routines, for which all
necessary functions for loading video files, controlling the playback and setting and getting relevant parameters are available.

System requirements and installation
The Video-Kit is included in the 'Professional' and 'Enterprise' editions of imc FAMOS and installs together with the Video Player Plug-in.

In order to be able to use the Video-Kit in FAMOS, it must be registered. During the normal installation procedure, this happens automatically
and the contained functions are shown in the FAMOS function list under "Presentation / Video".

If the functions are not available, please check the registered Kits with the menu command "Extra / Options / Extensions / Kits". This list should
also include an entry "Video-Player [ImcVpl02.dll]". If this entry isn't there, check whether the file "ImcVpl02.dll" is in the same folder as the file
"Famos.exe". If necessary, contact the Hotline.

Multithreading
The functions of the Video kit can be called in every Execution thread and have a global effect.

Application example
In the following sequence, the sample file Crash.avi is opened in the Plug-in window and linked with the data set Crash.dat. Next, the video file's
parameters are adjusted so that the flash of light in the picture's background coincides with the maximum value of the variable CrashTest:Light
and the smashing of the windshield coincides with the maximum value of the variable CrashTest:Acceleration.

;Demo-sequence: VideoKit\Adjust.seq ;Shows how the Video-parameters are adjusted
;Load measurement data
LADEN "c:\Famos\VideoKit\Crash.dat"

;Open curve window
CvConfig(CrashTest:Licht,"c:\Famos4\VideoKit\Crash.ccv")

;Load video file
err=VpVideoLoad("c:\Famos\VideoKit\Crash.avi",0)
;Link curve window and video
err=VpSetLink(CrashTest:Licht,0)

;adapt parameters for synchronized display of video and curve plot
err=VpSetXOffset(0.185,0)
err=VpSetRecordRate(32,0)

;Play video back slowly
err=VpSetPlayRate(1.5,0)
err=VpSetPosFrames(15,0)
err=VpPlay(0)

;Delete unnecessary variable
DELETE err

It is even easier to solve a similar assignment in Data Browser panels. A Video Player element can be placed on a Panel page together with a
curve window and both elements can be linked for synchronized playback already during the Design process. Configuration of the curve window
can also be accomplished completely when the page is in the Design stage. This means that it would no longer be necessary to call the functions
VpSetLink() and CvConfig() at runtime. In the folowing example, some playback parameters are set, but these could also be configured with the
Video Player element during the page's Design stage.

;Load measurement data
LADEN "c:\Famos\VideoKit\Crash.dat"

;Load Panel with curve window a Video Player
DbLoadPanel("C:\VIDEO\VIDEO.PANEL", 0)

;Load video file (if not already permanently specified during the Design process)
err=VpVideoLoad("c:\Famos\VideoKit\Crash.avi",1)

;adapt parameters for synchronized display of video and curve plot
err=VpSetXOffset(0.185,1)
err=VpSetRecordRate(32,1)

;Play video back slowly
err=VpSetPlayRate(1.5,1)
err=VpSetPosFrames(15,1)
err=VpPlay(1)

imc FAMOS Func on Reference - 1237 -

(c) 2024 imc Test & Measurement GmbH

;Delete unnecessary variable
DELETE err

imc FAMOS Func on Reference - 1238 -

(c) 2024 imc Test & Measurement GmbH

	Overview
	-
	>
	>=
	<
	<>
	<=
	*
	/
	^
	+
	=
	ABCRating
	Abs
	ACF
	acos
	Add
	All0
	AmpSpectrumPeak
	AmpSpectrumPeak_1
	AmpSpectrumPeak_exp
	AmpSpectrumRMS
	AmpSpectrumRMS_1
	AmpSpectrumRMS_exp
	AND
	Append
	AppendLoop
	AppendLoopEnd
	APPLICATION
	Appro
	ApproNonLin
	ASCII
	ASCOPTION
	ASCSAVE
	asin
	atan
	atan2
	BEGIN_PARALLEL
	BINARY
	BitAnd
	BitGet
	BitNot
	BitOr
	BitSet
	BitShift
	BoxMessage
	BoxOutput
	BoxText?
	BoxValue?
	BoxVarSelector
	BREAK
	BSave
	CASE
	CCF
	CFCFilter
	CharToSv
	Chrct
	Clip
	CLIPBOARD
	ClsLvlCr
	ClsMaxSt
	ClsOff2ChannelHistogram
	ClsOffFromRainflowGetLevelCrossing
	ClsOffFromRainflowGetMinMaxPeak
	ClsOffFromRainflowGetPeak
	ClsOffFromRainflowGetRangePair
	ClsOffFromRainflowGetReconstruction
	ClsOffFromRainflowGetSpans
	ClsOffFromRainflowGetZeroCrossingPeak
	ClsOffMarkov
	ClsOffMatrixSum1Triangle
	ClsOffMatrixSumLines
	ClsOffRainflowAddResidue
	ClsOffRainflowClearMatrix
	ClsOffRainflowClearResidue
	ClsOffRainflowFeedDiscontinuity
	ClsOffRainflowFeedMatrix
	ClsOffRainflowFeedResidue
	ClsOffRainflowFeedSamples
	ClsOffRainflowGetMatrix
	ClsOffRainflowGetResidue
	ClsOffRainflowGetResidueMtx
	ClsOffRainflowInit1
	ClsOffRainflowInit2
	ClsOffRainflowInit3
	ClsOffRainflowSetMatrix
	ClsOffRevolutionsHistogram
	ClsOffRevolutionsMatrix
	ClsOffRevolutionsMatrix2
	ClsOffTM
	ClsOffWoehlerSN
	ClsPeak1
	ClsPeak2
	ClsPeak3
	ClsPkSmp
	ClsQuantile
	ClsRange
	ClsRFlow
	ClsRMean
	ClsRngPr
	ClsSampl
	ClsSmSmp
	ClsTAtLv
	ClsTimeAtLevel
	Cmp1
	Cmp2
	CmpX
	CmpY
	CodeRange
	Coherence
	Color?
	Comm?
	COMMENT
	Compl
	ComplexSpectrum
	ComplexSpectrum_1
	ComplexSpectrum_exp
	CONTINUE
	CONTROL
	ConvertUnit
	CorrCoeff
	cos
	CrossPowerDS
	CrossPowerDS_1
	CrossPowerDS_exp
	CrossPowerNorm
	CrossPowerNorm_1
	CURVESETUP
	Cut
	CutDt
	CutIndex
	CvAppendMarker
	CvAskTitle
	CvAttrib
	CvConfig
	CvCursor
	CvLoadGlobalSetting
	CvPosi
	CvRefDB
	CvReplaceChannel
	CvSave
	CvSetCursor
	CvTitle
	CvUpdate
	CvVar
	CvWin
	CvXAxis
	CvYAxis
	CwAction
	CwActionP
	CwAxisGet
	CwAxisGetText
	CwAxisSet
	CwColorGet
	CwColorSet
	CwCosysGet
	CwCosysSet
	CwDataGet
	CwDataGetText
	CwDataSet
	CwDeleteElement
	CwDisplayGet
	CwDisplayGetText
	CwDisplaySet
	CwGlobalGet
	CwGlobalGetText
	CwGlobalSet
	CwIsWindow
	CwLineGet
	CwLineSet
	CwLoadCCV
	CwLoadSettings
	CwMarkerGet
	CwMarkerGetText
	CwMarkerSet
	CwNewChannel
	CwNewChannel_xy
	CwNewChannel_xyz
	CwNewElement
	CwNewWindow
	CwPosition
	CwPrintSet
	CwReplace
	CwSaveCCV
	CwSelectByChannel
	CwSelectByIndex
	CwSelectMode
	CwSelectWindow
	CwSequenceEnable
	CwSequenceState
	CwUpdateEnable
	DataFormat?
	dB
	DbBeginTransaction
	DbClosePanel
	DbConnect
	DbDisconnect
	DbEndTransaction
	DbGetLastErrorCode
	DbGetLastErrorText
	DbInitialize
	DbInsert
	DbLoadPanel
	DbOption
	DbSelect
	DbSetActivePanel
	DbSetPanelWindow
	DbShow
	DbSql
	DbUpdate
	DbUpdate1
	DDEInq
	DDESend
	DDESepar
	DDESet
	DEFAULT
	DELETE
	DeqCalc
	DeqConst
	DeqError
	DeqFinish
	DeqInit
	DeqInput
	DeqMassMatrix
	DeqResult
	DeqX
	DeqY
	DFilt
	DFTSpectrum
	Dialog
	Diff
	DisplayY?
	Div
	DlgApplyData
	DlgCloseDialog
	DlgDeleteItem
	DlgEnable
	DlgExpandTree
	DlgFileName
	DlgFindItem
	DlgGetBarMax
	DlgGetBarMin
	DlgGetCellText
	DlgGetCellValue
	DlgGetItemCount
	DlgGetItemLevel
	DlgGetItemText
	DlgGetPath
	DlgGetSelectedItem
	DlgGetSelectedItemCount
	DlgGetText
	DlgGetValue
	DlgInsertItem
	DlgInsertTreeItem
	DlgIsItemSelected
	DlgSelectItem
	DlgSetBackColor
	DlgSetBarRange
	DlgSetCellBackColor
	DlgSetCellText
	DlgSetCellTextColor
	DlgSetCellValue
	DlgSetItemSelection
	DlgSetItemText
	DlgSetText
	DlgSetTextColor
	DlgSetValue
	DlgShow
	DrTitleN
	DSPLOAD
	e
	eFit
	ELSE
	ELSEIF
	EMPTY
	END
	END_PARALLEL
	Envelope1
	Envelope2
	Equal
	EventAppend
	EventDel
	EventGet
	EventJoin
	EventNew
	EventNum?
	EventProp
	EventProp?
	EventSet
	Execute
	EXITSEQUENCE
	exp
	ExpoRMS
	FAMOS
	FASLOAD
	FFT
	FFTOPTION
	FileClose
	FileComm?
	FileErrCode?
	FileErrText?
	FileLineRead
	FileLineWrite
	FileLoad
	FileName?
	FileObjDel
	FileObjFind
	FileObjName?
	FileObjNum?
	FileObjRead
	FileObjType?
	FileObjWrite
	FileOpenASCII
	FileOpenASCII2
	FileOpenDSF
	FileOpenFAS
	FileOpenXLS
	FileOpenXLS2
	FileResetAll
	FileSave
	FileSetComm
	FileXLSCellRead
	FileXLSCellWrite
	FileXLSColumnRead
	FileXLSSelectSheet
	FiltBP
	FiltBpZ
	FiltBS
	FiltBsZ
	FilterAnalog
	FiltHP
	FiltHpZ
	FiltLP
	FiltLpZ
	Flag?
	Flipflop
	Floor
	FOR
	FOREACH
	FrequencyResponse
	FsCopyFile
	FsCreateDirectory
	FsDeleteFile
	FsDlgSelectDirectory
	FsDlgSelectFiles
	FsFileExists
	FsFileListClose
	FsFileListGetAttribute
	FsFileListGetCount
	FsFileListGetName
	FsFileListGetSize
	FsFileListGetTime
	FsFileListNew
	FsGetDiskFreeSpace
	FsGetDriveType
	FsGetFileAttributes
	FsGetFileNames
	FsGetFileSize
	FsGetFileTime
	FsGetLastError
	FsGetLastErrorNumber
	FsGetLogicalDrives
	FsGetLongPathName
	FsGetParentDirectoryName
	FsGetShortPathName
	FsMakePath
	FsMoveFile
	FsPathCombine
	FsRemoveDirectory
	FsRenameFile
	FsSetFileAttributes
	FsSetFileTime
	FsSplitPath
	FsTempFileName
	GetLastError
	GetOption
	GetScale
	GetSystemInfo
	GrChanAppend
	GrChanDel
	GrChanFind
	GrChanName?
	GrChanNum?
	GrConcat
	GrExpand
	GrJoin
	GrNew
	GrPart
	Histo
	HttpGetFile
	HttpGetText
	HttpOption
	Hyst
	idB
	IF
	iFFT
	InDegr
	InRad
	Int
	IntervalFrom2Levels
	IntervalFromLevel
	IntervalGetStatist
	IntEx
	IPol
	IsCplx
	IsXY
	Join
	JoinEx
	KBT
	LAYOUT
	LDIR
	Leng
	Leng?
	LFit
	Lip
	ln
	LOAD
	LOCAL
	log
	LogSetup
	LogTrace
	LostValueFill
	LostValueGaps
	LostValueReplace
	LoudnessLevel
	LoudnessSpectrum
	LowerValue
	MatrixAdd
	MatrixChangeDim
	MatrixCut
	MatrixEigen
	MatrixFromLine
	MatrixGet
	MatrixInfo
	MatrixInit
	MatrixInverse
	MatrixIpol
	MatrixMerge
	MatrixMult
	MatrixPart
	MatrixSet
	MatrixSumLines
	MatrixTranspose
	Max
	MDIR
	Mean
	MeasChanNames?
	MeasNames?
	MeasurementName?
	Median
	Min
	MInt
	Mirror
	Mod
	Monoflop
	MSave
	Mult
	MvMax
	MvMean
	MvMin
	MvRMS
	MvStDev
	MvSum
	Name?
	NorthCorrection
	NOT
	OctA
	OctI
	OdsGetLastErrorCode
	OdsGetLastErrorTxt
	OdsIEAddAttribute
	OdsIEAddAttributeTxt
	OdsIEBuildVarName
	OdsIECreateElement
	OdsIEDeleteElement
	OdsIEGetAttribute
	OdsIEGetAttributes
	OdsIEGetAttributeTxt
	OdsIEGetChannel
	OdsIEGetMeasurement
	OdsIEGetPropertyTxt
	OdsIEImportData
	OdsIEListByAsamPath
	OdsIEListByType
	OdsIEListChildren
	OdsIERemoveAttribute
	OdsIESetAttribute
	OdsIESetAttributeTxt
	OdsInitialize
	OdsPluginListSelItems
	OdsPluginSessionConnect
	OdsSessionClose
	OdsSessionCreate
	OdsSessionSelect
	OnError
	OR
	OtrEncoderRevs01
	OtrFrequLine
	OtrOrderSpecFromFFT
	OtrOrderSpectrum
	OtrResample
	OtrResampleAAF
	OtrRpmOrder
	OtrRpmPresentation
	OtrRpmPresentFast
	OtrRpmPresentVector
	OtrRpmSpectrum
	OtrRpmSpectrumFast
	OtrRpmThirds
	OtrTachoMode
	OtrTachoToDist
	OtrTachoToSpeed
	OtrTachoToSpeedX
	OtrTimeOrderSpectrum
	OtrTrackingBandPass
	OtrTrackingBandPassZ
	OtrTrackingBandStop
	OtrTrackingBandStopZ
	OtrTrackingExpoRms
	OtrTrackingHighPass
	OtrTrackingHighPassZ
	OtrTrackingLowPass
	OtrTrackingLowPassZ
	ParametersPassed?
	PAUSE
	Peaks
	Perio
	PhaseContinuous
	PhaseMod
	PI
	PI2
	PnClose
	PnDeleteItem
	PnEnable
	PnExportGraphics
	PnExportPDF
	PnFindItem
	PnGetActivePage
	PnGetFileSelection
	PnGetFolder
	PnGetItemCount
	PnGetItemText
	PnGetPageCount
	PnGetPageIndex
	PnGetPageName
	PnGetPosition
	PnGetSelectedItem
	PnGetSelectedItemCount
	PnGetText
	PnGetValue
	PnGetValue2
	PnInsertItem
	PnInsertPage
	PnIsItemSelected
	PnLoad
	PnPrint
	PnRemovePage
	PnSave
	PnSelectItem
	PnSetActivePage
	PnSetFileSelection
	PnSetFolder
	PnSetItemSelection
	PnSetItemText
	PnSetPosition
	PnSetProperty
	PnSetText
	PnSetTimer
	PnSetValue
	PnSetValue2
	PnShow
	PnShowPage
	PnTableColumns?
	PnTableGetCellText
	PnTableGetCellValue
	PnTableGetSelectedRows
	PnTableRows?
	PnTableSetCell
	PnTableSetColumn
	PnTableSetDim
	PnTableSetProperty
	PnTableSetRow
	PnTableShowColumn
	PnTreeDeleteNode
	PnTreeFindNodes
	PnTreeGetNodeCount
	PnTreeGetNodeProp
	PnTreeGetNodes
	PnTreeGetNodeState
	PnTreeInsertNode
	PnTreeSetNodeProp
	PnTreeSetNodeState
	Pol
	Poly
	PolynomRoots
	Pos
	PosiEx
	PosiEx2
	Power1
	Power2
	Power3
	PowerCepstrum
	PowerCepstrum_1
	PowerCepstrum_exp
	PowerDS
	PowerDS_1
	PowerDS_exp
	PowerParameter
	PowerSelect
	PowerSpectrum
	PowerSpectrum_1
	PowerSpectrum_exp
	PptAddSlides
	PptClosePresentation
	PptDeleteSlide
	PptDuplicateSlide
	PptFindSlideByAlternativeText
	PptGetSlidesCount
	PptMoveSlide
	PptOpenPresentation
	PptPrintPresentation
	PptSavePresentation
	PptSetCellText
	PptSetCurve
	PptSetPicture
	PptSetText
	PrConfig
	PrMove
	PrPrint
	PrRdClip
	PrSave
	PrSet
	PrTitleI
	PrWin
	PulseDuration
	PyCallFunction
	PyConfig
	PyGetVar
	PyInit
	PyRun
	PyRunFile
	PySetVar
	PyTerminate
	R_ChisqTest
	R_Execute
	R_GetOption
	R_GetVar
	R_Norm
	R_SetVar
	R_tTest
	Ramp
	Random
	RangeSet
	Recip
	Rect
	Red
	Red2
	RedEx
	RemoveSamples
	RENAME
	RenameMeasurement
	Repl
	ReplIndex
	REQUEST
	RGB
	RGBConvert
	RgCurveSet
	RgDocClose
	RgDocCopy
	RgDocExport
	RgDocExportEx
	RgDocGetPageCount
	RgDocInsertPage
	RgDocNew
	RgDocOpen
	RgDocPrint
	RgDocPrintSetup
	RgDocRemovePage
	RgDocSave
	RgDocSetActive
	RgDocSetActivePage
	RgGetErrorText
	RgObjDelete
	RgObjFind
	RgObjGetCount
	RgObjGetPos
	RgObjGetTitle
	RgObjGetType
	RgObjMove
	RgObjSetColor
	RgObjSetSize
	RgSetDir
	RgTableColumns?
	RgTableGetCellText
	RgTableRows?
	RgTableSetCell
	RgTableSetColumn
	RgTableSetRow
	RgTextGet
	RgTextSet
	RgTextSetData
	RgWindow
	RMS
	Rosette
	Round
	RSamp
	RSamp0
	RSampEx
	SamplesGate
	SAVE
	SavitzkyGolay
	Scale
	SDIR
	SDOF_Response
	SearchLevel
	SegLen?
	SelBuildVarName
	SelChanListName?
	SelChanListSetName
	SelChanListSize?
	SelListControl
	SelMeasListName?
	SelMeasListSetName
	SelMeasListSize?
	SelUseMeasurement
	SEQUENCE
	Set
	SetBoxPos
	SetColor
	SetComm
	SetDataFormat
	SetDisplayY
	SetFlag
	SetIndex
	SetMeasurementName
	SetOption
	SetSegLen
	SetTime
	SetUnit
	SetZDel
	SetZOff
	Sharpness
	ShockResponseSpectrum
	SHOW
	signum
	sin
	SlClip
	Sleep
	sMax
	sMaxPos
	sMean
	sMin
	sMinPos
	Smo
	Smo3
	Smo5
	SolveLinEq
	Sort
	SoundIndex
	SoundIntensityThirds
	SpeakConfig
	SpeakText
	Spec
	SpecThirds
	SpecThirds_1
	sqr
	sqrt
	sRMS
	sStDev
	Stat
	StDev
	STri
	Sub
	Sum
	SvToChar
	SWITCH
	TAdd
	tan
	TComp
	TConv
	TForm
	ThrowError
	Time?
	TimeAdd
	TIMECOPY
	TimeDiff
	TimeJoin
	TIMESET
	TimeSplit
	TimeSystem?
	TimeToText
	TLeng
	TLike
	ToInt
	Top
	TPart
	TransposeMatrix
	TransRec
	TReplace
	TsaAppend
	TsaAppendText
	TsaCreateEmpty
	TsaDataToText
	TsaDecode
	TsaDelete
	TsaFilter
	TsaFindBefore
	TsaFindFirst
	TsaFindLast
	TsaFindNext
	TsaFindTime
	TsaFindValidPos
	TsaGetCount
	TsaGetData
	TsaGetText
	TsaGetTime
	TsaInsert
	TsaInsertText
	TsaJoin
	TsaSaveAscii
	TsaSetData
	TsaSetText
	TsaSetTime
	TsaTextToData
	TtoSv
	TxArrayClean
	TxArrayCombine
	TxArrayCreate
	TxArrayDelete
	TxArrayGetSize
	TxArrayInsert
	TxArrayPart
	TxArraySetSize
	TxArraySort
	TxArrayToChannel
	TxFind
	TxFormatEx
	TxGetValidVarName
	TxRegexMatch
	TxRegexReplace
	TxReplace
	TxSplit
	TxToClipboard
	TxWhere
	UNCERTAINTY_LOOP
	UncertaintyCalc
	UncertaintyGet
	UncertaintyModify
	UncertaintySet
	UncertaintySnapshot
	Unit?
	UpperValue
	UserPropCopy
	UserPropCount?
	UserPropDel
	UserPropInfo?
	UserPropName?
	UserPropSet
	UserPropText?
	UserPropValue?
	Value
	Value2
	ValueIndex
	VarExist?
	VarGetInit
	VarGetInit2
	VarGetName?
	Verify
	VerifyVar
	VFAppendCwSnapshot
	VFAppendFrame
	VFAppendPanelSnapshot
	VFAppendRGBData
	VFClose
	VFOpen
	VibrationFilter
	VpBackStep
	VpContinue
	VpDelLink
	VpGetAbsStartTime
	VpGetAbsStartTime2
	VpGetErrorText
	VpGetFileName
	VpGetImages
	VpGetLengthFrames
	VpGetLengthSeconds
	VpGetPlayRate
	VpGetPosFrames
	VpGetPosSeconds
	VpGetRecordRate
	VpGetState
	VpGetStateText
	VpGetXOffset
	VpLinkExists
	VpPause
	VpPlay
	VpPlaySync
	VpSelect
	VpSetAbsStartTime
	VpSetAbsStartTime2
	VpSetLink
	VpSetPlayRate
	VpSetPosFrames
	VpSetPosSeconds
	VpSetRecordRate
	VpSetXOffset
	VpSingleStep
	VpStop
	VpVideoClose
	VpVideoLoad
	WFTLOAD
	WHILE
	XDel
	XDel?
	XDELTA
	XlBuildA1Ref
	XlCellMerge
	XlCreateTimeLine
	XlFind
	XlGetSelectedRange
	XlGetText
	XlGetTextArray
	XlGetValue
	XlGetValues
	XlGetValues2
	XlPaste
	XlQuit
	XlRunMacro
	XlSelectRange
	XlSetBorderColor
	XlSetBorderStyle
	XlSetBorderThickness
	XlSetCellFormat
	XlSetColor
	XlSetColumnWidth
	XlSetConditionColor
	XlSetFontSize
	XlSetFontStyle
	XlSetRowHeight
	XlSetText
	XlSetTextAlignment
	XlSetTextArray
	XlSetTextOrientation
	XlSetTextShrinkToFit
	XlSetTextWrap
	XlSetValue
	XlSetValues
	XlSheetActivate
	XlSheetAdd
	XlSheetDelete
	XlSheetExist
	XlSheetGetActive
	XlSheetGetCount
	XlSheetGetTitle
	XlSheetInsertCopy
	XlSheetMove
	XlSheetPrint
	XlSheetRename
	XlSheetSetColumnStandardWidth
	XlSheetSetOption
	XlSheetSetPicture
	XlSheetSetPrintArea
	XlSheetSetPrintFitTo
	XlStart
	XlVisible
	XlWbActivate
	XlWbClose
	XlWbExist
	XlWbGetActive
	XlWbGetCount
	XlWbGetName
	XlWbNew
	XlWbOpen
	XlWbPrint
	XlWbSave
	xMax
	XOff
	XOff?
	XOFFSET
	XOR
	XUNIT
	XY
	XYdt
	XYdt2
	XYof
	YUNIT
	ZDel?
	ZOff?
	ZoomSpectrumChirpZ
	PowerPoint-Kit (Overview)
	R-Kit (Overview)
	Python-Kit (Overview)
	ASAM-ODS-Kit (Overview)
	VideoPlayer-Kit (Overview)

